Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.422
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0302991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722855

RESUMO

Recessive dystrophic epidermolysis bullosa is a rare genodermatosis caused by a mutation of the Col7a1 gene. The Col7a1 gene codes for collagen type VII protein, a major component of anchoring fibrils. Mutations of the Col7a1 gene can cause aberrant collagen type VII formation, causing an associated lack or absence of anchoring fibrils. This presents clinically as chronic blistering, scarring, and fibrosis, often leading to the development of cutaneous squamous cell carcinoma. Patients also experience persistent pain and pruritus. Pain management and supportive bandaging remain the primary treatment options. The pathology of recessive dystrophic epidermolysis bullosa was first described in the 1980s, and there has since been a multitude of encouraging treatment options developed. However, in vivo research has been hindered by inadequate models of the disease. The various mouse models in existence possess longevity and surface area constraints, or do not adequately model a normal human disease state. In this paper, we describe a novel rat model of recessive dystrophic epidermolysis bullosa that offers an alternative to previous murine models. An 8-base pair deletion was induced in the Col7a1 gene of Lewis rats, which was subsequently found to cause a premature stop codon downstream. Homozygous mutants presented with a fragile and chronically blistered phenotype postnatally. Further histological analysis revealed subepidermal clefting and the absence of anchoring fibrils. The generation of this novel model offers researchers an easily maintained organism that possesses a larger surface area for experimental topical and transfused therapies to be tested, which may provide great utility in the future study of this debilitating disease.


Assuntos
Colágeno Tipo VII , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica , Mutação da Fase de Leitura , Fenótipo , Colágeno Tipo VII/genética , Animais , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Ratos , Genes Recessivos , Ratos Endogâmicos Lew , Vesícula/genética , Vesícula/patologia , Pele/patologia , Masculino
2.
BMC Genomics ; 25(1): 417, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678201

RESUMO

BACKGROUND: Between 2020 and 2022, eight calves in a Nebraska herd (composite Simmental, Red Angus, Gelbvieh) displayed exercise intolerance during forced activity. In some cases, the calves collapsed and did not recover. Available sire pedigrees contained a paternal ancestor within 2-4 generations in all affected calves. Pedigrees of the calves' dams were unavailable, however, the cows were ranch-raised and retained from prior breeding seasons, where bulls used for breeding occasionally had a common ancestor. Therefore, it was hypothesized that a de novo autosomal recessive variant was causative of exercise intolerance in these calves. RESULTS: A genome-wide association analysis utilizing SNP data from 6 affected calves and 715 herd mates, followed by whole-genome sequencing of 2 affected calves led to the identification of a variant in the gene PYGM (BTA29:g.42989581G > A). The variant, confirmed to be present in the skeletal muscle transcriptome, was predicted to produce a premature stop codon (p.Arg650*). The protein product of PYGM, myophosphorylase, breaks down glycogen in skeletal muscle. Glycogen concentrations were fluorometrically assayed as glucose residues demonstrating significantly elevated glycogen concentrations in affected calves compared to cattle carrying the variant and to wild-type controls. The absence of the PYGM protein product in skeletal muscle was confirmed by immunohistochemistry and label-free quantitative proteomics analysis; muscle degeneration was confirmed in biopsy and necropsy samples. Elevated skeletal muscle glycogen persisted after harvest, resulting in a high pH and dark-cutting beef, which is negatively perceived by consumers and results in an economic loss to the industry. Carriers of the variant did not exhibit differences in meat quality or any measures of animal well-being. CONCLUSIONS: Myophosphorylase deficiency poses welfare concerns for affected animals and negatively impacts the final product. The association of the recessive genotype with dark-cutting beef further demonstrates the importance of genetics to not only animal health but to the quality of their product. Although cattle heterozygous for the variant may not immediately affect the beef industry, identifying carriers will enable selection and breeding strategies to prevent the production of affected calves.


Assuntos
Estudo de Associação Genômica Ampla , Glicogênio Fosforilase Muscular , Animais , Bovinos , Feminino , Masculino , Doenças dos Bovinos/genética , Genes Recessivos , Glicogênio Fosforilase Muscular/genética , Glicogênio Fosforilase Muscular/deficiência , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Linhagem , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
3.
J Cell Mol Med ; 28(8): e18119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38534090

RESUMO

Hearing loss is a clinically and genetically heterogeneous disorder, with over 148 genes and 170 loci associated with its pathogenesis. The spectrum and frequency of causal variants vary across different genetic ancestries and are more prevalent in populations that practice consanguineous marriages. Pakistan has a rich history of autosomal recessive gene discovery related to non-syndromic hearing loss. Since the first linkage analysis with a Pakistani family that led to the mapping of the DFNB1 locus on chromosome 13, 51 genes associated with this disorder have been identified in this population. Among these, 13 of the most prevalent genes, namely CDH23, CIB2, CLDN14, GJB2, HGF, MARVELD2, MYO7A, MYO15A, MSRB3, OTOF, SLC26A4, TMC1 and TMPRSS3, account for more than half of all cases of profound hearing loss, while the prevalence of other genes is less than 2% individually. In this review, we discuss the most common autosomal recessive non-syndromic hearing loss genes in Pakistani individuals as well as the genetic mapping and sequencing approaches used to discover them. Furthermore, we identified enriched gene ontology terms and common pathways involved in these 51 autosomal recessive non-syndromic hearing loss genes to gain a better understanding of the underlying mechanisms. Establishing a molecular understanding of the disorder may aid in reducing its future prevalence by enabling timely diagnostics and genetic counselling, leading to more effective clinical management and treatments of hearing loss.


Assuntos
Surdez , Perda Auditiva , Humanos , Genes Recessivos , Paquistão , Mutação , Perda Auditiva/genética , Linhagem , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Serina Endopeptidases/genética , Proteína 2 com Domínio MARVEL/genética
4.
BMC Med Genomics ; 17(1): 4, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167320

RESUMO

BACKGROUND: Hereditary hearing loss is a highly heterogeneous disorder. This study aimed to identify the genetic cause of a Chinese family with autosomal recessive non-syndromic sensorineural hearing loss (ARNSHL). METHODS: Clinical information and peripheral blood samples were collected from the proband and its parents. Two-step high-throughput next-generation sequencing on the Ion Torrent platform was applied to detect variants as follows. First, long-range PCR was performed to amplify all the regions of the GJB2, GJB3, SLC26A4, and MT-RNR1 genes, followed by next-generation sequencing. If no candidate pathogenetic variants were found, the targeted exon sequencing with AmpliSeq technology was employed to examine another 64 deafness-associated genes. Sanger sequencing was used to identify variants and the lineage co-segregation. The splicing of the MYO15A gene was assessed by in silico bioinformatics prediction and minigene assays. RESULTS: Two candidate MYO15A gene (OMIM, #602,666) heterozygous splicing variants, NG_011634.2 (NM_016239.3): c.6177 + 1G > T and c.9690 + 1G > A, were identified in the proband, and these two variants were both annotated as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Further bioinformatic analysis predicted that the c.6177 + 1G > T variant might cause exon skipping and that the c.9690 + 1G > A variant might activate a cryptic splicing donor site in the downstream intronic region. An in vitro minigene assay confirmed the above predictions. CONCLUSIONS: We identified a compound heterozygous splicing variant in the MYO15A gene in a Han Chinese family with ARNSHL. Our results broaden the spectrum of MYO15A variants, potentially benefiting the early diagnosis, prevention, and treatment of the disease.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Humanos , Miosinas/genética , Surdez/genética , Perda Auditiva Neurossensorial/genética , Genes Recessivos , Linhagem , Mutação
5.
J Mol Neurosci ; 73(11-12): 976-982, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924468

RESUMO

Otofaciocervical syndrome (OTFCS) is a rare genetic disorder of both autosomal recessive and autosomal dominant patterns of inheritance. It is caused by biallelic or monoallelic mutations in PAX1 or EYA1 genes, respectively. Here, we report an OTFCS2 female patient of 1st consanguineous healthy parents. She manifested facial dysmorphism, hearing loss, intellectual disability (ID), and delayed language development (DLD) as the main clinical phenotype. The novel homozygous variant c.1212dup (p.Gly405Argfs*51) in the PAX1 gene was identified by whole exome sequencing (WES), and family segregation confirmed the heterozygous status of the mutation in the parents using the Sanger sequencing. The study recorded a novel PAX1 variant representing the sixth report of OTFCS2 worldwide and the first Egyptian study expanding the geographic area where the disorder was confined.


Assuntos
Síndrome Brânquio-Otorrenal , Deficiência Intelectual , Feminino , Humanos , Síndrome Brânquio-Otorrenal/genética , Exoma , Genes Recessivos , Deficiência Intelectual/genética , Mutação , Linhagem
6.
Zhonghua Er Ke Za Zhi ; 61(11): 1038-1042, 2023 Nov 02.
Artigo em Chinês | MEDLINE | ID: mdl-37899344

RESUMO

Objective: To investigate the clinical presentation and genetic characteristics of malignant infantile osteopetrosis. Methods: This was a retrospective case study. Thirty-seven children with malignant infantile osteopetrosis admitted into Beijing Children's Hospital from January 2013 to September 2022 were enrolled in this study. According to the gene mutations, the patients were divided into the CLCN7 group and the TCIRG1 group. Clinical characteristics, laboratory tests, and prognosis were compared between two groups. Wilcoxon test or Fisher exact test were used in inter-group comparison. The survival rate was estimated with the Kaplan-Meier method and the Log-Rank test was used to compare the difference in survival between groups. Results: Among the 37 cases, there were 22 males and 15 females. The age of diagnosis was 0.5 (0.2, 1.0) year. There were 13 patients (35%) and 24 patients (65%) with mutations in CLCN7 and TCIRGI gene respectively. Patients in the CLCN7 group had an older age of diagnosis than those in the TCIRGI group (1.2 (0.4, 3.6) vs. 0.4 (0.2, 0.6) years, Z=-2.60, P=0.008). The levels of serum phosphorus (1.7 (1.3, 1.8) vs. 1.1 (0.8, 1.6) mmol/L, Z=-2.59, P=0.010), creatine kinase isoenzyme (CK-MB) (457 (143, 610) vs. 56 (37, 82) U/L, Z=-3.38, P=0.001) and the level of neutrophils (14.0 (9.9, 18.1) vs. 9.2 (6.7, 11.1) ×109/L, Z=-2.07, P=0.039) at diagnosis were higher in the CLCN7 group than that in the TCIRG1 group. However, the level of D-dimer in the CLCN7 group was lower than that in the TCIRGI group (2.7 (1.0, 3.1) vs. 6.3 (2.5, 9.7) µg/L, Z=2.83, P=0.005). After hematopoietic stem cell transplantation, there was no significant difference in 5-year overall survival rate between the two groups (92.3%±7.4% vs. 83.3%±7.6%, χ²=0.56, P=0.456). Conclusions: TCIRGI gene mutations are more common in children with osteopetrosis. Children with TCIRGI gene mutations have younger age, lower levels of phosphorus, CK-MB, and neutrophils and higher level of D-dimer at the onset. After hematopoietic stem cell transplantation, patients with CLCN7 or TCIRGI gene mutations have similar prognosis.


Assuntos
Osteopetrose , ATPases Vacuolares Próton-Translocadoras , Criança , Masculino , Feminino , Humanos , Osteopetrose/diagnóstico , Osteopetrose/genética , Osteopetrose/terapia , Estudos Retrospectivos , Prognóstico , Genes Recessivos , Fósforo , Canais de Cloreto/genética , ATPases Vacuolares Próton-Translocadoras/genética
7.
J Invest Dermatol ; 143(12): 2447-2455.e8, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37302620

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a genodermatosis caused by variants in COL7A1-encoded type VII collagen, a major component of anchoring fibrils. In this study, we developed an ex vivo gene therapy for RDEB using autologous mesenchymal stromal cells (MSCs). On the basis of our previous studies, we first attempted to isolate MSCs from the blister fluid of patients with RDEB and succeeded in obtaining cells with a set of MSC characteristics from all 10 patients. We termed these cells blister fluid-derived MSCs. Blister fluid-derived MSCs were genetically modified and injected into skins of type VII collagen-deficient neonatal mice transplanted onto immunodeficient mice, resulting in continuous and widespread expression of type VII collagen at the dermal-epidermal junction, particularly when administered into blisters. When injected intradermally, the efforts were not successful. The gene-modified blister fluid-derived MSCs could be cultured as cell sheets and applied to the dermis with an efficacy equivalent to that of intrablister administration. In conclusion, we successfully developed a minimally invasive and highly efficient ex vivo gene therapy for RDEB. This study shows the successful application of gene therapy in the RDEB mouse model for both early blistering skin and advanced ulcerative lesions.


Assuntos
Epidermólise Bolhosa Distrófica , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/terapia , Epidermólise Bolhosa Distrófica/patologia , Vesícula/genética , Vesícula/terapia , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Pele/patologia , Genes Recessivos , Células-Tronco Mesenquimais/metabolismo
8.
Iran J Allergy Asthma Immunol ; 22(1): 119-123, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37002626

RESUMO

Chronic granulomatous disease (CGD) is a rare primary immunodeficiency disorder more common in autosomal recessive (AR) than X-linked in Iran. This study aimed to assess whether having a child with AR-CGD would increase the likelihood of the next child being affected by CGD. Ninety-one families with at least one child affected by AR-CGD entered this study. Out of the 270 children, 128 were affected by AR-CGD. We used a cross tab for the odds ratio (OR) calculation, in which exposure to a previously affected child and the next child's status were evaluated. This study illustrated that the chances of having another child afflicted with AR-CGD are significantly increased if the previous child had AR-CGD (OR=2.77, 95% CI=1.35-5.69).Althoug h AR disorders affect 25% of each pregnancy, we showed that the chance that the next child would be affected by CGD, given that the previous child was affected, is 2.77 times greater than in families with a normal child. It is recommended to warn families with one or more affected children to evaluate the risk of CGD in their subsequent pregnancies with prenatal diagnosis.


Assuntos
Doença Granulomatosa Crônica , Humanos , Criança , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/epidemiologia , Doença Granulomatosa Crônica/genética , NADPH Oxidases/genética , Genes Recessivos , Genes Ligados ao Cromossomo X , Irã (Geográfico) , Mutação
9.
Theor Appl Genet ; 136(3): 64, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36943531

RESUMO

KEY MESSAGE: The bs5 resistance gene against bacterial spot was identified by map-based cloning. The recessive bs5 gene of pepper (Capsicum annuum L.) conditions a non-hypersensitive resistance trait, characterized by a slightly swollen, pale green, photosynthetically active leaf tissue, following Xanthomonas euvesicatoria infection. The isolation of the bs5 gene by map-based cloning revealed that the bs5 protein was shorter by 2 amino acids as compared to the wild type Bs5 protein. The natural 2 amino acid deletion occurred in the cysteine-rich transmembrane domain of the tail-anchored (TA) protein, Ca_CYSTM1. The protein products of the wild type Bs5 and mutant bs5 genes were shown to be located in the cell membrane, indicating an unknown function in this membrane compartment. Successful infection of the Bs5 pepper lines was abolished by the 6 bp deletion in the TM encoding domain of the Ca_CYSTM1 gene in bs5 homozygotes, suggesting, that the resulting resistance might be explained by the lack of entry of the Xanthomonas specific effector molecules into the plant cells.


Assuntos
Capsicum , Xanthomonas , Capsicum/genética , Capsicum/metabolismo , Alelos , Genes Recessivos , Membrana Celular/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
10.
Rev. neuro-psiquiatr. (Impr.) ; 86(1): 45-61, ene. 2023. tab, ilus
Artigo em Espanhol | LILACS, LIPECS | ID: biblio-1442084

RESUMO

La Ataxia de Friedreich (AF) es una enfermedad neurodegenerativa autosómica recesiva con compromiso multisistémico. En esta revisión, se actualizan aspectos epidemiológicos, fisiopatológicos y clínico-terapéuticos y se conduce una búsqueda sistemática de casos de AF reportados en Latinoamérica. La prevalencia de AF en poblaciones caucásicas es estimada entre 2 y 5 casos por 100 000 habitantes. En Latinoamérica se han publicado 35 estudios que reúnen 1481 casos en 6 países. Causada por la expansión anormal de repeticiones GAA en el gen FXN, la etiopatogenia está asociada a una reducción en los niveles de la proteína frataxina (que altera el metabolismo energético) y el acúmulo de hierro mitocondrial. El fenotipo clásico de AF suele comenzar antes de los 25 años, aunque hay otros de inicio tardío y retención de reflejos. La sintomatología se caracteriza por ataxia progresiva, alteración sensitiva, arreflexia, disartria, y alteraciones oculomotoras, además de compromiso cardiaco, endocrino y musculoesquelético. El diagnóstico requiere evaluación neurológica detallada, estudios neurofisiológicos, neuroimágenes y pruebas bioquímicas pero el enfoque determinante es el estudio genético que demuestre variantes genéticas bialélicas en el gen FXN. El manejo es multidisciplinario, orientado a aminorar los síntomas, prevenir complicaciones y brindar asesoramiento genético apropiado. Recientemente se ha aprobado el primer tratamiento farmacológico para AF con varios más en fases de experimentación.


SUMMARY Friedreich Ataxia (FA) is an autosomal recessive neurodegenerative disease with multisystemic involvement. This update of epidemiological, pathophysiological, and clinico-therapeutic aspects of FA, includes a systematic review of cases in Latin America. The estimated FA prevalence in Caucasian populations is between 2 to 5 cases per 100 000. In Latin America, 1481 cases have been published in 35 articles from six different countries. Caused by an abnormally repeated expansion of GAA trinucleotide inside the FXN gene, FA's etiopathogenesis is associated with reduced levels of the frataxin protein, which disturb the energy metabolism and result in mitochondrial iron accumulation. The classic phenotype usually shows symptoms before the age of 25, although there are others with a later onset. The main symptoms of AF are progressive ataxia, sensory disturbances, areflexia, dysarthria, and oculomotor alterations, in addition to cardiac, endocrine, and musculoskeletal compromise. Diagnostic workup requires a detailed neurological examination, neuroconduction studies, neuroimaging, and biochemical tests. The definitive diagnosis is provided by genetic testing showing biallelic variants within the FXN gene. The management is multidisciplinary, aimed at reducing symptoms, preventing complications, and providing an appropriate genetic counseling. Recently, the first pharmacological treatment for AF has been approved, with several others in clinical assessment trials.


Assuntos
Humanos , Adulto Jovem , Ataxia , Ataxia de Friedreich , Proteínas de Ligação ao Ferro , Genes Recessivos , América Latina , Relatos de Casos
11.
J Clin Lab Anal ; 36(10): e24653, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36217262

RESUMO

BACKGROUND: The most common inheritance pattern responsible for congenital deafness belongs to autosomal recessive non-syndromic hearing loss (ARNSHL) and mutations of the highly heterogeneous MYO15A locus are present in a large proportion of cases. METHODS: One Chinese family with ARNSHL was subjected to clinical evaluation and genetic analysis. We used targeted and whole exome sequencing with Sanger sequencing to identify and characterize mutations. Bioinformatics analysis was conducted to evaluate molecular functions. RESULTS: Three compound heterozygous MYO15A gene variants, including two novel variants, c.6804G > A (p.M2268I), and c.6188_6190delinsGTCA (p.F2063Cfs*60), responsible for deafness were identified. Pathogenicity was assessed by multiple bioinformatics analyses. CONCLUSION: We identified novel mutations of the MYO15A locus associated with ARNSHL in a Chinese family. The current findings expand the MYO15A pathogenic mutation spectrum to assist with genetic counseling and prenatal diagnosis.


Assuntos
Surdez , Exoma , Miosinas , Surdez/genética , Genes Recessivos , Humanos , Padrões de Herança , Mutação , Miosinas/genética , Linhagem
12.
Bone ; 165: 116577, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36195244

RESUMO

Osteopetrosis (OPT) is a life-threatening disease characterized by increased bone mass caused by diminished osteoclast function/differentiation. The autosomal recessive forms, caused by biallelic variants in implicated genes, usually present in infancy. Without treatment, autosomal recessive OPTs are usually fatal within the first 10 years of life [1]. Here, we review the clinical features and associated pathophysiology of the autosomal recessive OPT. A greater understanding of these rare disorders will advance early diagnosis and optimal management.


Assuntos
Osteopetrose , Humanos , Osteopetrose/diagnóstico por imagem , Osteopetrose/genética , Fenótipo , Genes Recessivos
13.
Hum Mutat ; 43(7): 900-918, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35344616

RESUMO

Robinow syndrome is characterized by a triad of craniofacial dysmorphisms, disproportionate-limb short stature, and genital hypoplasia. A significant degree of phenotypic variability seems to correlate with different genes/loci. Disturbances of the noncanonical WNT-pathway have been identified as the main cause of the syndrome. Biallelic variants in ROR2 cause an autosomal recessive form of the syndrome with distinctive skeletal findings. Twenty-two patients with a clinical diagnosis of autosomal recessive Robinow syndrome were screened for variants in ROR2 using multiple molecular approaches. We identified 25 putatively pathogenic ROR2 variants, 16 novel, including single nucleotide variants and exonic deletions. Detailed phenotypic analyses revealed that all subjects presented with a prominent forehead, hypertelorism, short nose, abnormality of the nasal tip, brachydactyly, mesomelic limb shortening, short stature, and genital hypoplasia in male patients. A total of 19 clinical features were present in more than 75% of the subjects, thus pointing to an overall uniformity of the phenotype. Disease-causing variants in ROR2, contribute to a clinically recognizable autosomal recessive trait phenotype with multiple skeletal defects. A comprehensive quantitative clinical evaluation of this cohort delineated the phenotypic spectrum of ROR2-related Robinow syndrome. The identification of exonic deletion variant alleles further supports the contention of a loss-of-function mechanism in the etiology of the syndrome.


Assuntos
Anormalidades Craniofaciais , Nanismo , Deformidades Congênitas dos Membros , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Anormalidades Urogenitais , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Nanismo/diagnóstico , Nanismo/genética , Genes Recessivos , Humanos , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/genética , Masculino , Fenótipo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(3): 321-324, 2022 Mar 10.
Artigo em Chinês | MEDLINE | ID: mdl-35315045

RESUMO

OBJECTIVE: To explore the clinical and genetic characteristics of a pediatric patient suspected for Autosomal Recessive Congenital Ichthyosis (ARCI). METHODS: Clinical data of the patient was analyzed. Peripheral blood samples were collected from the patient and his parents for the extraction of genomic DNA. Next-generation sequencing (NGS) was then carried out. Candidate variants were confirmed by Sanger sequencing. A variety of bioinformatic tools including Mutation Taster, PROVEAN, and PolyPhen2 were used to predict the pathogenicity of the variants based on guidelines from the American College of Medical Genetics and Genomics (ACMG). RESULTS: The patient, a 1-month-and-7-day-old male, had presented with cutaneous erythema and fine scaling of the whole body. NGS revealed that he has harbored compound heterozygous variants c.1579G>A (p.Val527Met) (paternal) and c.923T>C (p.Leu308Pro) (maternal) of the ALOX12B gene. The former was known to be likely pathogenic, while the latter was unreported previously and categorized as "likely pathogenic" based on the ACMG guidelines. Based on the clinical and genetic findings, the patient was diagnosed with ARCI. CONCLUSION: The c.1579G>A and c.923T>C variants of the ALOX12B genes probably underlay the ARCI in this patient. Above finding has enriched the spectrum of ALOX12B mutations and enabled molecular diagnosis of the patient, based on which genetic counseling and prenatal diagnosis may be provided.


Assuntos
Ictiose Lamelar , Araquidonato 12-Lipoxigenase/genética , Criança , Feminino , Genes Recessivos , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ictiose Lamelar/genética , Masculino , Mutação , Gravidez
15.
Orphanet J Rare Dis ; 17(1): 97, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35241111

RESUMO

BACKGROUND: Stickler syndrome (STL) is a rare, clinically and molecularly heterogeneous connective tissue disorder. Pathogenic variants occurring in a variety of genes cause STL, mainly inherited in an autosomal dominant fashion. Autosomal recessive STL is ultra-rare with only four families with biallelic COL9A3 variants reported to date. RESULTS: Here, we report three unrelated families clinically diagnosed with STL carrying different novel biallelic loss of function variants in COL9A3. Further, we have collected COL9A3 genotype-phenotype associations from the literature. CONCLUSION: Our report substantially expands the molecular genetics and clinical basis of autosomal recessive STL and provides an overview about allelic COL9A3 disorders.


Assuntos
Artrite , Colágeno Tipo IX , Doenças do Tecido Conjuntivo , Perda Auditiva Neurossensorial , Osteocondrodisplasias , Descolamento Retiniano , Artrite/diagnóstico , Artrite/genética , Colágeno Tipo IX/genética , Doenças do Tecido Conjuntivo/genética , Doenças do Tecido Conjuntivo/patologia , Genes Recessivos/genética , Perda Auditiva Neurossensorial/genética , Humanos , Mutação/genética , Osteocondrodisplasias/genética , Linhagem , Fenótipo , Descolamento Retiniano/diagnóstico , Descolamento Retiniano/genética , Descolamento Retiniano/patologia
16.
J Clin Lab Anal ; 36(2): e24241, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35019165

RESUMO

BACKGROUND: Intellectual disability (ID) is a heterogeneous group of neurodevelopmental disorders that is characterized by significant impairment in intellectual and adaptive functioning with onset during the developmental period. Whole-exome sequencing (WES)-based studies in the consanguineous families with individuals affected with ID have shown a high burden of relevant variants. So far, over 700 genes have been reported in syndromic and non-syndromic ID. However, genetic causes in more than 50% of ID patients still remain unclear. METHODS: Whole-exome sequencing was applied for investigation of various variants of ID, then Sanger sequencing and in silico analysis in ten patients from five Iranian consanguineous families diagnosed with autosomal recessive neurodevelopmental disorders, intellectual disability, performed for confirming the causative mutation within the probands. The most patients presented moderate-to-severe intellectual disability, developmental delay, seizure, speech problem, high level of lactate, and onset before 10 years. RESULTS: Filtering the data identified by WES, two novel homozygous missense variants in FBXO31 and TIMM50 genes and one previously reported mutation in the CEP290 gene in the probands were found. Sanger sequencing confirmed the homozygote variant's presence of TIMM50 and FBXO31 genes in six patients and two affected siblings in their respective families. Our computational results predicted that the variants are located in the conserved regions across different species and have the impacts on the protein stability. CONCLUSION: Hence, we provide evidence for the pathogenicity of two novel variants in the patients which will expand our knowledge about potential mutation involved in the heterogeneous disease.


Assuntos
Consanguinidade , Proteínas F-Box/genética , Deficiência Intelectual/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Criança , Pré-Escolar , Transtornos Cromossômicos , Proteínas do Citoesqueleto/genética , Feminino , Genes Recessivos , Homozigoto , Humanos , Padrões de Herança , Irã (Geográfico) , Masculino
17.
Int J Hematol ; 115(3): 428-434, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34704233

RESUMO

Shwachman-Diamond syndrome (SDS) is an autosomal recessive inherited disorder characterized by bone marrow failure, exocrine pancreatic dysfunction, and skeletal abnormalities. SDS is typically caused by a pathogenic mutation in the Shwachman-Bodian-Diamond Syndrome (SBDS) gene. Patients with SDS have an increased risk of developing acute myeloid leukemia (AML) and myelodysplastic syndromes. We identified germline biallelic SBDS mutations (p.K62X and p.I167M) in a 50-year-old AML patient who had never experienced the typical symptoms of SDS. The K62X mutation is one of the most common pathogenic mutations, whereas the significance of the I167M mutation was unclear. Based on cellular experiments, we concluded that the I167M mutation contributed to the development of AML, and chemotherapy including topoisomerase inhibitors, which induce DNA double-strand breaks, may have been toxic to this patient. Our experience indicates that some asymptomatic Shwachman-Bodian-Diamond syndrome mutations contribute to the development of leukemia, and that careful treatment selection may be warranted for patients harboring these mutations.


Assuntos
Mutação em Linhagem Germinativa/genética , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/genética , Proteínas/genética , Síndrome de Shwachman-Diamond/genética , DNA/metabolismo , Reparo do DNA/efeitos dos fármacos , Feminino , Genes Recessivos/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/etiologia , Síndrome de Shwachman-Diamond/complicações , Inibidores da Topoisomerase/efeitos adversos
18.
J Dermatol ; 49(1): 55-67, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34676598

RESUMO

Genetic hair disorders, although unusual, are not very rare, and dermatologists often have opportunities to see patients. Significant advances in molecular genetics have led to identifying many causative genes for genetic hair disorders, including the recently identified causative genes, such as LSS and C3ORF52. Many patients have been detected with autosomal recessive woolly hair/hypotrichosis in the Japanese population caused by founder mutations in the LIPH gene. Additionally, many patients with genetic hair disorders caused by other genes have been reported in East Asia including Japan. Understanding genetic hair disorders is essential for dermatologists, and the findings obtained from analyzing these diseases will contribute to revealing the mechanisms of hair follicle morphogenesis and development in humans.


Assuntos
Doenças do Cabelo , Hipotricose , Genes Recessivos , Cabelo , Doenças do Cabelo/genética , Humanos , Hipotricose/genética , Japão/epidemiologia , Lipase/genética , Mutação , Linhagem
19.
Lab Med ; 53(2): 111-122, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-34388253

RESUMO

BACKGROUND: Hearing loss (HL) is the most prevalent and genetically heterogeneous sensory disabilities in humans throughout the world. METHODS: In this study, we used whole-exome sequencing (WES) to determine the variant causing autosomal recessive nonsyndromic hearing loss (ARNSHL) segregating in 3 separate Iranian consanguineous families (with 3 different ethnicities: Azeri, Persian, and Lur), followed by cosegregation analysis, computational analysis, and structural modeling using the I-TASSER (Iterative Threading ASSEmbly Refinement) server. Also, we used speech-perception tests to measure cochlear implant (CI) performance in patients. RESULTS: One small in-frame deletion variant (MYO15A c.8309_8311del (p.Glu2770del)), resulting in deletion of a single amino-acid residue was identified. We found it to be cosegregating with the disease in the studied families. We provide some evidence suggesting the pathogenesis of this variant in HL based on the American College of Medical Genetics (ACMG) and Genomics guidelines. Evaluation of auditory and speech performance indicated favorable outcome after cochlear implantation in our patients. CONCLUSIONS: The findings of this study demonstrate the utility of WES in genetic diagnostics of HL.


Assuntos
Perda Auditiva Neurossensorial , Surdez , Genes Recessivos , Perda Auditiva Neurossensorial/genética , Humanos , Irã (Geográfico) , Mutação , Miosinas/genética , Linhagem , Sequenciamento do Exoma
20.
Ear Hear ; 43(3): 1049-1066, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34753855

RESUMO

OBJECTIVES: Hereditary hearing loss exhibits high degrees of genetic and clinical heterogeneity. To elucidate the population-specific and age-related genetic and clinical spectra of hereditary hearing loss, we investigated the sequencing data of causally associated hearing loss genes in a large cohort of hearing-impaired probands with a balanced age distribution from a single center in Southwest Germany. DESIGN: Genetic testing was applied to 305 hearing-impaired probands/families with a suspected genetic hearing loss etiology and a balanced age distribution over a period of 8 years (2011-2018). These individuals were representative of the regional population according to age and sex distributions. The genetic testing workflow consisted of single-gene screening (n = 21) and custom-designed hearing loss gene panel sequencing (n = 284) targeting known nonsyndromic and syndromic hearing loss genes in a diagnostic setup. Retrospective reanalysis of sequencing data was conducted by applying the current American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines. RESULTS: A genetic diagnosis was established for 75 (25%) of the probands that involved 75 causal variants in 35 genes, including 16 novel causal variants and 9 medically significant variant reclassifications. Nearly half of the solved cases (47%; n = 35) were related to variants in the five most frequently affected genes: GJB2 (25%), MYO15A, WFS1, SLC26A4, and COL11A1 (all 5%). Nearly one-quarter of the cases (23%; n = 17) were associated with variants in seven additional genes (TMPRSS3, COL4A3, LOXHD1, EDNRB, MYO6, TECTA, and USH2A). The remaining one-third of single cases (33%; n = 25) were linked to variants in 25 distinct genes. Diagnostic rates and gene distribution were highly dependent on phenotypic characteristics. A positive family history of autosomal-recessive inheritance in combination with early onset and higher grades of hearing loss significantly increased the solve rate up to 60%, while late onset and lower grades of hearing loss yielded significantly fewer diagnoses. Regarding genetic diagnoses, autosomal-dominant genes accounted for 37%, autosomal-recessive genes for 60%, and X-linked genes for 3% of the solved cases. Syndromic/nonsyndromic hearing loss mimic genes were affected in 27% of the genetic diagnoses. CONCLUSIONS: The genetic epidemiology of the largest German cohort subjected to comprehensive targeted sequencing for hereditary hearing loss to date revealed broad causal gene and variant spectra in this population. Targeted hearing loss gene panel analysis proved to be an effective tool for ensuring an appropriate diagnostic yield in a routine clinical setting including the identification of novel variants and medically significant reclassifications. Solve rates were highly sensitive to phenotypic characteristics. The unique population-adapted and balanced age distribution of the cohort favoring late hearing loss onset uncovered a markedly large contribution of autosomal-dominant genes to the diagnoses which may be a representative for other age balanced cohorts in other populations.


Assuntos
Síndromes de Usher , Distribuição por Idade , Genes Recessivos , Testes Genéticos , Humanos , Proteínas de Membrana/genética , Mutação , Proteínas de Neoplasias/genética , Linhagem , Estudos Retrospectivos , Serina Endopeptidases/genética , Síndromes de Usher/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA