Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Nat Cell Biol ; 23(4): 341-354, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33795875

RESUMO

Dysregulated translation is a common feature of cancer. Uncovering its governing factors and underlying mechanism are important for cancer therapy. Here, we report that enhancer of zeste homologue 2 (EZH2), previously known as a transcription repressor and lysine methyltransferase, can directly interact with fibrillarin (FBL) to exert its role in translational regulation. We demonstrate that EZH2 enhances rRNA 2'-O methylation via its direct interaction with FBL. Mechanistically, EZH2 strengthens the FBL-NOP56 interaction and facilitates the assembly of box C/D small nucleolar ribonucleoprotein. Strikingly, EZH2 deficiency impairs the translation process globally and reduces internal ribosome entry site (IRES)-dependent translation initiation in cancer cells. Our findings reveal a previously unrecognized role of EZH2 in cancer-related translational regulation.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Genes de RNAr/genética , Humanos , Sítios Internos de Entrada Ribossomal/genética , Neoplasias/genética , Neoplasias/terapia , Ligação Proteica/genética , Biossíntese de Proteínas/genética , Ribonucleoproteínas Nucleolares Pequenas/genética
2.
PLoS Genet ; 17(4): e1009520, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33826644

RESUMO

The adjustment of transcription and translation rates to the changing needs of cells is of utmost importance for their fitness and survival. We have previously shown that the global transcription rate for RNA polymerase II in budding yeast Saccharomyces cerevisiae is regulated in relation to cell volume. Total mRNA concentration is constant with cell volume since global RNApol II-dependent nascent transcription rate (nTR) also keeps constant but mRNA stability increases with cell size. In this paper, we focus on the case of rRNA and RNA polymerase I. Contrarily to that found for RNA pol II, we detected that RNA polymerase I nTR increases proportionally to genome copies and cell size in polyploid cells. In haploid mutant cells with larger cell sizes, the rDNA repeat copy number rises. By combining mathematical modeling and experimental work with the large-size cln3 strain, we observed that the increasing repeat copy number is based on a feedback mechanism in which Sir2 histone deacetylase homeostatically controls the amplification of rDNA repeats in a volume-dependent manner. This amplification is paralleled with an increase in rRNA nTR, which indicates a control of the RNA pol I synthesis rate by cell volume.


Assuntos
Ciclinas/genética , Homeostase/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Transcrição Gênica , Tamanho Celular , DNA Ribossômico/genética , Genes de RNAr/genética , Haploidia , Modelos Teóricos , RNA Polimerase I/genética , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética
3.
Plant J ; 103(5): 1810-1825, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32506573

RESUMO

Nucleolar dominance (ND) consists of the reversible silencing of 35S/45S rDNA loci inherited from one of the ancestors of an allopolyploid. The molecular mechanisms by which one ancestral rDNA set is selected for silencing remain unclear. We applied a combination of molecular (Southern blot hybridization and reverse-transcription cleaved amplified polymorphic sequence analysis), genomic (analysis of variants) and cytogenetic (fluorescence in situ hybridization) approaches to study the structure, expression and epigenetic landscape of 35S rDNA in an allotetraploid grass that exhibits ND, Brachypodium hybridum (genome composition DDSS), and its putative progenitors, Brachypodium distachyon (DD) and Brachypodium stacei (SS). In progenitor genomes, B. stacei showed a higher intragenomic heterogeneity of rDNA compared with B. distachyon. In all studied accessions of B. hybridum, there was a reduction in the copy number of S homoeologues, which was accompanied by their inactive transcriptional status. The involvement of DNA methylation in CG and CHG contexts in the silencing of the S-genome rDNA loci was revealed. In the B. hybridum allotetraploid, ND is stabilized towards the D-genome units, irrespective of the polyphyletic origin of the species, and does not seem to be influenced by homoeologous 35S rDNA ratios and developmental stage.


Assuntos
Brachypodium/genética , Genes de Plantas/genética , Genes de RNAr/genética , Tetraploidia , Southern Blotting , Brachypodium/metabolismo , Cromossomos de Plantas/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Evolução Molecular , Loci Gênicos/genética , Genoma de Planta/genética , Polimorfismo Genético/genética
4.
Nature ; 582(7812): 432-437, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499643

RESUMO

Highly structured RNA molecules usually interact with each other, and associate with various RNA-binding proteins, to regulate critical biological processes. However, RNA structures and interactions in intact cells remain largely unknown. Here, by coupling proximity ligation mediated by RNA-binding proteins with deep sequencing, we report an RNA in situ conformation sequencing (RIC-seq) technology for the global profiling of intra- and intermolecular RNA-RNA interactions. This technique not only recapitulates known RNA secondary structures and tertiary interactions, but also facilitates the generation of three-dimensional (3D) interaction maps of RNA in human cells. Using these maps, we identify noncoding RNA targets globally, and discern RNA topological domains and trans-interacting hubs. We reveal that the functional connectivity of enhancers and promoters can be assigned using their pairwise-interacting RNAs. Furthermore, we show that CCAT1-5L-a super-enhancer hub RNA-interacts with the RNA-binding protein hnRNPK, as well as RNA derived from the MYC promoter and enhancer, to boost MYC transcription by modulating chromatin looping. Our study demonstrates the power and applicability of RIC-seq in discovering the 3D structures, interactions and regulatory roles of RNA.


Assuntos
Conformação de Ácido Nucleico , RNA/química , RNA/genética , Análise de Sequência de RNA/métodos , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Cromossomos Humanos/genética , Elementos Facilitadores Genéticos/genética , Genes myc/genética , Genes de RNAr/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/química , RNA Longo não Codificante/genética , Reprodutibilidade dos Testes , Transcrição Gênica
5.
Nucleic Acids Res ; 48(11): 5891-5906, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32421830

RESUMO

Originally identified as an RNA polymerase II interactor, Che-1/AATF (Che-1) has now been recognized as a multifunctional protein involved in cell-cycle regulation and cancer progression, as well as apoptosis inhibition and response to stress. This protein displays a peculiar nucleolar localization and it has recently been implicated in pre-rRNA processing and ribosome biogenesis. Here, we report the identification of a novel function of Che-1 in the regulation of ribosomal RNA (rRNA) synthesis, in both cancer and normal cells. We demonstrate that Che-1 interacts with RNA polymerase I and nucleolar upstream binding factor (UBF) and promotes RNA polymerase I-dependent transcription. Furthermore, this protein binds to the rRNA gene (rDNA) promoter and modulates its epigenetic state by contrasting the recruitment of HDAC1. Che-1 downregulation affects RNA polymerase I and UBF recruitment on rDNA and leads to reducing rDNA promoter activity and 47S pre-rRNA production. Interestingly, Che-1 depletion induces abnormal nucleolar morphology associated with re-distribution of nucleolar proteins. Finally, we show that upon DNA damage Che-1 re-localizes from rDNA to TP53 gene promoter to induce cell-cycle arrest. This previously uncharacterized function of Che-1 confirms the important role of this protein in the regulation of ribosome biogenesis, cellular proliferation and response to stress.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , DNA Ribossômico/genética , Genes de RNAr/genética , RNA Polimerase I/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Proteínas Reguladoras de Apoptose/deficiência , Proteínas Reguladoras de Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Nucléolo Celular/metabolismo , Nucléolo Celular/patologia , Dano ao DNA , DNA Ribossômico/metabolismo , Homeostase , Humanos , Fosforilação , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Ribossomos/metabolismo
6.
Cell Microbiol ; 22(7): e13199, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32134554

RESUMO

Campylobacter jejuni is a bacterial pathogen that is generally acquired as a zoonotic infection from poultry and animals. Adhesion of C. jejuni to human colorectal epithelial cells is weakened after loss of its cj0588 gene. The Cj0588 protein belongs to the type I group of TlyA (TlyAI ) enzymes, which 2'-O-methylate nucleotide C1920 in 23S rRNA. Slightly longer TlyAII versions of the methyltransferase are found in actinobacterial species including Mycobacterium tuberculosis, and methylate not only C1920 but also nucleotide C1409 in 16S rRNA. Loss of TlyA function attenuates virulence of both M. tuberculosis and C. jejuni. We show here that the traits impaired in C. jejuni null strains can be rescued by complementation not only with the original cj0588 (tlyA I ) but also with a mycobacterial tlyA II gene. There are, however, significant differences in the recombinant phenotypes. While cj0588 restores motility, biofilm formation, adhesion to and invasion of human epithelial cells and stimulation of IL-8 production in a C. jejuni null strain, several of these properties are further enhanced by the mycobacterial tlyA II gene, in some cases to twice the original wild-type level. These findings strongly suggest that subtle changes in rRNA modification patterns can affect protein synthesis in a manner that has serious consequences for bacterial pathogenicity.


Assuntos
Proteínas de Bactérias/metabolismo , Campylobacter jejuni/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Biofilmes , Células CACO-2 , Campylobacter jejuni/genética , Capreomicina , Células Epiteliais , Regulação Bacteriana da Expressão Gênica , Genes de RNAr/genética , Humanos , Macrófagos , Metilação , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Células RAW 264.7 , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Virulência , Fatores de Virulência/genética
7.
J Microbiol Immunol Infect ; 53(5): 785-790, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31635929

RESUMO

BACKGROUND: Pneumocystis pneumonia (PCP) is a disease caused by the opportunistic infection of the fungus Pneumocystis jirovecii. Several PCR methods have been developed to aid in the diagnosis of PCP. In this study, we evaluated the performance of a real-time PCR in the diagnosis of PCP, in patients with various underlying diseases. METHODS: Ninety-seven BAL samples and 94 sputum samples from 191 patients were used in the study. Patients were classified as PCP (121 patients) or non-PCP (70 patients) based on their clinical and radiological presentations. RESULTS: Real time PCR amplified the P. jirovecii mitochondrial large-subunit rRNA gene with a detection limit of 68 copies of DNA per reaction. Non-PCP pathogens including 32 different fungi and bacteria were also evaluated. Overall, 71.9% of the samples from PCP patients and 14.5% of those from non-PCP patients were positive for the PCR test with a CT value of the real-time PCR below 45. The main underlying diseases of the patients were hematological or solid malignancies (47.1%) and HIV infection (8.9%). The CT values of the test were significantly lower in BAL samples from PCP patients than those from non-PCP patients (p = 0.024). No non-PCP patient had a CT value below 30, whereas samples from 24.8% of PCP patients with underlying diseases had a CT value below 30. CONCLUSION: Since false positive PCR results were obtained, perhaps due to colonization, we suggest that the diagnosis of PCP should be based on a combination of clinical symptoms, underlying diseases, and PCR results.


Assuntos
Pneumocystis carinii/isolamento & purificação , Pneumonia por Pneumocystis/diagnóstico , Reação em Cadeia da Polimerase/métodos , Idoso , DNA Fúngico/análise , Feminino , Genes de RNAr/genética , Infecções por HIV/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias , Pneumocystis carinii/genética , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X
8.
Nucleic Acids Res ; 47(15): 8019-8035, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31184714

RESUMO

The nucleolus is a nuclear sub-domain containing the most highly transcribed genes in the genome. Hundreds of human ribosomal RNA (rRNA) genes, located in the nucleolus, rely on constant maintenance. DNA double-strand breaks (DSBs) in rRNA genes activate the ATM kinase, repress rRNA transcription and induce nucleolar cap formation. Yet how ribosomal-DNA (rDNA) lesions are detected and processed remains elusive. Here, we use CRISPR/Cas9-mediated induction of DSBs and report a chromatin response unique to rDNA depending on ATM-phosphorylation of the nucleolar protein TCOF1 and recruitment of the MRE11-RAD50-NBS1 (MRN) complex via the NBS1-subunit. NBS1- and MRE11-depleted cells fail to suppress rRNA transcription and to translocate rDNA into nucleolar caps. Furthermore, the DNA damage response (DDR) kinase ATR operates downstream of the ATM-TCOF1-MRN interplay and is required to fully suppress rRNA transcription and complete DSB-induced nucleolar restructuring. Unexpectedly, we find that DSBs in rDNA neither activate checkpoint kinases CHK1/CHK2 nor halt cell-cycle progression, yet the nucleolar-DDR protects against genomic aberrations and cell death. Our data highlight the concept of a specialized nucleolar DNA damage response (n-DDR) with a distinct protein composition, spatial organization and checkpoint communication. The n-DDR maintains integrity of ribosomal RNA genes, with implications for cell physiology and disease.


Assuntos
Nucléolo Celular/metabolismo , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Genes de RNAr/genética , Hidrolases Anidrido Ácido , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA Ribossômico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Proteína Homóloga a MRE11/genética , Proteína Homóloga a MRE11/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Interferência de RNA , Transdução de Sinais/genética , Transcrição Gênica
9.
Parasitology ; 146(14): 1719-1724, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31190659

RESUMO

The genus Entamoeba comprises mostly gut parasites and commensals of invertebrate and vertebrate animals including humans. Herein, we report a new species of Entamoeba isolated from the gut of Asian swamp eels (Monopterus albus) in northern Thailand. Morphologically, the trophozoite is elongated and has a single prominent pseudopodium with no clear uroid. The trophozoite is actively motile, 30-50 µm in length and 9-13 µm in width. Observed cysts were uninucleate, ranging in size from 10 to 17.5 µm in diameter. Chromatin forms a fine, even lining along the inner nuclear membrane. Fine radial spokes join the karyosome to peripheral chromatin. Size, host and nucleus morphology set our organism apart from other members of the genus reported from fish. The SSU rRNA gene sequences of the new isolates are the first molecular data of an Entamoeba species from fish. Phylogenetic analysis places the new organism as sister to Entamoeba invadens. Based on the distinct morphology and SSU rRNA gene sequence we describe it as a new species, Entamoeba chiangraiensis.


Assuntos
Entamoeba/classificação , Entamoeba/isolamento & purificação , Trato Gastrointestinal/parasitologia , Filogenia , Smegmamorpha/parasitologia , Animais , Genes de RNAr/genética , Tailândia , Trofozoítos/classificação , Trofozoítos/isolamento & purificação
10.
World J Microbiol Biotechnol ; 35(3): 44, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30810828

RESUMO

Bud rot disease is a damaging disease of oil palm in Colombia. The pathogen responsible for this disease is a species of oomyctes, Phytophthora palmivora which is also the causal pathogen of several tropical crop diseases such as fruit rot and stem canker of cocoa, rubber, durian and jackfruit. No outbreaks of bud rot have been reported in oil palm in Malaysia or other Southeast Asian countries, despite this particular species being present in the region. Analysis of the genomic sequences of several genetic markers; the internal transcribe spacer regions (ITS) of the ribosomal RNA gene cluster, beta-tubulin gene, translation elongation factor 1 alpha gene (EF-1α), cytochrome c oxidase subunit I & II (COXI and COXII) gene cluster along with amplified fragment length polymorphism (AFLP) analyses have been carried out to investigate the genetic diversity and variation of P. palmivora isolates from around the world and from different hosts in comparison to Colombian oil palm isolates, as one of the steps in understanding why this species of oomycetes causes devastating damage to oil palm in Latin America but not in other regions. Phylogenetic analyses of these regions showed that the Colombian oil palm isolates were not separated from Malaysian isolates. AFLP analysis and a new marker PPHPAV, targeting an unclassified hypothetical protein, was found to be able to differentiate Malaysian and Colombian isolates and showed a clear clade separations. Despite this, pathogenicity studies did not show any significant differences in the level of aggressiveness of different isolates against oil palm in glasshouse tests.


Assuntos
Arecaceae/microbiologia , Filogenia , Phytophthora/classificação , Phytophthora/genética , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Colômbia , DNA/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes Microbianos/genética , Genes de RNAr/genética , Variação Genética , Família Multigênica , Oomicetos/patogenicidade , Óleo de Palmeira , Fator 1 de Elongação de Peptídeos/genética , Phytophthora/isolamento & purificação , Análise de Sequência , Tubulina (Proteína)/genética
11.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L519-L524, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30652492

RESUMO

We use the simultaneous application and testing method to detect Mycobacterium tuberculosis rRNA (SAT-TB) with the endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) biopsy specimens to differentiate sputum-negative tuberculosis from sarcoidosis. In the first part, we validated the SAT-TB on the bronchial or EBUS-TBNA biopsy specimens from sputum smear-positive pulmonary tuberculosis. In the second part, all EBUS-TBNA specimens for sputum smear-negative intrathoracic tuberculous lymphadenopathies or sarcoidosis were tested with the SAT-TB, acid-fast bacilli smear, and culture. In the 16 sputum-positive tuberculosis cases, 5 showed negative SAT (2 nontuberculous mycobacteria and 3 had anti-tuberculosis therapies previously); the remaining 11 were positive. Of the 41 sputum-negative tuberculosis cases in the second part, five other diseases were negative. In the remaining 36 cases, 27 sarcoidosis cases were negative; 7 in 9 with sputum-negative tuberculosis were positive (77.78%). In these 36 patients, the sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of the SAT method were 77.78, 100, 100, 93.10, and 94.44%, respectively. The SAT distinguished sputum-negative tuberculosis from sarcoidosis significantly ( P < 0.0001) and identified cases with active M. tuberculosis as accurately as the conventional methods (κ = 0.912, P < 0.0001). We conclude that the SAT-TB may be an effective method for using biopsy specimens to differentiate sputum-negative tuberculosis from sarcoidosis.


Assuntos
Genes de RNAr/genética , Mycobacterium tuberculosis/genética , Sarcoidose/genética , Tuberculose/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Sarcoidose/diagnóstico , Sensibilidade e Especificidade , Escarro/metabolismo , Tuberculose/diagnóstico , Tuberculose Pulmonar/genética
12.
PLoS One ; 13(12): e0207531, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30517151

RESUMO

Ribosomal RNA gene repeats (rDNA) encode ribosomal RNA, a major component of ribosomes. Ribosome biogenesis is central to cellular metabolic regulation, and several diseases are associated with rDNA dysfunction, notably cancer, However, its highly repetitive nature has severely limited characterization of the elements responsible for rDNA function. Here we make use of phylogenetic footprinting to provide a comprehensive list of novel, potentially functional elements in the human rDNA. Complete rDNA sequences for six non-human primate species were constructed using de novo whole genome assemblies. These new sequences were used to determine the conservation profile of the human rDNA, revealing 49 conserved regions in the rDNA intergenic spacer (IGS). To provide insights into the potential roles of these conserved regions, the conservation profile was integrated with functional genomics datasets. We find two major zones that contain conserved elements characterised by enrichment of transcription-associated chromatin factors, and transcription. Conservation of some IGS transcripts in the apes underpins the potential functional significance of these transcripts and the elements controlling their expression. Our results characterize the conservation landscape of the human IGS and suggest that noncoding transcription and chromatin elements are conserved and important features of this unique genomic region.


Assuntos
Genes de RNAr/genética , Genômica/métodos , Primatas/genética , RNA Ribossômico/genética , Animais , Sequência Conservada/genética , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Evolução Molecular , Variação Genética , Humanos , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA , Transcriptoma/genética
13.
Biochem Biophys Res Commun ; 505(1): 325-332, 2018 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-30249398

RESUMO

Spindlin1 (SPIN1), a histone modification reader protein, was enriched in the cell nucleolus and facilitated rRNA expression. However, how SPIN1 localizes to the nucleolus and its functional role in rRNA gene expression remain unresolved. Here, we identified a nucleolar localization signal in the N-terminal region of SPIN1 that is essential for its enrichment and function in the nucleolus. We also discovered that, in addition to its H3K4me3 recognizing activity, the H3R8me2a-recognizing capacity of SPIN1 is also indispensable for stimulating rRNA expression. Chromatin immunoprecipitation results indicated that SPIN1 is required for the association or assembly of selective factor 1 (SL1) complex, probably facilitating the initiation of rDNA transcription through its H3 K4me3-R8me2a reader function.


Assuntos
Proteínas de Ciclo Celular/genética , Nucléolo Celular/genética , Expressão Gênica , Genes de RNAr/genética , Histonas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Fosfoproteínas/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Imunoprecipitação da Cromatina , Células HEK293 , Células HeLa , Humanos , Metilação , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Ligação Proteica , Interferência de RNA , Transdução de Sinais/genética
14.
Microb Pathog ; 123: 330-338, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30031039

RESUMO

BACKGROUND: Routes of transmission of Helicobacter pylori a class I carcinogen bacterium and the roles of animals have not been yet well determined. This study was carried out to investigate H. pylori phenotypically and genotypically in human and dogs to determine the antibiotic resistance patterns. As eradication therapy depends mainly on clarithromycin we evaluated 23S rRNA gene mutations associated with its resistance. RESULTS: A total of 150 human stool samples and 60 canine gastric biopsies were examined by nested PCR for the presence of H. pylori, 60% and 76.6% were positive respectively. Only 20 (22.2%) and 41 (89.1%) isolates were successfully cultured from human and canine samples respectively. Genotyping revealed a total of cagA+vacA+ combinations 76.6% (69/90) and 65.2% (30/46) in human and dogs, respectively. Allelic diversity in vacA gene was obviously observed, while cagA-vacA+ combinations were 23.3% (21/90) and 34.7% (16/46) in human and dogs, respectively. The antimicrobial susceptibility patterns of human exhibited the highest levels of resistance against Clarithromycin (60%), Trimethoprim (55%), metronidazole (45%), amoxicillin (45%) and cefsulodin (60%) antibiotics and comparatively lower for spiramycin (10%) and tetracycline (15%). Dogs strains showed the highest levels of resistance against Clarithromycin (53.6%), metronidazole (51.2%) and erythromycin (43.9%) antibiotics, on the other hand, the percent of resistant canine strains were comparatively lower for spiramycin (9.7%). Single point mutation of A2143G was detected as 25% (3/12), 18.1% (4/22) in human and dogs respectively. Single point mutation of A2142G was detected as 16.6% (2/12), 13.6% (3/22) in human and dogs, respectively. While dual mutations of both A2142G and A2143G were detected as 50% (6/12), 40.9% (9/22) in human and dogs, respectively. CONCLUSION: occurrence of elevated rates of A2142G and A2143G point mutations in clarithromycin resistant H. pylori isolates from human and dogs causing failure in treatment and eradication of the pathogen. The roles of animals need attention and further investigations.


Assuntos
Antibacterianos/farmacologia , Claritromicina/farmacologia , Farmacorresistência Bacteriana/genética , Técnicas de Genotipagem/métodos , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Mutação Puntual , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Sequência de Bases , Biópsia , DNA Bacteriano/genética , Cães , Egito/epidemiologia , Fezes/microbiologia , Genes de RNAr/genética , Genótipo , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/genética , Helicobacter pylori/isolamento & purificação , Helicobacter pylori/patogenicidade , Humanos , Testes de Sensibilidade Microbiana , Tipagem Molecular/métodos , Reação em Cadeia da Polimerase , Prevalência , RNA Ribossômico 23S/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Virulência/genética
15.
J Microbiol ; 56(5): 365-371, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29721834

RESUMO

Members of the family Clostridiaceae within phylum Firmicutes are ubiquitous in various iron-reducing environments. However, genomic data on iron-reducing bacteria of the family Clostridiaceae, particularly regarding their environmental distribution, are limited. Here, we report the analysis and comparison of the genomic properties of Geosporobacter ferrireducens IRF9, a strict anaerobe that ferments sugars and degrades toluene under iron-reducing conditions, with those of the closely related species, Geosporobacter subterraneus DSM 17957. Putative alkyl succinate synthase-encoding genes were observed in the genome of strain IRF9 instead of the typical benzyl succinate synthase-encoding genes. Canonical genes associated with iron reduction were not observed in either genome. The genomes of strains IRF9 and DMS 17957 harbored genes for acetogenesis, that encode two types of Rnf complexes mediating the translocation of H+ and Na+ ions, respectively. Strain IRF9 harbored two different types of ATPases (Na+-dependent F-type ATPase and H+-dependent V-type ATPase), which enable full exploitation of ion gradients. The versatile energy conservation potential of strain IRF9 promotes its survival in various environmental conditions.


Assuntos
Clostridiaceae/genética , Clostridiaceae/metabolismo , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Genoma Bacteriano/genética , Genômica , Adenosina Trifosfatases , Sequência de Aminoácidos , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Sequência de Bases , Clostridiaceae/classificação , Clostridiaceae/enzimologia , DNA Bacteriano/genética , Fermentação , Firmicutes/classificação , Firmicutes/genética , Genes Bacterianos/genética , Genes de RNAr/genética , Ferro/metabolismo , Filogenia , Alinhamento de Sequência , Açúcares/metabolismo
16.
World J Gastroenterol ; 24(14): 1531-1539, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29662291

RESUMO

AIM: To characterize punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori (H. pylori) and determine their association with therapeutic failure. METHODS: PCR products of 23S rRNA gene V domain of 74 H. pylori isolates; 34 resistant to clarithromycin (29 from a low-risk gastric cancer (GC) population: Tumaco-Colombia, and 5 from a high-risk population: Tuquerres-Colombia) and 40 from a susceptible population (28 from Tumaco and 12 from Túquerres) were sequenced using capillary electrophoresis. The concordance between mutations of V domain 23S rRNA gene of H. pylori and therapeutic failure was determined using the Kappa coefficient and McNemar's test was performed to determine the relationship between H. pylori mutations and clarithromycin resistance. RESULTS: 23S rRNA gene from H. pylori was amplified in 56/74 isolates, of which 25 were resistant to clarithromycin (20 from Tumaco and 5 from Túquerres, respectively). In 17 resistant isolates (13 from Tumaco and 4 from Túquerres) the following mutations were found: A1593T1, A1653G2, C1770T, C1954T1, and G1827C in isolates from Tumaco, and A2144G from Túquerres. The mutations T2183C, A2144G and C2196T in H. pylori isolates resistant to clarithromycin from Colombia are reported for the first time. No association between the H. pylori mutations and in vitro clarithromycin resistance was found. However, therapeutic failure of eradication treatment was associated with mutations of 23S rRNA gene in clarithromycin-resistant H. pylori (κ = 0.71). CONCLUSION: The therapeutic failure of eradication treatment in the two populations from Colombia was associated with mutations of the 23S rRNA gene in clarithromycin-resistant H. pylori.


Assuntos
Antibacterianos/uso terapêutico , Claritromicina/uso terapêutico , Dispepsia/tratamento farmacológico , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/genética , RNA Ribossômico 23S/genética , Adulto , Biópsia , Colômbia/epidemiologia , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Dispepsia/epidemiologia , Dispepsia/microbiologia , Dispepsia/patologia , Feminino , Mucosa Gástrica/patologia , Genes de RNAr/genética , Infecções por Helicobacter/epidemiologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/isolamento & purificação , Humanos , Masculino , Testes de Sensibilidade Microbiana , Mutação Puntual , Prevalência , Análise de Sequência de DNA , Falha de Tratamento
17.
Plant J ; 94(1): 77-90, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29385286

RESUMO

Dogroses represent an exceptional system for studying the effects of genome doubling and hybridization: their asymmetrical meiosis enables recombination in bi-parentally inherited chromosomes but prevents it in maternally inherited ones. We employed fluorescent in situ hybridization, genome skimming, amplicon sequencing of genomic and cDNA as well as conventional cloning of nuclear ribosomal DNA in two phylogenetically distinct pentaploid (2n = 5x = 35) species, Rosa canina and Rosa inodora, and their naturally occurring reciprocal hybrids, Rosa dumalis (5x) and Rosa agrestis (5x, 6x). Both progenitor species differed in composition, meiotic behaviour and expression of rDNA loci: R. canina (five 18S and 5-8 5S loci) was dominated by the Canina ribotypes, but R. inodora (four 18S loci and 7-8 5S loci) by the Rubiginosa ribotype. The co-localized 5S/18S loci occurred on either bivalent-forming (R. canina) or univalent-forming (R. inodora) chromosomes. Ribosomal DNA loci were additively inherited; however, the Canina ribotypes were dominantly expressed, even in genotypes with relatively low copy number of these genes. Moreover, we observed rDNA homogenization towards the paternally transmitted Canina ribotype in 6x R. agrestis. The here-observed variation in arrangement and composition of rDNA types between R. canina and R. inodora suggests the involvement of different genomes in bivalent formation. This results supports the hypothesis that the asymmetrical meiosis arose at least twice by independent ancient hybridization events.


Assuntos
Genes de Plantas/genética , Genes de RNAr/genética , Meiose/genética , Poliploidia , RNA Ribossômico/genética , Rosa/genética , Cromossomos de Plantas/genética , Sequência Conservada/genética , Expressão Gênica , Genoma de Planta/genética , Hibridização Genética/genética , Ribotipagem
18.
Mem. Inst. Oswaldo Cruz ; 113(12): e180392, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-976235

RESUMO

OBJECTIVES The emergence of 16S rRNA methyltranferases (16 RMTAses) has jeopardised the clinical use of aminoglycosides. RmtB is one of the most frequently reported in Gram-negatives worldwide. In this study, we aimed to estimate the frequency of 16S RMTAses encoding genes in Enterobacteriaceae isolated in a three-month period from a tertiary Brazilian hospital. METHODS All Gram-negatives classified as resistant to amikacin, gentamicin, and tobramycin by agar screening were selected for analysis. The presence of 16SRMTases encoding genes was verified by polymerase chain reaction (PCR). Antimicrobial susceptible profile was determined by broth microdilution. The genetic relationship among these isolates was accessed by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Selected RmtB-producing isolates were characterised by whole genome sequencing (WGS) analysis. RESULTS Twenty-two of 1,052 (2.1%) Enterobacteriaceae were detected as producers of RmtB-1 [Klebsiella pneumoniae (n = 21) and Proteus mirabilis (n = 1)]. blaKPC-2 was identified among 20 RmtB-1-producing K. pneumoniae isolates that exhibited an identical PFGE and MLST (ST258) patterns. Two K. pneumoniae isolates, the A64216 (not harboring bla KPC-2), A64477 (harboring bla KPC-2) and one P. mirabilis isolate (A64421) were selected for WGS. rmtB-1 and bla KPC-2 genes were carried by distinct plasmids. While a plasmid belonging to the IncFIIk group harbored rmtB-1 in K. pneumoniae, this gene was carried by a non-typable plasmid in P. mirabilis. In the three analysed plasmids, rmtB-1 was inserted on a transposon, downstream a Tn2. CONCLUSION Our findings suggested that the rmtB-1 was harbored by plasmids distinct from those previously reported in Bolivia and China. It suggests that multiple mobilization events might have occurred in South America.


Assuntos
Humanos , Surtos de Doenças/estatística & dados numéricos , Enterobacteriaceae , Klebsiella pneumoniae , Genes de RNAr/genética , Aminoglicosídeos/uso terapêutico
19.
Plant Cell Rep ; 36(8): 1277-1285, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28456843

RESUMO

KEY MESSAGE: NOR loci of C-subgenome are dominant in wheat × Aegilops interspecific hybrids, which may have evolutionary implications for wheat group genome dynamics and evolution. After interspecific hybridisation, some genes are often expressed from only one of the progenitor species, shaping subsequent allopolyploid genome evolution processes. A well-known example is nucleolar dominance, i.e. the formation of cell nucleoli from chromosomes of only one parental species. We studied nucleolar organizing regions (NORs) in diploid Aegilops markgrafii (syn: Ae. caudata; CC), Ae. umbellulata (UU), allotetraploids Aegilops cylindrica (CcCcDcDc) and Ae. triuncialis (CtCtUtUt), synthetic interspecific F1 hybrids between these two allotetraploids and bread wheat (Triticum aestivum, AABBDD) and in F3 generation hybrids with genome composition AABBDDCtCtUtUt using silver staining and fluorescence in situ hybridization (FISH). In Ae. markgrafii (CC), NORs of both 1C and 5C or only 5C chromosome pairs were active in different individual cells, while only NORs on 1U chromosomes were active in Ae. umbellulata (UU). Although all 35S rDNA loci of the Ct subgenome (located on 1Ct and 5Ct) were active in Ae. triuncialis, only one pair (occupying either 1Cc or 5Cc) was active in Ae. cylindrica, depending on the genotype studied. These C-genome expression patterns were transmitted to the F1 and F3 generations. Wheat chromosome NOR activity was variable in Ae. triuncialis × T. aestivum F1 seeds, but silenced by the F3 generation. No effect of maternal or paternal cross direction was observed. These results indicate that C-subgenome NOR loci are dominant in wheat × Aegilops interspecific hybrids, which may have evolutionary implications for wheat group genome dynamics and allopolyploid evolution.


Assuntos
Genoma de Planta/genética , Poaceae/genética , Triticum/genética , Cromossomos de Plantas/genética , Genes de RNAr/genética , Hibridização in Situ Fluorescente
20.
Plant J ; 89(5): 1020-1030, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27943584

RESUMO

The online resource http://www.plantrdnadatabase.com/ stores information on the number, chromosomal locations and structure of the 5S and 18S-5.8S-26S (35S) ribosomal DNAs (rDNA) in plants. This resource was exploited to study relationships between rDNA locus number, distribution, the occurrence of linked (L-type) and separated (S-type) 5S and 35S rDNA units, chromosome number, genome size and ploidy level. The analyses presented summarise current knowledge on rDNA locus numbers and distribution in plants. We analysed 2949 karyotypes, from 1791 species and 86 plant families, and performed ancestral character state reconstructions. The ancestral karyotype (2n = 16) has two terminal 35S sites and two interstitial 5S sites, while the median (2n = 24) presents four terminal 35S sites and three interstitial 5S sites. Whilst 86.57% of karyotypes show S-type organisation (ancestral condition), the L-type arrangement has arisen independently several times during plant evolution. A non-terminal position of 35S rDNA was found in about 25% of single-locus karyotypes, suggesting that terminal locations are not essential for functionality and expression. Single-locus karyotypes are very common, even in polyploids. In this regard, polyploidy is followed by subsequent locus loss. This results in a decrease in locus number per monoploid genome, forming part of the diploidisation process returning polyploids to a diploid-like state over time.


Assuntos
DNA de Plantas/genética , DNA Ribossômico/genética , Embriófitas/genética , Genes de RNAr/genética , Plantas/genética , Cromossomos de Plantas/genética , Bases de Dados Genéticas , Cariótipo , Filogenia , RNA Ribossômico 18S/genética , RNA Ribossômico 5S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA