Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7938, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566249

RESUMO

Pathogenic fungi of the genus Cryptococcus can undergo two sexual cycles, involving either bisexual diploidization (after fusion of haploid cells of different mating type) or unisexual diploidization (by autodiploidization of a single cell). Here, we construct a gene-deletion library for 111 transcription factor genes in Cryptococcus deneoformans, and explore the roles of these regulatory networks in the two reproductive modes. We show that transcription factors crucial for bisexual syngamy induce the expression of known mating determinants as well as other conserved genes of unknown function. Deletion of one of these genes, which we term FMP1, leads to defects in bisexual reproduction in C. deneoformans, its sister species Cryptococcus neoformans, and the ascomycete Neurospora crassa. Furthermore, we show that a recently evolved regulatory cascade mediates pre-meiotic unisexual autodiploidization, supporting that this reproductive process is a recent evolutionary innovation. Our findings indicate that genetic circuits with different evolutionary ages govern hallmark events distinguishing unisexual and bisexual reproduction in Cryptococcus.


Assuntos
Cryptococcus neoformans , Proteínas Fúngicas , Meningite Criptocócica , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos Tipo Acasalamento/genética , Reprodução Assexuada/genética , Meningite Criptocócica/parasitologia
2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35169080

RESUMO

Cellular development is orchestrated by evolutionarily conserved signaling pathways, which are often pleiotropic and involve intra- and interpathway epistatic interactions that form intricate, complex regulatory networks. Cryptococcus species are a group of closely related human fungal pathogens that grow as yeasts yet transition to hyphae during sexual reproduction. Additionally, during infection they can form large, polyploid titan cells that evade immunity and develop drug resistance. Multiple known signaling pathways regulate cellular development, yet how these are coordinated and interact with genetic variation is less well understood. Here, we conducted quantitative trait locus (QTL) analyses of a mapping population generated by sexual reproduction of two parents, only one of which is unisexually fertile. We observed transgressive segregation of the unisexual phenotype among progeny, as well as a large-cell phenotype under mating-inducing conditions. These large-cell progeny were found to produce titan cells both in vitro and in infected animals. Two major QTLs and corresponding quantitative trait genes (QTGs) were identified: RIC8 (encoding a guanine-exchange factor) and CNC06490 (encoding a putative Rho-GTPase activator), both involved in G protein signaling. The two QTGs interact epistatically with each other and with the mating-type locus in phenotypic determination. These findings provide insights into the complex genetics of morphogenesis during unisexual reproduction and pathogenic titan cell formation and illustrate how QTL analysis can be applied to identify epistasis between genes. This study shows that phenotypic outcomes are influenced by the genetic background upon which mutations arise, implicating dynamic, complex genotype-to-phenotype landscapes in fungal pathogens and beyond.


Assuntos
Criptococose/genética , Cryptococcus/genética , Epistasia Genética/genética , Evolução Biológica , Cryptococcus/metabolismo , Cryptococcus/patogenicidade , Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento/genética , Hifas/crescimento & desenvolvimento , Morfogênese , Fenótipo , Locos de Características Quantitativas/genética , Reprodução/genética , Reprodução Assexuada
3.
Mycologia ; 114(1): 63-75, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35044893

RESUMO

The sclerotia of Pachyma hoelen are one of the traditional Chinese medicines and foods that are widely used in East Asian countries. The strains used for cultivation showed bad performance in recent years, and breeding of superior strains has become increasingly important for this fungus. Nevertheless, the mating system and life cycle of P. hoelen were still ambiguous. In this study, the methods for distinguishing between homokaryotic offspring with different mating types were established, as well as confirmation of strain hybridization based on allelic polymorphism at a locus of the rpb2 gene. The bipolar mating system was confirmed according to the mating results of homokaryotic SSIs. The fact that heterokaryotic parents produce homokaryotic meiospores proves that the life cycle is heterothallic. Combining scanning electron microscope observation and DAPI (4',6-diamidino-2-phenylindole) fluorescent staining of hymenium and basidiospores in situ and ex situ, nuclear migration pattern from basidia to spores was revealed. The heterothallic life cycle was verified, revised, and supplemented step by step. This is the first report of systematic research on the mating system, life cycle, and outcrossing of homokaryotic offspring in P. hoelen. It will be helpful for the biological research, strain improvement, and development of the P. hoelen industry.


Assuntos
Basidiomycota , Polyporales , Wolfiporia , Alelos , Animais , Basidiomycota/genética , Genes Fúngicos Tipo Acasalamento/genética , Estágios do Ciclo de Vida , Polyporales/genética , Esporos Fúngicos/genética , Wolfiporia/genética
4.
Mycopathologia ; 185(1): 113-122, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31278475

RESUMO

The anthropophilic dermatophyte Trichophyton tonsurans and its zoophilic counterpart T. equinum are phylogenetically closely related. The barcoding marker rDNA internal transcribed spacer (ITS) shows limited variation between these two species. In the current study, we combined molecular approaches with phenotypic data to determine the species boundaries between T. tonsurans (n = 52) and T. equinum (n = 15) strains originating from humans (n = 40), horses (n = 26), and a mouse (n = 1). Culture characteristics and physiology on Trichophyton agar media 1 and 5 were evaluated. Multi-locus sequencing involving ITS, partial large rDNA subunit (LSU), ß-tubulin (TUB), 60S ribosomal protein (RPB), and translation elongation factor-3 (TEF3) genes, and the mating-type (MAT) locus was performed. Amplified fragment length polymorphism data were added. None of the test results showed complete mutual correspondence. With the exception of strains from New Zealand, strains of equine origin required niacin for growth, whereas most strains from human origin did not show this dependence. It is concluded that T. tonsurans and T. equinum incompletely diverged from a common lineage relatively recently. MAT1-1 and MAT1-2 are the main distinguishing genes between the two species.


Assuntos
DNA Ribossômico/genética , Trichophyton/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Animais , Biodiversidade , Genes Fúngicos Tipo Acasalamento/genética , Genes Fúngicos Tipo Acasalamento/fisiologia , Cavalos , Humanos , Camundongos , Tipagem de Sequências Multilocus , Trichophyton/classificação
5.
PLoS Genet ; 15(8): e1008339, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31461456

RESUMO

The NAD+-dependent histone deacetylase Sir2 was originally identified in Saccharomyces cerevisiae as a silencing factor for HML and HMR, the heterochromatic cassettes utilized as donor templates during mating-type switching. MATa cells preferentially switch to MATα using HML as the donor, which is driven by an adjacent cis-acting element called the recombination enhancer (RE). In this study we demonstrate that Sir2 and the condensin complex are recruited to the RE exclusively in MATa cells, specifically to the promoter of a small gene within the right half of the RE known as RDT1. We also provide evidence that the RDT1 promoter functions as a locus control region (LCR) that regulates both transcription and long-range chromatin interactions. Sir2 represses RDT1 transcription until it is removed from the promoter in response to a dsDNA break at the MAT locus induced by HO endonuclease during mating-type switching. Condensin is also recruited to the RDT1 promoter and is displaced upon HO induction, but does not significantly repress RDT1 transcription. Instead condensin appears to promote mating-type donor preference by maintaining proper chromosome III architecture, which is defined by the interaction of HML with the right arm of chromosome III, including MATa and HMR. Remarkably, eliminating Sir2 and condensin recruitment to the RDT1 promoter disrupts this structure and reveals an aberrant interaction between MATa and HMR, consistent with the partially defective donor preference for this mutant. Global condensin subunit depletion also impairs mating-type switching efficiency and donor preference, suggesting that modulation of chromosome architecture plays a significant role in controlling mating-type switching, thus providing a novel model for dissecting condensin function in vivo.


Assuntos
Cromossomos Fúngicos/genética , Genes Fúngicos Tipo Acasalamento/genética , Região de Controle de Locus Gênico/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sirtuína 2/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Loci Gênicos/genética , Complexos Multiproteicos/metabolismo , Regiões Promotoras Genéticas/genética , Recombinação Genética , Saccharomyces cerevisiae , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética
6.
Genetics ; 211(2): 597-615, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30514708

RESUMO

G protein-coupled receptors (GPCRs) are crucial sensors of extracellular signals in eukaryotes, with multiple GPCR mutations linked to human diseases. With the growing number of sequenced human genomes, determining the pathogenicity of a mutation is challenging, but can be aided by a direct measurement of GPCR-mediated signaling. This is particularly difficult for the visual pigment rhodopsin-a GPCR activated by light-for which hundreds of mutations have been linked to inherited degenerative retinal diseases such as retinitis pigmentosa. In this study, we successfully engineered, for the first time, activation by human rhodopsin of the yeast mating pathway, resulting in signaling via a fluorescent reporter. We combine this novel assay for rhodopsin light-dependent activation with studies of subcellular localization, and the upregulation of the unfolded protein response in response to misfolded rhodopsin protein. We use these assays to characterize a panel of rhodopsin mutations with known molecular phenotypes, finding that rhodopsin maintains a similar molecular phenotype in yeast, with some interesting differences. Furthermore, we compare our assays in yeast with clinical phenotypes from patients with novel disease-linked mutations. We demonstrate that our engineered yeast strain can be useful in rhodopsin mutant classification, and in helping to determine the molecular mechanisms underlying their pathogenicity. This approach may also be applied to better understand the clinical relevance of other human GPCR mutations, furthering the use of yeast as a tool for investigating molecular mechanisms relevant to human disease.


Assuntos
Mutação de Sentido Incorreto , Retinose Pigmentar/genética , Rodopsina/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Genes Fúngicos Tipo Acasalamento/genética , Humanos , Retinose Pigmentar/patologia , Rodopsina/química , Rodopsina/genética , Saccharomyces cerevisiae
7.
PLoS Genet ; 14(5): e1007377, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29734333

RESUMO

Sexual reproduction is a universal mechanism for generating genetic diversity in eukaryotes. Fungi exhibit diverse strategies for sexual reproduction both in nature and in the laboratory. In this study, we report the discovery of same-sex (homothallic) mating in the human fungal pathogen Candida tropicalis. We show that same-sex mating occurs between two cells carrying the same mating type (MTLa/a or α/α) and requires the presence of pheromone from the opposite mating type as well as the receptor for this pheromone. In ménage à trois mating mixes (i.e., "a x a + α helper" or "α x α + a helper" mixes), pheromone secreted by helper strains promotes diploid C. tropicalis cells to undergo same-sex mating and form tetraploid products. Surprisingly, however, the tetraploid mating products can then efficiently mate with cells of the opposite mating type to generate hexaploid products. The unstable hexaploid progeny generated from this coupled process of same- and opposite-sex mating undergo rapid chromosome loss and generate extensive genetic variation. Phenotypic analysis demonstrated that the mating progeny-derived strains exhibit diverse morphologies and phenotypes, including differences in secreted aspartic proteinase (Sap) activity and susceptibility to the antifungal drugs. Thus, the coupling of same- and opposite-sex mating represents a novel mode to generate polyploidy and genetic diversity, which may facilitate the evolution of new traits in C. tropicalis and adaptation to changing environments.


Assuntos
Candida tropicalis/genética , Genes Fúngicos Tipo Acasalamento/genética , Variação Genética , Poliploidia , Candida tropicalis/metabolismo , Candida tropicalis/fisiologia , Candidíase/microbiologia , Cruzamentos Genéticos , Diploide , Genótipo , Humanos , Fenótipo , Feromônios/metabolismo , Tetraploidia
8.
PLoS One ; 13(3): e0193745, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29590201

RESUMO

Black truffles that morphologically resemble Tuber indicum have been known to occur in Japan since 1979. Our previous studies showed that there are two phylotypes of these truffles, both of which fell into the T. indicum complex (hereinafter "Tuber sp. 6" and "Tuber sp. 7"). However, their taxonomic treatment is still unclear. In this study, we conducted morphological and phylogenetic analyses for a total of 52 specimens from Japan (16 Tuber sp. 6 and 13 Tuber sp. 7), China (10 T. himalayense and 8 T. indicum), and Taiwan (5 T. formosanum). We compared ascospore ornamentation, size, distribution of asci with average number of spores per ascus, spine size and shape of the Japanese specimens with their allied taxa. For phylogenetic analysis, we sequenced two mating loci (MAT1-1-1 and MAT1-2-1) and three commonly used loci (ITS, ß-tubulin, and TEF1-α). Three distinct lineages were recognized by phylogenetic analyses based on the sequences of the two mating-related loci and three independent loci. The Tuber sp. 6 sequences clustered with those of T. himalayense and T. formosanum, and there was no clear difference in morphology among them. Tuber sp. 7 formed a distinct lineage in each phylogram. The specimens tended to have five-spored asci more frequently than other allied species and could be characterized as having ascospore ornamentation with longer spines and narrower spine bases. We therefore described Tuber sp. 7 as a new species (T. longispinosum), and treat Tuber sp. 6 and T. formosanum as synonyms of T. himalayense.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Genes Fúngicos Tipo Acasalamento/genética , Loci Gênicos/genética , Filogenia , Análise de Sequência de DNA , Esporos Fúngicos/genética
9.
Curr Biol ; 28(6): 825-835.e4, 2018 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-29502947

RESUMO

Changes in ploidy are relatively rare, but play important roles in the development of cancer and the acquisition of long-term adaptations. Genome duplications occur across the tree of life, and can alter the rate of adaptive evolution. Moreover, by allowing the subsequent loss of individual chromosomes and the accumulation of mutations, changes in ploidy can promote genomic instability and/or adaptation. Although many studies have been published in the last years about changes in chromosome number and their evolutionary consequences, tracking and measuring the rate of whole-genome duplications have been extremely challenging. We have systematically studied the appearance of diploid cells among haploid yeast cultures evolving for over 100 generations in different media. We find that spontaneous diploidization is a relatively common event, which is usually selected against, but under certain stressful conditions may become advantageous. Furthermore, we were able to detect and distinguish between two different mechanisms of diploidization, one that requires whole-genome duplication (endoreduplication) and a second that involves mating-type switching despite the use of heterothallic strains. Our results have important implications for our understanding of evolution and adaptation in fungal pathogens and the development of cancer, and for the use of yeast cells in biotechnological applications.


Assuntos
Duplicação Gênica/genética , Instabilidade Genômica/genética , Leveduras/genética , Adaptação Fisiológica/genética , Diploide , Duplicação Gênica/fisiologia , Genes Fúngicos Tipo Acasalamento/genética , Genoma Fúngico/genética , Haploidia , Mutação , Ploidias , Saccharomyces cerevisiae/genética , Leveduras/fisiologia
10.
Mycoses ; 60(11): 749-757, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28736880

RESUMO

Cryptococcus gattii species complex has evolved as a pathogen in the last two decades causing infection among both immunocompetent and immunocompromised hosts. We aimed to analyse the clinical features of CNS infection caused by C. gattii sensu lato, molecular and antifungal susceptibility profile of this pathogen. Cases diagnosed to have CNS cryptococcosis were included in the study. Cryptococcus recovered from patient's specimen was identified by standard protocol. Species confirmation, mating type and molecular type determination were performed by PCR based methods. Antifungal susceptibility was tested in VITEK2C to amphotericin B, 5-flucytosine, fluconazole and voriconazole. Among 199 cases, 20 (10%) were due to C. gattii, comprising of 75% cryptococcal meningitis and 25% cryptococcoma cases. Young adult males were commonly affected. Headache and vomiting were prominent symptoms and 50% were immunocompromised. Among the isolates, 75%, 20% and 5% were C. tetragattii, C. gattii sensu stricto and C. bacillisporus respectively and all had mating type α. Four (20%) isolates of C. tetragattii and the only isolate of C. bacillisporus were resistant to fluconazole. The most common species isolated from south India is C. tetragattii. The study contributes to the epidemiology of C. gattii and reiterates the need for genotyping and antifungal susceptibility testing.


Assuntos
Antifúngicos/farmacologia , Infecções Fúngicas do Sistema Nervoso Central/microbiologia , Criptococose/microbiologia , Cryptococcus gattii/isolamento & purificação , Meningite Criptocócica/microbiologia , Adolescente , Adulto , Idoso , Anfotericina B/farmacologia , Infecções Fúngicas do Sistema Nervoso Central/epidemiologia , Criptococose/epidemiologia , Cryptococcus gattii/classificação , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus gattii/genética , Feminino , Fluconazol/farmacologia , Genes Fúngicos Tipo Acasalamento/genética , Humanos , Índia/epidemiologia , Masculino , Meningite Criptocócica/epidemiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Adulto Jovem
11.
J Microbiol Biotechnol ; 27(5): 1010-1022, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28237997

RESUMO

Hybrid histidine kinase is part of a two-component system that is required for various stress responses and pathogenesis of pathogenic fungi. The Tco1 gene in human pathogen Cryptococcus neoformans encodes a hybrid histidine kinase and is important for pathogenesis. In this study, we identified a Tco1 homolog, UmTco1, in the maize pathogen Ustilago maydis by bioinformatics analysis. To explore the role of UmTco1 in the survival of U. maydis under environmental stresses and its pathogenesis, Δumtco1 mutants were constructed by allelic exchange. The growth of Δumtco1 mutants was significantly impaired when they were cultured under hyperosmotic stress. The Δumtco1 mutants exhibited increased resistance to antifungal agent fludioxonil. In particular, the Δumtco1 mutants were unable to produce cytokinesis or conjugation tubes, and to develop fuzzy filaments, resulting in impaired mating between compatible strains. The expression levels of Prf1, Pra1, and Mfa1, which are involved in the pheromone pathway, were significantly decreased in the Δumtco1 mutants. In inoculation tests to the host plant, the Δumtco1 mutants showed significantly reduced ability in the production of anthocyanin pigments and tumor development on maize leaves. Overall, the combined results indicated that UmTco1 plays important roles in the survival under hyperosmotic stress, and contributes to cytokinesis, sexual development, and virulence of U. maydis by regulating the expression of the genes involved in the pheromone pathway.


Assuntos
Genes Fúngicos Tipo Acasalamento/genética , Histidina Quinase/genética , Desenvolvimento Sexual/genética , Ustilago/crescimento & desenvolvimento , Ustilago/patogenicidade , Virulência/genética , Sequência de Aminoácidos , Antocianinas/metabolismo , Antifúngicos/farmacologia , Cultura Axênica , Biologia Computacional , Citocinese , DNA Fúngico/genética , Dioxóis/farmacologia , Escherichia coli/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histidina Quinase/classificação , Hiperostose , Mutação , Pressão Osmótica , Fenótipo , Feromônios/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Pirróis/farmacologia , RNA Mensageiro/análise , Receptores de Feromônios/metabolismo , Alinhamento de Sequência , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Ustilago/efeitos dos fármacos , Zea mays/microbiologia
12.
Curr Genet ; 63(2): 325-329, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27520925

RESUMO

Cell fate decisions are controlled by multiple cell-intrinsic and -extrinsic factors. In budding yeast, the decision to enter gametogenesis or sporulation is dictated by nutrient availability and mating type. Recently, we showed that in diploid cells harbouring opposite mating types (MATa and MATα), the protein kinase A (PKA) and target of rapamycin complex I (TORC1) signalling pathways integrate at the promoter of the master regulatory transcription factor IME1 to control sporulation via nutrient availability (Weidberg, et al. 2016). In cells with a single mating type (MATa or MATα), however, IME1 is repressed by transcription through the IME1 promoter of a long non-coding RNA called IRT1, which prevents this cell type from undergoing sporulation. Here, we investigated the role of nutrient signalling in mating-type control of IME1. We find that expression of IRT1, like IME1 itself, depends on nutrient availability and the activities of PKA and TORC1. IRT1 transcription is repressed when nutrients are ample and TORC1 and PKA are active. In contrast, inhibition of PKA and TORC1 is sufficient to recruit Rme1 to the IRT1 promoter and induce IRT1-mediated repression of IME1. Finally, we provide evidence that IRT1 and IME1 are co-repressed by the Tup1-Cyc8 complex when nutrients are ample. Thus, in cells with a single mating-type nutrient availability regulates mating-type repression of IME1 and sporulation. Our results indicate that there is a hierarchy between nutrient and mating-type signals in controlling the decision to enter sporulation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , Genes Fúngicos Tipo Acasalamento/genética , RNA Longo não Codificante/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Modelos Genéticos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Fatores de Transcrição/metabolismo
13.
Mycologia ; 108(1): 70-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26577610

RESUMO

Talaromyces amestolkiae is a common cosmopolitan species that has been cultured from indoor house dust, sputum and lungs from cystic fibrosis patients, indoor air, wheat, soil, pineapple, sculptures and manure. It was described as an asexual Talaromyces species and was reported to produce black sclerotia. In this study we report on the induction of sexual reproductive structures in T. amestolkiae. The mating type of 18 T. amestolkiae strains was determined with MAT-specific primers. Subsequently opposite mating types were inoculated on oatmeal agar and malt-extract agar and incubated 6-20 wk at 25 and 30 C in darkness. After incubation single ascospore isolations were made and evidence of recombination in the offspring was examined by amplified fragment length polymorphism and pairwise homoplasy index test, which is implemented in Splitstree4. The offspring displayed clear evidence of recombination on a genetic level as shown in the variations observed between banding patterns in the amplified fragment length polymorphism. Also a net-like and reticulated NeighborNet was observed and the pairwise homoplasy index test for recombination supported the presence of recombination (P = 0.003372). The distribution of MAT1-1 and MAT1-2 genes in the progeny showed a close to 1:1 ratio. Talaromyces amestolkiae is only the second heterothallic Talaromyces species to produce ascomata and ascospores under laboratory conditions.


Assuntos
Genes Fúngicos Tipo Acasalamento/genética , Talaromyces/fisiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sequência de Bases , Análise por Conglomerados , Dados de Sequência Molecular , Micélio , Filogenia , Análise de Sequência de DNA , Esporos Fúngicos , Talaromyces/genética , Talaromyces/ultraestrutura
14.
Genetics ; 195(4): 1277-90, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24121774

RESUMO

Haploid budding yeast has two mating types, defined by the alleles of the MAT locus, MATa and MATα. Two haploid cells of opposite mating types mate by signaling to each other using reciprocal pheromones and receptors, polarizing and growing toward each other, and eventually fusing to form a single diploid cell. The pheromones and receptors are necessary and sufficient to define a mating type, but other mating-type-specific proteins make mating more efficient. We examined the role of these proteins by genetically engineering "transvestite" cells that swap the pheromone, pheromone receptor, and pheromone processing factors of one mating type for another. These cells mate with each other, but their mating is inefficient. By characterizing their mating defects and examining their transcriptomes, we found Afb1 (a-factor barrier), a novel MATα-specific protein that interferes with a-factor, the pheromone secreted by MATa cells. Strong pheromone secretion is essential for efficient mating, and the weak mating of transvestites can be improved by boosting their pheromone production. Synthetic biology can characterize the factors that control efficiency in biological processes. In yeast, selection for increased mating efficiency is likely to have continually boosted pheromone levels and the ability to discriminate between partners who make more and less pheromone. This discrimination comes at a cost: weak mating in situations where all potential partners make less pheromone.


Assuntos
Genes Fúngicos Tipo Acasalamento/genética , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fator de Acasalamento , Proteínas de Membrana/genética , Peptídeos/genética , Peptídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transcriptoma
15.
Gene ; 531(2): 270-8, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24029079

RESUMO

During the life cycle of heterothallic tetrapolar Agaricomycetes such as Lentinula edodes (Berk.) Pegler, the mating type system, composed of unlinked A and B loci, plays a vital role in controlling sexual development and resulting formation of the fruit body. L. edodes is produced worldwide for consumption and medicinal purposes, and understanding its sexual development is therefore of great importance. A considerable amount of mating type factors has been indicated over the past decades but few genes have actually been identified, and no complete genetic structures of L. edodes B mating-type loci are available. In this study, we cloned the matB regions from two mating compatible L. edodes strains, 939P26 and 939P42. Four pheromone receptors were identified on each new matB region, together with three and four pheromone precursor genes in the respective strains. Gene polymorphism, phylogenetic analysis and distribution of pheromone receptors and pheromone precursors clearly indicate a bipartite matB locus, each sublocus containing a pheromone receptor and one or two pheromone precursors. Detailed sequence comparisons of genetic structures between the matB regions of strains 939P42, 939P26 and a previously reported strain SUP2 further supported this model and allowed identification of the B mating type subloci borders. Mating studies confirmed the control of B mating by the identified pheromone receptors and pheromones in L. edodes.


Assuntos
Genes Fúngicos Tipo Acasalamento/genética , Loci Gênicos/genética , Sequências Reguladoras de Ácido Nucleico , Cogumelos Shiitake/genética , Sequência de Aminoácidos , Clonagem Molecular , Regulação Fúngica da Expressão Gênica/genética , Dados de Sequência Molecular , Organismos Geneticamente Modificados , Filogenia , Sequências Reguladoras de Ácido Nucleico/fisiologia , Homologia de Sequência
16.
Eukaryot Cell ; 12(8): 1120-31, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23771904

RESUMO

Candida albicans forms two types of biofilm in RPMI 1640 medium, depending upon the configuration of the mating type locus. In the prevalent a/α configuration, cells form a biofilm that is impermeable, impenetrable by leukocytes, and fluconazole resistant. It is regulated by the Ras1/cyclic AMP (cAMP) pathway. In the a/a or α/α configuration, white cells form a biofilm that is architecturally similar to an a/α biofilm but, in contrast, is permeable, penetrable, and fluconazole susceptible. It is regulated by the mitogen-activated protein (MAP) kinase pathway. The MTL-homozygous biofilm has been shown to facilitate chemotropism, a step in the mating process. This has led to the hypothesis that specialized MTL-homozygous biofilms facilitate mating. If true, then MTL-homozygous biofilms should have an advantage over MTL-heterozygous biofilms in supporting mating. We have tested this prediction using a complementation strategy and show that minority opaque a/a and α/α cells seeded in MTL-homozygous biofilms mate at frequencies 1 to 2 orders of magnitude higher than in MTL-heterozygous biofilms. No difference in mating frequencies was observed between seeded patches of MTL-heterozygous and MTL-homozygous cells grown on agar at 28°C in air or 20% CO2 and at 37°C. Mating frequencies are negligible in seeded patches of both a/α and a/a cells, in contrast to seeded biofilms. Together, these results support the hypothesis that MTL-homozygous (a/a or α/α) white cells form a specialized "sexual biofilm."


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Candida albicans/genética , Genes Fúngicos Tipo Acasalamento/genética , Candida albicans/metabolismo , Quimiotaxia de Leucócito , AMP Cíclico/metabolismo , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Heterozigoto , Homozigoto , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Permeabilidade , Fenótipo
17.
Phytopathology ; 103(7): 741-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23441968

RESUMO

Most Alternaria spp. are considered asexual but recent molecular evolution analyses of Alternaria mating-type genes show that the mating locus is under strong purifying selection, indicating a possible role in sexual reproduction. The objective of this study was to determine the mode of reproduction of an Alternaria alternata sensu lato population causing citrus brown spot in central Florida. Mating type of each isolate was determined, and isolates were sequenced at six putatively unlinked loci. Three genetically distinct subpopulations (SH1, SH4A, and SH4B) were identified using network and Bayesian population structure analyses. Results demonstrate that most subpopulations of A. alternata associated with citrus are clonal but some have the ability to extensively recombine through a cryptic sexual cycle or parasexual cycle. Although isolates were sampled in close physical proximity (≈2,500-m² area), we were able to reject a random mating model using multilocus gametic disequilibrium tests for two subpopulations, SH1 and SH4B, suggesting that these subpopulations were predominantly asexual. However, three recombination events were identified in SH1 and SH4B and localized to individuals of opposite mating type, possibly indicating meiotic recombination. In contrast, in the third subpopulation (SH4A), where only one mating type was present, extensive reticulation was evident in network analyses, and multilocus gametic disequilibrium tests were consistent with recombination. Recombination among isolates of the same mating type suggests that a nonmeiotic mechanism of recombination such as the parasexual cycle may be operating in this subpopulation. The level of gene flow detected among subpopulations does not appear to be sufficient to prevent differentiation, and perhaps future speciation, of these A. alternata subpopulations.


Assuntos
Alternaria/genética , Citrus/microbiologia , Variação Genética , Doenças das Plantas/microbiologia , Recombinação Genética , Alternaria/isolamento & purificação , Alternaria/fisiologia , Sequência de Bases , Teorema de Bayes , Evolução Clonal , DNA Fúngico/química , DNA Fúngico/genética , Evolução Molecular , Florida , Fluxo Gênico , Genes Fúngicos Tipo Acasalamento/genética , Marcadores Genéticos , Desequilíbrio de Ligação , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Filogenia , Análise de Sequência de DNA
18.
Mol Ecol ; 21(6): 1305-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22393930

RESUMO

Throughout the eukaryotes, sexual reproduction is an almost universal phenomenon. However, within the Kingdom Fungi, this relationship is not so clear-cut. Fungi exhibit a spectrum of reproductive modes and life-cycles; amongst the better known species, sexual reproduction is often facultative, can be rare, and in over half of the known Ascomycota (the moulds) is unknown (Taylor et al. 1999). However, over the last decade, it has become apparent that many of these asexual mitosporic taxa undergo cryptic recombination via unobserved mechanisms and that wholly asexual fungi are, in fact, a rarity (Taylor et al. 1999, 2001; Heitman 2010). This revolution in our understanding of fungal sexuality has come about in two ways: Firstly, sexual reproduction leaves an imprint on fungal genomes by maintaining genes required for mating and by generating patterns of mutation and recombination restricted to meiotic processes. Secondly, scientists have become better at catching fungi in flagrante delicto. The genus Aspergillus is one such fungus where a combination of population genetics, genomics and taxonomy has been able to intuit the existence of sex, then to catch the fungus in the act and formally describe their sexual stages. So, why are sexy moulds exciting? One species in particular, Aspergillus flavus, is notorious for its ability to produce a diverse array of secondary metabolites, of which the polyketide aflatoxins (AF) are carcinogenic and others (such as cyclopiazonic acid) are toxigenic. Because of the predilection of A. flavus to grow on crops, such as peanuts, corn and cotton, biocontrol is widely used to mitigate infection by pre-applying nonaflatoxigenic (AF-) strains to competitively exclude the wild-type AF+ strains. However, the eventual fate in nature of these biocontrol strains is not known. In this issue of Molecular Ecology, Olarte et al. (2012) make an important contribution by using laboratory crosses of A. flavus to show that not only is AF highly heritable, but AF- strains can become AF+ via crossing over during meiosis. This observation has raised the spectre of cross-breeding and non-mendelian inheritance of AF between native and biocontrol strains of the fungus, leading to an increase in the natural diversity of the fungus with perhaps unanticipated consequences.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento/genética , Variação Genética , Recombinação Genética
19.
Mol Ecol ; 21(6): 1453-76, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22212063

RESUMO

Aspergillus flavus is the major producer of carcinogenic aflatoxins (AFs) in crops worldwide. Natural populations of A. flavus show tremendous variation in AF production, some of which can be attributed to environmental conditions, differential regulation of the AF biosynthetic pathway and deletions or loss-of-function mutations in the AF gene cluster. Understanding the evolutionary processes that generate genetic diversity in A. flavus may also explain quantitative differences in aflatoxigenicity. Several population studies using multilocus genealogical approaches provide indirect evidence of recombination in the genome and specifically in the AF gene cluster. More recently, A. flavus has been shown to be functionally heterothallic and capable of sexual reproduction in laboratory crosses. In the present study, we characterize the progeny from nine A. flavus crosses using toxin phenotype assays, DNA sequence-based markers and array comparative genome hybridization. We show high AF heritability linked to genetic variation in the AF gene cluster, as well as recombination through the independent assortment of chromosomes and through crossing over within the AF cluster that coincides with inferred recombination blocks and hotspots in natural populations. Moreover, the vertical transmission of cryptic alleles indicates that while an A. flavus deletion strain is predominantly homokaryotic, it may harbour AF cluster genes at a low copy number. Results from experimental matings indicate that sexual recombination is driving genetic and functional hyperdiversity in A. flavus. The results of this study have significant implications for managing AF contamination of crops and for improving biocontrol strategies using nonaflatoxigenic strains of A. flavus.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Genes Fúngicos Tipo Acasalamento/genética , Variação Genética , Recombinação Genética , Aspergillus flavus/metabolismo , Hibridização Genômica Comparativa , Cariotipagem , Dados de Sequência Molecular , Família Multigênica , Análise de Sequência de DNA
20.
PLoS One ; 6(12): e28799, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174902

RESUMO

Signal transduction from G-protein coupled receptors to MAPK cascades through heterotrimeric G-proteins has been described for many eukaryotic systems. One of the best-characterised examples is the yeast pheromone response pathway, which is negatively regulated by AKR1. AKR1-like proteins are present in all eukaryotes and contain a DHHC domain and six ankyrin repeats. Whilst the DHHC domain dependant S-acyl transferase (palmitoyl transferase) function of AKR1 is well documented it is not known whether the ankyrin repeats are also required for this activity. Here we show that the ankyrin repeats of AKR1 are required for full suppression of the yeast pheromone response pathway, by sequestration of the Gßγ dimer, and act independently of AKR1 S-acylation function. Importantly, the functions provided by the AKR1 ankyrin repeats and DHHC domain are not required on the same molecule to fully restore WT phenotypes and function. We also show that AKR1 molecules are S-acylated at locations other than the DHHC cysteine, increasing the abundance of AKR1 in the cell. Our results have important consequences for studies of AKR1 function, including recent attempts to characterise S-acylation enzymology and kinetics. Proteins similar to AKR1 are found in all eukaryotes and our results have broad implications for future work on these proteins and the control of switching between Gßγ regulated pathways.


Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Repetição de Anquirina , Genes Fúngicos Tipo Acasalamento/genética , Genes de Troca/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Acilação , Cisteína/metabolismo , Estabilidade Enzimática , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Teste de Complementação Genética , Modelos Biológicos , Mutação/genética , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA