Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Phytochemistry ; 222: 114077, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615925

RESUMO

Two undescribed bisindole alkaloids, gelseginedine A (1) and its rearranged gelseginedine B (2), and seven unreported gelselegine-type oxindole alkaloids (3-9) were isolated from the stems and leaves of Gelsemium elegans, together with five known alkaloids (10-14). Compounds 1 and 2 represented the first examples of gelselegine-gelsedine type alkaloids which bridged two units by a double bond. Their structures with absolute configurations were elucidated by means of HRESIMS, NMR and calculational chemistry. The performed bioassay revealed that 14 could promote the proliferation of human oral mucosa fibroblast cells.


Assuntos
Fibroblastos , Gelsemium , Indóis , Extratos Vegetais , Indóis/isolamento & purificação , Indóis/farmacologia , Gelsemium/química , Fibroblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Folhas de Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Estrutura Molecular , Caules de Planta/química , Humanos
2.
Chem Biodivers ; 20(12): e202301665, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37968250

RESUMO

Gelsegansymines A (1) and B (2), two new indole alkaloids along with six known analogues (3-8) were isolated from the aerial parts of Gelsemium elegans. Their structures were elucidated by means of spectroscopic techniques. Structurally, compounds 1 and 2 possessed the rare cage-like gelsedine skeleton hybrid with bicyclic monoterpenoid. The anti-inflammatory activities of isolated compounds (1-3) were tested on LPS induced RAW264.7 cells. Under the treated concentration without toxicity for cells, the cytokines levels of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were evaluated by Griess method and enzyme-linked immunosorbent assay (ELISA). The results showed that compounds 1-3 exhibited anti-inflammatory activities with dose-dependent manner range from 12.5 to 50 µmol/L. Furthermore, the inhibitory activities of compounds 1 and 2 on receptor activator of NF-κB ligand (RANKL) induced osteoclast formation were tested in vitro. Compounds 1 and 2 at 5 µmol/L exhibited the significant inhibitory effect on the osteoclastogenesis induced by RANKL. This work reported the anti-inflammatory and osteoclast inhibitory activities of new monoterpenoid indole hybrids, which may inspire the further light on the related traditional application research of G. elegans.


Assuntos
Gelsemium , Osteoclastos , Animais , Camundongos , Gelsemium/química , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Fator de Necrose Tumoral alfa
3.
Curr Top Med Chem ; 23(26): 2452-2487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37642181

RESUMO

BACKGROUND: The use of ethnic medicinal plants has revitalized wide popularity in Africa, Asia, and most of the world because of the energy consumption barriers increase of synthetic drugs. Gelsemium is a traditional genus of plants with famous cultural and medicinal significance in Southeast Asia and North America. Three species are reported from the genus Gelsemium, including Gelsemium elegans (Gardn. & Camp.) Benth., Gelsemium sempervirens (L.) J.St.-Hil., and Gelsemium rankinii Small. Among them, G. elegans is well known for its toxicity and is used as a traditional remedy for skin problems, neuralgia, fractures, and cancer. The first record of the toxic medicine G. elegans is the Chinese herbal medicine classically known as Shen-Nong Ben-Cao Jing. In the legend, the Shennong emperor was poisoned by G. elegans, hence, it is also wellknown as Duan Chang Cao in China. In addition, G. sempervirens tincture is also used in the treatment of inflammation of the spinalcolumn, and diminishes blood to the cerebrospinal centers. INTRODUCTION: This review aims to provide up-to-date information on Gelsemium and its endophytic fungi on their traditional uses, phytochemistry, pharmacology, and toxicology. Mechanism studies regarding the detoxification profile of Gelsemium are also reviewed. METHODS: For this updated review, the literature survey and search were performed on the scientific databases PubMed, ScienceDirect, Wiley, China CNKI, Web of Science, SciFinder, and Google Scholar using the relevant keywords. RESULTS: The plants of the genus Gelsemium are all reported as rich sources of monoterpene indole alkaloids. Previous phytochemical studies published more than 200 alkaloids from Gelsemium and its endophytic fungi, which have attracted considerable attention from pharmaceutists and phytochemists due to their diverse and complex structures. The bioactivities of Gelsemium phytoconstituents studied using various chemical methods are summarized and described herein. Considering the huge influence of Gelsemium regarding its traditional applications, the activities of isolated compounds were focused on the anti-tumor, anti-inflammatory, analgesic and antianxiety, immunostimulatory, and immunosuppressive properties, which provide evidence supporting the ethnopharmacological effectiveness of the genus Gelsemium. Unlike all previous reviews of genus Gelsemium, to the best of our knowledge, the recently reported natural products from its endophytic fungi are first time summarized in this review. CONCLUSION: It is clearly suggested from the literature information that the structures and biological activities of Gelsemium have a wide range of attraction from folk to the community of scholars. However, as a highly toxic genus, the work on the detoxification mechanism and toxicology of Gelsemium is urgently needed before entering clinical research. It is noteworthy that the discussion about the relationship between structural and biological activities are a valuable topic of expectation, while the structural modification for active or toxic components may shed light on toxicological breakthrough. Besides the compounds from the plants of genus Gelsemium, the recently reported natural products from its endophytic fungi may provide a supplement for its ethnomedicinal uses and ethnological validity.


Assuntos
Gelsemium , Plantas Medicinais , Fitoterapia/métodos , Extratos Vegetais/química , Etnofarmacologia , Plantas Medicinais/química , Compostos Fitoquímicos/farmacologia , Anti-Inflamatórios não Esteroides
4.
Molecules ; 28(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985503

RESUMO

Two new monoterpenoid indole alkaloids, gelselegandines F (1) and G (2), were isolated from the aerial parts of Gelsemium elegans. Their structures were elucidated by means of spectroscopic techniques and quantum chemical calculations. The ECD calculations were conducted at the B3LYP/6-311G(d,p) level and NMR calculations were carried out using the Gauge-Including Atomic Orbitals (GIAO) method. Structurally, the two new compounds possessed rare, cage-like, monoterpenoid indole skeletons. All isolated compounds and the total alkaloids extract were tested for cytotoxicity against four different tumor cell lines. The total alkaloids extract of G. elegans exhibited significant antitumor activity with IC50 values ranging from 32.63 to 82.24 ug/mL. In order to discover anticancer leads from the active extraction, both new indole compounds (1-2) were then screened for cytotoxicity. Interestingly, compound 2 showed moderate cytotoxicity against K562 leukemia cells with an IC50 value of 57.02 uM.


Assuntos
Antineoplásicos , Gelsemium , Alcaloides de Triptamina e Secologanina , Estrutura Molecular , Gelsemium/química , Indóis , Alcaloides de Triptamina e Secologanina/farmacologia , Alcaloides de Triptamina e Secologanina/química , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia , Alcaloides Indólicos/química
5.
J Enzyme Inhib Med Chem ; 38(1): 2155639, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36629436

RESUMO

Monoterpenoid indole alkaloids (MIAs) represent a major class of active ingredients from the plants of the genus Gelsemium. Gelsemium MIAs with diverse chemical structures can be divided into six categories: gelsedine-, gelsemine-, humantenine-, koumine-, sarpagine- and yohimbane-type. Additionally, gelsemium MIAs exert a wide range of bioactivities, including anti-tumour, immunosuppression, anti-anxiety, analgesia, and so on. Owing to their fascinating structures and potent pharmaceutical properties, these gelsemium MIAs arouse significant organic chemists' interest to design state-of-the-art synthetic strategies for their total synthesis. In this review, we comprehensively summarised recently reported novel gelsemium MIAs, potential pharmacological activities of some active molecules, and total synthetic strategies covering the period from 2013 to 2022. It is expected that this study may open the window to timely illuminate and guide further study and development of gelsemium MIAs and their derivatives in clinical practice.


Assuntos
Gelsemium , Alcaloides de Triptamina e Secologanina , Alcaloides de Triptamina e Secologanina/farmacologia , Alcaloides de Triptamina e Secologanina/química , Gelsemium/química , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , Extratos Vegetais , Dor
6.
J Pept Sci ; 28(9): e3410, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35307909

RESUMO

Four novel Gelsemium elegans cyclic peptides (GEPs) were isolated in an antihuman cervical carcinoma activity tracking method, and their amino acid sequences were identified. The GEP-1 cyclic-(Trp-Leu-His-Val)-peptide inhibited HeLa cell proliferation in a dose- and time-dependent manner. GEP-1 induced intracellular reactive oxygen species (ROS) overproduction and induced HeLa cells apoptosis in a caspase-dependent manner. GEP-1 also induced collapse of the mitochondrial membrane potential and promoted the mitochondrial release of cytochrome c (cyt c), apoptosis-inducing factor (AIF), and endonuclease G (Endo G) in HeLa cells. Furthermore, GEP-1 triggered the extrinsic death receptor-dependent pathway, which was characterized by activating Fas and FADD. Notably, GEP-1 is a potential antihuman cervical carcinoma peptide.


Assuntos
Carcinoma , Gelsemium , Apoptose , Linhagem Celular Tumoral , Gelsemium/metabolismo , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Peptídeos Cíclicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
7.
Rapid Commun Mass Spectrom ; 36(12): e9302, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35344234

RESUMO

RATIONALE: Rankinidine belongs to the humantenine-type alkaloids isolated from Gelsemium. Currently, the mechanism behind the toxicity differences of rankinidine has not been explained. In this study, our purpose was to elucidate the major in vitro metabolic pathways of rankinidine and to compare the formation of metabolites of rankinidine in human (HLMs), rat (RLMs), goat (GLMs) and pig (PLMs) liver microsomes. METHODS: This is the first study to compare the in vitro metabolism of rankinidine with high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOF). The MS/MS data and LC/MS peak area acquired in positive ion mode were used to analyze metabolite structures and compare metabolism. RESULTS: We identified 11 metabolites (M1-M11) in total and found five main metabolic pathways, consisting of demethylation (M1), reduction (M2), oxidation at different positions (M3-M5), oxidation and reduction (M6-M10) and demethylation and oxidation (M11). The metabolism of rankinidine has qualitative and quantitative species-specific differences in vitro. In PLMs and GLMs, the main metabolic pathway of rankinidine was oxidation. Notably, among the four species, the oxidation ability of rankinidine was highest in pigs and goats, and the demethylation and reduction abilities of rankinidine were highest in humans and rats. CONCLUSIONS: The interspecific metabolic differences of rankinidine in HLMs, PLMs, GLMs and RLMs were compared and studied for the first time using LC/QTOF. These findings will certainly support future studies of rankinidine metabolism in vivo and will contribute to elucidating the cause of species-specific differences behind Gelsemium toxicity.


Assuntos
Alcaloides , Antineoplásicos , Gelsemium , Alcaloides/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Indóis , Microssomos Hepáticos/metabolismo , Ratos , Suínos , Espectrometria de Massas em Tandem/métodos
8.
Eur J Pharmacol ; 914: 174690, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34890543

RESUMO

Dysregulated activation of polyclonal B cells and production of pathogenic antibodies are involved in the development of rheumatoid arthritis (RA). Therefore, targeted B cell therapy is effective against RA. Gelsemium elegans (Gardn. & Champ.) Benth., a toxic plant widely distributed in Southeast Asia, has been used for treating rheumatoid pain, neuropathic pain, spasticity, skin ulcers, and cancers for many years in traditional Chinese medicine. Koumine, an alkaloid monomer from Gelsemium elegans Benth., exerts therapeutic effects against RA. However, whether koumine affects B cells remains unknown. In this study, the effect of koumine on B cells under T cell-independent (TI) and T cell-dependent (TD) immune responses is investigated in vitro and in vivo. Mouse primary B cells were obtained by immunomagnetic bead sorting, and immunomodulatory effects of koumine on the activation, proliferation, and differentiation of B cells were determined in TI and TD models induced by lipopolysaccharide (LPS) and anti-CD40 antibodies in vitro, respectively. The humoral immune responses of TI and TD were established using NP-AECM-FICOLL and NP-CGG in C57BL/6J mice, respectively. We found that koumine inhibited B cell differentiation in the TI model and inhibited B cell activation and proliferation in the TD model in vitro. Koumine also inhibited antibody secretion in TI immune response, TD initial immune response, and in TD secondary immune response. Our results reveal that koumine has a direct and indirect immune regulatory effect on B cells, showing that it can directly inhibit the differentiation and secretion of autoantibodies after abnormal activation of B cells, and indirectly inhibit the activation and proliferation of TD B cells to reduce the secretion of antibodies. It may be an important mechanism for its anti-RA effect in mice, providing a rationale and laboratory data support for the application of koumine in anti-human RA therapy.


Assuntos
Artrite Reumatoide , Linfócitos B , Gelsemium , Alcaloides Indólicos/farmacologia , Linfócitos T/imunologia , Animais , Formação de Anticorpos/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Autoanticorpos/sangue , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Diferenciação Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Agentes de Imunomodulação/farmacologia , Cooperação Linfocítica/imunologia , Medicina Tradicional Chinesa , Camundongos
9.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885727

RESUMO

Gelsemium elegans Benth (GEB), also known as heartbreak grass, is a highly poisonous plant belonging to the family Loganiaceae and genus Gelsemium that has broad application prospects in medicine. This article reviews its chemical components, pharmacological effects, toxicity mechanisms, and research progress in clinical applications in recent years. Indole alkaloids are the main active components of GEB and have a variety of pharmacological and biological functions. They have anti-tumor, anti-inflammatory, analgesic, and immunomodulation properties, with the therapeutic dose being close to the toxic dose. Application of small-dose indole alkaloids fails to work effectively, while high-dose usage is prone to poisoning, aggravating the patient's conditions. Special caution is needed, especially to observe the changes in the disease condition of the patients in clinical practice. In-depth research on the chemical components and mechanisms of GEB is essential to the development of promising lead compounds and lays the foundation for extensive clinical application and safe usage of GEB in the future.


Assuntos
Gelsemium/química , Alcaloides Indólicos/química , Extratos Vegetais/química , Plantas Tóxicas/química , Analgésicos/química , Analgésicos/uso terapêutico , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Gelsemium/toxicidade , Humanos , Agentes de Imunomodulação/química , Agentes de Imunomodulação/uso terapêutico , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/uso terapêutico , Extratos Vegetais/uso terapêutico , Plantas Tóxicas/toxicidade
10.
BMC Complement Med Ther ; 21(1): 99, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743701

RESUMO

BACKGROUND: Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide. Gelsemium elegans Benth (GEB) is a traditional Chinese medicine commonly used for treatment for gastrointestinal cancer, including CRC. However, the underlying active ingredients and mechanism remain unknown. This study aims to explore the active components and the functional mechanisms of GEB in treating CRC by network pharmacology-based approaches. METHODS: Candidate compounds of GEB were collected from the Traditional Chinese Medicine@Taiwan, Traditional Chinese Medicines Integrated Database, Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine, and published literature. Potentially active targets of compounds in GEB were retrieved from SwissTargetPrediction databases. Keywords "colorectal cancer", "rectal cancer" and "colon cancer" were used as keywords to search for related targets of CRC from the GeneCards database, then the overlapped targets of compounds and CRC were further intersected with CRC related genes from the TCGA database. The Cytoscape was applied to construct a graph of visualized compound-target and pathway networks. Protein-protein interaction networks were constructed by using STRING database. The DAVID tool was applied to carry out Gene Ontology and Kyoto Encyclopedia of Genes and Genome pathway enrichment analysis of final targets. Molecular docking was employed to validate the interaction between compounds and targets. AutoDockTools was used to construct docking grid box for each target. Docking and molecular dynamics simulation were performed by Autodock Vina and Gromacs software, respectively. RESULTS: Fifty-three bioactive compounds were successfully identified, corresponding to 136 targets that were screened out for the treatment of CRC. Functional enrichment analysis suggested that GEB exerted its pharmacological effects against CRC via modulating multiple pathways, such as pathways in cancer, cell cycle, and colorectal cancer. Molecular docking analysis showed that the representative compounds had good affinity with the key targets. Molecular dynamics simulation indicated that the best hit molecules formed a stable protein-ligand complex. CONCLUSION: This network pharmacology study revealed the multiple ingredients, targets, and pathways synergistically involved in the anti-CRC effect of GEB, which will enhance our understanding of the potential molecular mechanism of GEB in treatment for CRC and lay a foundation for further experimental research.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Gelsemium/química , Bases de Dados de Produtos Farmacêuticos , Humanos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mapas de Interação de Proteínas
11.
Biomed Pharmacother ; 137: 111284, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33561641

RESUMO

BACKGROUND: Gelsemium elegans (G. elegans) is a flowering plant of the Loganiaceae family, which had been used in traditional Chinese herb medicine for many years for the treatment of rheumatoid pain, neuropathic pain, spasticity, skin ulcers, anxiety and cancer. Acute toxicity of the plant severely limits the application and development of G. elegans; however, long-term toxicity of exposure to G. elegans has not been illuminated. PURPOSE: This study is a comprehensive observation of the effects of long-term exposure (21 days at 70 mg/kg) to G. elegans in rats. METHODS AND RESULTS: The histopathological examination showed only a mild glial cell proliferation in the brain, and no lesions were observed in other organs. No abnormal changes in the biochemical parameters were observed that would have significant effects. The identification and analysis of absorbed natural ingredients showed that the active ingredients of the G. elegans could distribute to various tissues, and six compounds were identified in the brain, suggesting that they could cross the blood-brain barrier. Based on the intestinal content metabolomics, the tryptophan (Trp) biosynthesis, bile acid synthesis and bile secretion pathways have attracted our attention. Plasma metabolomic results showed that uric acid (UA) was significantly increased. The results of the brain metabolomic tests showed that the level of pyridoxal (PL) was decreased; considering the expression levels of the related enzymes, it was hypothesized that the level of pyridoxal 5'-phosphate (PLP) was decreased. PLP was important for the regulation of the neuronal γ-aminobutyric acid (GABA)/glutamate (Glu) interconversion and therefore neuronal excitability. The data of the study suggested that toxic reaction caused by G. elegans was due to a disruption of the balance of the neurotransmitter GABA/Glu transformation. CONCLUSIONS: Overall, G. elegans did not cause significant toxic reaction in the rats after long-term exposure. The results were significant for the future clinical applications of G. elegans and suggested that G. elegans could be potentially developed as a drug. The study provided a scientific basis for investigation of the mechanisms of toxicity and detoxification.


Assuntos
Encéfalo/efeitos dos fármacos , Gelsemium/toxicidade , Neuroglia/efeitos dos fármacos , Extratos Vegetais/toxicidade , Testes de Toxicidade Crônica , Administração Oral , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proliferação de Células/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Masculino , Metaboloma/efeitos dos fármacos , Metabolômica , Neuroglia/metabolismo , Neuroglia/patologia , Extratos Vegetais/administração & dosagem , Ratos Sprague-Dawley , Medição de Risco , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
12.
Bioorg Chem ; 107: 104624, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33465669

RESUMO

Two novel monoterpenoid indole alkaloids (MIAs), gelsechizines A-B (1-2), along with four known ones (3-6) were isolated from the fruits of Gelsemium elegans. Compound 1 features a new carbon skeleton with two additional carbon atoms forming a 4-methylpyridine unit. Their structures with absolute configurations were elucidated by NMR, MS, X-ray diffraction and electronic circular dichroism (ECD) calculations. Compounds 1-3 showed significant anti-inflammatory effects in vivo and in vitro, which may be related to the inhibition of the trecruitment of neutrophils and macrophages as well as the secretion of TNF-α and IL-6. Preliminary structure-activity relationship analysis revealed that the ß-N-acrylate moiety plays an important role in the anti-inflammatory effect.


Assuntos
Anti-Inflamatórios/farmacologia , Gelsemium/química , Macrófagos/efeitos dos fármacos , Alcaloides de Triptamina e Secologanina/química , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Animais Geneticamente Modificados/metabolismo , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Frutas/química , Frutas/metabolismo , Gelsemium/metabolismo , Interleucina-6/metabolismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Conformação Molecular , Neutrófilos/citologia , Neutrófilos/patologia , Células RAW 264.7 , Alcaloides de Triptamina e Secologanina/isolamento & purificação , Alcaloides de Triptamina e Secologanina/farmacologia , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
13.
Psychopharmacology (Berl) ; 237(7): 2111-2124, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32363440

RESUMO

INTRODUCTION: Gelsemine is a natural alkaloid extracted from Gelsemium elegans Benth., a traditional Chinese medicinal herb. Gelsemine has been shown to penetrate the brain, and could produce neurological activities, such as anxiolytic and neuralgia-alleviating effects, suggesting that this natural compound might be used for treating nervous system diseases. RESULTS: In this study, we have found, for the first time, that gelsemine at low concentrations (5-10 µg/kg) significantly alleviated cognitive impairments induced by ß-amyloid (Aß) oligomer, a main neurotoxin of Alzheimer's disease (AD). In addition, gelsemine substantially prevented Aß oligomer-induced over-activation of microglia and astrocytes, indicating that gelsemine might reduce AD-related gliosis. Consistently, gelsemine inhibited the over-expression of pro-inflammatory cytokines, including interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), in the brain of mice. Moreover, gelsemine largely increased the expression of pSer9-glycogen synthase kinase-3ß (GSK3ß), and decreased the hyper-phosphorylation of tau protein as evidenced by Western blotting analysis. Furthermore, gelsemine prevented Aß oligomer-induced reduction of PSD-95, a representative post-synaptic protein. CONCLUSION: All these results directly demonstrated the anti-Aß oligomer neuroprotective properties of gelsemine, opening a novel perspective for the development of gelsemine-based therapeutics against Aß-associated neurodegeneration disorders, including AD in particular.


Assuntos
Alcaloides/uso terapêutico , Peptídeos beta-Amiloides/toxicidade , Disfunção Cognitiva/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Gelsemium , Mediadores da Inflamação/antagonistas & inibidores , Fragmentos de Peptídeos/toxicidade , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR
14.
J Ethnopharmacol ; 252: 112617, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31988014

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Herbal medicine contains hundreds of natural products, and studying their absorption, metabolism, distribution, and elimination presents great challenges. Gelsemium elegans (G. elegans) is a flowering plants in the Loganiaceae family. The plant is known to be toxic and has been used for many years as a traditional Chinese herbal medicine for the treatment of rheumatoid arthritis, neuropathic pain, spasticity, skin ulcers and cancer. It was also used as veterinary drugs for deworming, promoting animal growth, and pesticides. At present, studies on the metabolism of G. elegans have primarily focused on only a few single available reference ingredients, such as koumine, gelsemine and gelsedine. MATERIAL AND METHODS: The goal of this work is to elucidate the overall metabolism of whole G. elegans powder in goats using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC/QqTOF-MS). RESULTS: Analyses of plasma, urine and fecal samples identified or tentatively characterized a total of 44 absorbed natural products and 27 related produced metabolites. Gelsedine-type, sarpagine-type and gelsemine-type alkaloids were the compounds with the highest metabolite formation. In the present study, most natural products identified in G. elegans were metabolized through glucuronidation and oxidation. Hydrogenation, dehydrogenation and demethylation also occurred. CONCLUSION: To our knowledge, this is the first report of the metabolite profiling of the G. elegans crude extract in goats, which is of great significance for a safer and more rational application of this herbal medicine.


Assuntos
Gelsemium , Extratos Vegetais/farmacocinética , Animais , Cromatografia Líquida de Alta Pressão , Fezes/química , Cabras , Absorção Intestinal , Masculino , Espectrometria de Massas , Medicina Tradicional Chinesa , Extratos Vegetais/sangue , Extratos Vegetais/urina
15.
J Asian Nat Prod Res ; 22(12): 1138-1144, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31913055

RESUMO

A chemical investigation on the 95% ethanol extract of the aerial part of Gelsemium elegans resulted in the isolation of three new gelsedine-type indole alkaloids, 14ß-hydroxygelselenidine (1), 11-methoxygelseziridine (2), and 14ß-hydroxygelsedethenine (3). Structural elucidation of all the compounds was accomplished by spectral methods such as 1 D and 2 D NMR, IR, UV, and HRESIMS. The isolated compounds were tested in vitro for cytotoxic activities against five human non-small-cell lung cancer cell lines. Consequently, alkaloid 3 exhibited cytotoxic activities for all tested tumor cell lines with IC50 values from 8.3 to 9.8 µM. [Formula: see text].


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Gelsemium , Neoplasias Pulmonares , Linhagem Celular Tumoral , Humanos , Alcaloides Indólicos , Estrutura Molecular , Oxindóis
16.
Fish Shellfish Immunol ; 94: 464-478, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31546035

RESUMO

Numerous plant extracts used as feed additives in aquaculture have been shown to stimulate appetite, promote growth and enhance immunostimulatory and disease resistance in cultured fish. However, there are few studies on the famous Chinese herbal medicine Gelsemium elegans, which attracts our attention. In this study, we used the Megalobrama amblycephala to investigate the effects of G. elegans alkaloids on fish intestinal health after diet supplementation with 0, 5, 10, 20 and 40 mg/kg G. elegans alkaloids for 12 weeks. We found that dietary G. elegans alkaloids at 40 mg/kg improved intestinal morphology by increasing villus length, muscle thickness and villus number in the foregut and midgut and muscle thickness in the hindgut (P < 0.05). These alkaloids also significantly improved intestinal antioxidant capabilities by increasing superoxide dismutase, catalase, total antioxidant capacity and malondialdehyde levels and up-regulated intestinal Cu/Zn-SOD and Mn-SOD (P < 0.05) at 20 and 40 mg/kg. Dietary G. elegans alkaloids improved intestinal immunity via up-regulating the pro-inflammatory cytokines IL-1ß, IL-8, TNF-α and IFN-α and down-regulating expression of the anti-inflammatory cytokines IL-10 and TGF-ß (P < 0.05) at 20 and 40 mg/kg. The expression of Toll-like receptors TRL1, 3, 4 and 7 were also up-regulated in intestine of M. amblycephala (P < 0.05). In intestinal microbiota, the abundance of Proteobacteria was increased while the Firmicutes abundance was decreased at phylum level after feeding the alkaloids (P < 0.05). The alkaloids also increased the abundance of the probiotic Rhodobacter and decreased the abundance of the pathogenic Staphylococcus at genus level (P < 0.05). In conclusion, dietary G. elegans alkaloid supplementation promoted intestine health by improving intestine morphology, immunity, antioxidant abilities and intestinal microbiota in M. amblycephala.


Assuntos
Antioxidantes/metabolismo , Cyprinidae/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Gelsemium/química , Imunidade Inata/efeitos dos fármacos , Extratos Vegetais/metabolismo , Ração Animal/análise , Animais , Cyprinidae/microbiologia , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Intestinos/anatomia & histologia , Intestinos/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Distribuição Aleatória
17.
Molecules ; 24(10)2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31130596

RESUMO

Two optical isomers, +/- gelsemine (1, 2), together with one known compound were isolated from the whole plant of G. elegans. The structures of the separated constituents were elucidated on 1D and 2D (1H-1H COSY, HMBC, HSQC) NMR spectroscopy and high-resolution mass spectrometry (HRMS). The isolated alkaloids were tested in vitro for cytotoxic potential against PC12 cells by the MTT assay. As a result, (+) gelsemine (compound 1) exhibited cytotoxic activity against PC12 cells with an IC50 value of 31.59 µM, while (-) gelsemine (compound 2) was not cytotoxic.


Assuntos
Alcaloides/química , Gelsemium/química , Alcaloides/farmacologia , Animais , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Células PC12 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos
18.
Int J Mol Sci ; 20(3)2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30754638

RESUMO

Medicinal herbal plants have been commonly used for intervention in different diseases and improvement of health worldwide. Koumine, an alkaloid monomer found abundantly in Gelsemium plants, can be effectively used as an antioxidant. The purpose of this study was to evaluate the potential protective effect of koumine against hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis in porcine intestinal epithelial cell line (IPEC-J2 cells). MTT assays showed that koumine significantly increased cell viability in H2O2-mediated IPEC-J2 cells. Preincubation with koumine ameliorated H2O2-medicated apoptosis by decreasing reactive oxygen species (ROS) production, and efficiently suppressed the lactate dehydrogenase (LDH) release and malondialdehyde (MDA) production. Moreover, a loss of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) activities was restored to normal level in H2O2-induced IPEC-J2 cells upon koumine exposure. Furthermore, pretreatment with koumine suppressed H2O2-mediated loss of mitochondrial membrane potential, caspase-9 and caspase-3 activation, decrease of Bcl-2 expression and elevation of Bax expressions. Collectively, the results of this study indicated that koumine possesses the cytoprotective effects in IPEC-J2 cells during exposure to H2O2 by suppressing production of ROS, inhibiting the caspase-3 activity and influencing the expression of Bax and Bcl-2. Koumine could potentially serve as a protective effect against H2O2-induced apoptosis.


Assuntos
Antioxidantes/farmacologia , Gelsemium/química , Peróxido de Hidrogênio/farmacologia , Alcaloides Indólicos/farmacologia , Extratos Vegetais/farmacologia , Alcaloides/química , Alcaloides/farmacologia , Animais , Antioxidantes/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Alcaloides Indólicos/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Suínos
19.
Neurol Sci ; 39(12): 2183-2196, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30251080

RESUMO

Chemotherapeutic drugs induce various side effects including painful peripheral neuropathy that represents a major concern. The widely used anticancer drug paclitaxel causes neurological side effects such as burning pain, allodynia, and hyperalgesia. Neuroprotective substances that may effectively counteract paclitaxel-induced neuropathic symptoms are needed. Here, we investigated the potential of Gelsemium sempervirens (GS) to counteract paclitaxel-evoked painful neuropathy in rats. Using the von Frey hair and acetone behavioral tests, we investigated the potential of GS centesimal (C) dilutions 3, 5, and 9C to prevent or to correct paclitaxel-induced cold allodynia and mechanical allodynia/hyperalgesia involved in neuropathic pain. We found that a prophylactic or corrective treatment with GS dilutions prevented or suppressed PAC-evoked cold allodynia and mechanical allodynia/hyperalgesia, by reversing to normal, decreased cold thermal and mechanical pain thresholds of PAC-treated rats. In particular, preventive or corrective treatments with GS dilution 3C counteracted PAC-evoked allodynic and hyperalgesic responses. Also, GS dilution 5C (in a lesser extent than 3C) significantly reduced PAC-induced mechanical allodynia/hyperalgesia while GS dilution 9C was ineffective. PAC-evoked neuropathic symptoms were efficiently reduced after 1 week treatment with GS dilutions 3 or 5C and the beneficial action increased after 2 weeks. GS dilutions, particularly 3C, also counteracted or prevented PAC-induced sciatic nerve axon alterations and decreased the density of intraepidermal nerve fibers. Altogether, these results obtained in the rat preclinical model suggest that GS dilution-based treatment may constitute an interesting option to explore for the long-term management of pain without undesirable effects.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Hiperalgesia/tratamento farmacológico , Paclitaxel/toxicidade , Dor/induzido quimicamente , Dor/prevenção & controle , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Extratos Vegetais/uso terapêutico , Análise de Variância , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Gelsemium/química , Hiperalgesia/induzido quimicamente , Masculino , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/patologia
20.
Molecules ; 23(7)2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29997360

RESUMO

Gelsemium elegans Benth. (G. elegans), which is a famous Chinese folk medicine, has been commonly used to treat certain types of skin ulcers and alleviate inflammation, headaches, and cancer pain. However, the extensive clinical use of G. elegans has been greatly hampered by its toxicity. As one of the most widely used herbal medicines, Glycyrrhiza uralensis Fisch, has a unique effect on detoxification of G. elegans. In the present study, a rapid and sensitive method using ultra-liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was established and validated for determination of koumine, the most abundant molecule among the alkaloids of G. elegans, in rat plasma, tissue, and liver microsome. The developed method was successfully applied to the pharmacokinetics, tissue distribution, and in vitro metabolism study in rat with or without pre-treated Glycyrrhiza uralensis Fisch extract. Meanwhile, the expression level of CYP3A1 mRNA was analyzed to explain the detoxification mechanism of Glycyrrhiza uralensis Fisch on G. elegans. As a result, our work demonstrated that Glycyrrhiza uralensis Fisch could significantly affect the pharmacokinetics and tissue distribution of koumine in rats. The detoxification mechanism of Glycyrrhiza uralensis Fisch on G. elegans may be its cytochrome enzyme up-regulation effect.


Assuntos
Gelsemium/química , Glycyrrhiza uralensis/química , Alcaloides Indólicos/farmacocinética , Espectrometria de Massas em Tandem/métodos , Animais , Cromatografia Líquida , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Regulação Enzimológica da Expressão Gênica , Inativação Metabólica/efeitos dos fármacos , Alcaloides Indólicos/sangue , Alcaloides Indólicos/metabolismo , Limite de Detecção , Masculino , Microssomos Hepáticos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Análise de Regressão , Reprodutibilidade dos Testes , Fatores de Tempo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA