Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
1.
Int Immunopharmacol ; 133: 112170, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691919

RESUMO

Acute kidney injury (AKI) is characterized by a sudden decline in renal function. Traditional Chinese medicine has employed Fuzi for kidney diseases; however, concerns about neurotoxicity and cardiotoxicity have constrained its clinical use. This study explored mesaconine, derived from processed Fuzi, as a promising low-toxicity alternative for AKI treatment. In this study, we assessed the protective effects of mesaconine in gentamicin (GM)-induced NRK-52E cells and AKI rat models in vitro and in vivo, respectively. Mesaconine promotes the proliferation of damaged NRK-52E cells and down-regulates intracellular transforming growth factor ß1 (TGF-ß1) and kidney injury molecule 1 (KIM-1) to promote renal cell repair. Concurrently, mesaconine restored mitochondrial morphology and permeability transition pores, reversed the decrease in mitochondrial membrane potential, mitigated mitochondrial dysfunction, decreased ATP production, inhibited inflammatory factor release, and reduced early apoptosis rates. In vivo, GM-induced AKI rat models exhibited elevated AKI biomarkers, in which mesaconine was effectively reduced, indicating improved renal function. Mesaconine enhanced superoxide dismutase activity, reduced malondialdehyde content, alleviated inflammatory infiltrate, mitigated tubular and glomerular lesions, and downregulated NF-κB (nuclear factor-κb) p65 expression, leading to decreased tumor necrosis factor-α (TNF-α) and IL-1ß (interleukin-1ß) levels in GM-induced AKI animals. Furthermore, mesaconine inhibited the expression of renal pro-apoptotic proteins (Bax, cytochrome c, cleaved-caspase 9, and cleaved-caspase 3) and induced the release of the anti-apoptotic protein bcl-2, further suppressing apoptosis. This study highlighted the therapeutic potential of mesaconine in GM-induced AKI. Its multifaceted mechanisms, including the restoration of mitochondrial dysfunction, anti-inflammatory and antioxidant effects, and apoptosis mitigation, make mesaconine a promising candidate for further exploration in AKI management.


Assuntos
Aconitum , Injúria Renal Aguda , Apoptose , Rim , Mitocôndrias , Ratos Sprague-Dawley , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Apoptose/efeitos dos fármacos , Aconitum/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Ratos , Linhagem Celular , Rim/efeitos dos fármacos , Rim/patologia , Gentamicinas/toxicidade , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Aconitina/análogos & derivados , Aconitina/farmacologia , Aconitina/uso terapêutico , Modelos Animais de Doenças , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Diterpenos
2.
Arch Toxicol ; 98(6): 1827-1842, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563869

RESUMO

Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 µM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 µM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 µM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 µM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.


Assuntos
Antibacterianos , Bloqueadores dos Canais de Cálcio , Cálcio , Gentamicinas , Células Ciliadas Auditivas , Neomicina , Verapamil , Peixe-Zebra , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio/metabolismo , Verapamil/farmacologia , Neomicina/toxicidade , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Gentamicinas/toxicidade , Antibacterianos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Ototoxicidade/prevenção & controle , Aminoglicosídeos/toxicidade , Sistema da Linha Lateral/efeitos dos fármacos , Larva/efeitos dos fármacos , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle
3.
Redox Rep ; 29(1): 2332038, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38563333

RESUMO

OBJECTIVES: Gentamicin is one of the most common ototoxic drugs that can lower patients' quality of life. Oxidative stress is a key factors inducing sensory hair cell death during gentamicin administration. So far, there are no effective drugs to prevent or treat gentamicin- induced hearing loss. A recent study found cystic fibrosis transmembrane conductance regulator (CFTR) as a new target to modulate cellular oxidative balance. The objective of this study was to estimate the effect of the CFTR activator ivacaftor on gentamicin-induced ototoxicity and determine its mechanism. METHODS: The hair cell count was analyzed by Myosin 7a staining. Apoptosis was analyzed by TUNEL Apoptosis Kit. Cellular reactive oxygen species (ROS) level was detected by DCFH-DA probes. The Nrf2 related proteins expression levels were analyzed by western blot. RESULTS: An in vitro cochlear explant model showed that gentamicin caused ROS accumulation in sensory hair cells and induced apoptosis, and this effect was alleviated by pretreatment with ivacaftor. Western blotting showed that ivacaftor administration markedly increased the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO1), and NAD(P)H:quinone oxidoreductase 1 (NQO1). The protective effect of ivacaftor was abolished by the Nrf2 inhibitor ML385. DISCUSSION: Our results indicate the protective role of the CFTR-Nrf2-HO1/NQO1 pathway in gentamicin-induced ototoxicity. Ivacaftor may be repositioned or repurposed towards aminoglycosides-induced hearing loss.


Assuntos
Aminofenóis , Perda Auditiva , Ototoxicidade , Quinolonas , Humanos , Gentamicinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/farmacologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/farmacologia , Qualidade de Vida , Estresse Oxidativo , Apoptose , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/farmacologia
4.
Mol Biol Rep ; 51(1): 382, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430358

RESUMO

BACKGROUND: Gentamicin leads to nephrotoxicity with increasing oxidative stress. In the present research the role of citronellol on oxidative damage induced by gentamicin in nephrotoxic rats was evaluated. METHODS AND RESULTS: Forty-twomale Wistar rats were randomly divided into seven equal groups; healthy control, gentamicin, DMSO, citronellol 50, citronellol 100, citronellol 200 and vitamin E. The animals were anesthetized after 12 days of treatment. Kidney and serum samples were received for biochemical, histological changes, and gene expression assessments. The levels of serum glutathione (GSH), serum and kidney glutathione peroxidase (GPX) and the expression of GPX gene against gentamicin group were increased in citronellol treatment groups. The levels of serum and kidney malondialdehyde (MDA), urine protein, serum creatinine and the gene expression of inflammatory factors including tumor necrosis factor-alpha (TNF-α) and Interleukin 6 (IL-6) against gentamicin group were decreased in these groups. Moreover, recuperation in histological alterations was shown in three groups receiving citronellol compared to the gentamicin group. CONCLUSIONS: Citronellol with its antioxidant and anti-inflammatory properties can decrease kidney damage caused by nephrotoxicity induced by gentamicin.


Assuntos
Monoterpenos Acíclicos , Antioxidantes , Insuficiência Renal , Ratos , Animais , Antioxidantes/metabolismo , Gentamicinas/toxicidade , Ratos Wistar , Estresse Oxidativo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo
5.
Hum Exp Toxicol ; 43: 9603271231225744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38166460

RESUMO

The present study aimed to identify the possible effect of gentamicin (GEN) in Rats' Cervi. Estradiol Valerate (EV) was used to induce cervical hyperkeratosis. GEN was administered in absence of EV. Serum and cervical GEN concentration were determined. Levels of malondialdehyde (MDA), total nitrites/nitrate (NOx), reduced glutathione (GSH), tumor necrosis factor-α (TNF-α), sirtuin type 1 (Sirt1) and nuclear factor (erythroid-derived 2)-like-2 factors (Nrf2) were measured in cervix tissue. Expression of BAX and Bcl2 were determined. Cervical histopathological examination was done. EV and GEN significantly increased MDA, NOx, TNF-α and BAX/Bcl2 ratio with decrease in GSH, Nrf2 and Sirt1 levels in cervical tissue. Histopathological picture of diffuse and marked hyperkeratosis was detected in EV and GEN groups. In conclusion, GEN-induced cervical hyperkeratosis via induction of oxidative stress, inflammation and apoptosis.


Assuntos
Gentamicinas , Sirtuína 1 , Feminino , Ratos , Animais , Gentamicinas/toxicidade , Sirtuína 1/metabolismo , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inflamação/induzido quimicamente , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Antioxidantes/farmacologia
6.
Life Sci ; 336: 122318, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38035992

RESUMO

AIM: Gentamicin-induced nephrotoxicity limits its widespread use as an effective antibacterial agent. Oxidative stress, inflammatory cytokines and apoptotic cell death are major participants in gentamicin-induced nephrotoxicity. We therefore, investigated whether dihydromyricetin (DHM), the antioxidant and anti-inflammatory flavonoid, could protect against the nephrotoxic effects of gentamicin. METHODS: Male Wistar rats administrated gentamicin (100 mg/kg/day, i.p.) for 8 days. DHM (400 mg/kg, p.o.) was concurrently given with gentamicin for 8 days. Control group received the vehicle of DHM and gentamicin. Histopathological examinations, biochemical measurements and immunohistochemical analyses were done at the end of the study. KEY FINDINGS: Treatment with DHM improved the gentamicin induced deterioration of renal functions; serum levels of urea, creatinine and cystatin-C as well as urinary levels of Kim-1 and NGAL, the sensitive indicators for early renal damage, were declined. Additionally, DHM abrogated gentamicin-induced changes in kidney morphology. These nephroprotective effects were possibly mediated via decreasing renal gentamicin buildup, activating the antioxidant enzymes GSH, SOD and CAT and decreasing lipid peroxidation and nitric oxide levels. Further, DHM suppressed renal inflammation and apoptotic cell death by decreasing the expression of nuclear factor-kappa B (NF-κB), TNF-alpha and caspase-3. These effects were correlated to the upregulation of renal SIRT3 expression. Also, DHM activated the regeneration and replacement of injured tubular cells with new ones via enhancing PAX2 expression. SIGNIFICANCE: DHM is a promising therapeutic target that could prevent acute renal injury induced by gentamicin and help renal tubular cells to recover through its antioxidant, anti-inflammatory and antiapoptotic properties.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Sirtuína 3 , Ratos , Animais , Masculino , Humanos , Gentamicinas/toxicidade , Sirtuína 3/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Regulação para Cima , Ratos Wistar , Rim/metabolismo , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Fator de Transcrição PAX2/metabolismo
7.
Food Chem Toxicol ; 183: 114323, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056816

RESUMO

Gentamicin (GEN) is an aminoglycoside antibiotic used to treat gram-negative bacterial infections. Our study aimed to explore curcumin's (CMN) protective role against GEN-induced renal and cardiac toxicity. Rats were randomly classified into 4 equal groups; Control (cont), GEN (100 mg/kg b.wt, i.p.) for seven days, CMN (200 mg/kg b.wt, orally) for 21 days, and CMN + GEN groups. GEN caused renal and cardiac dysfunctions; increased urea, creatinine, uric acid, cystatin C, CK-MB, LDH, and troponin I serum levels. MDA level was elevated significantly while activities of SOD, CAT, and GSH level were reduced significantly in renal and cardiac tissues. GEN-intoxicated rats showed up-regulation of NF-κB, IL-1ß, Keap1, HMOX1, and BAX with down-regulation of Nrf2, and Bcl-2 mRNA expression in renal and cardiac tissues. Also, GEN-induced up-regulation of renal mRNA expression of KIM-1, NGAL, and intermediate filament proteins [desmin, nestin, and vimentin] as well cardiac gene expression of cMyBP-C and H-FABP. GEN-induced toxicity was significantly attenuated by CMN co-treatment as CMN improved renal and cardiac biomarkers, reduced oxidative stress and inflammatory response, and reversed alterations in mRNA expression of all tested renal and cardiac genes. These outcomes indicated that CMN could protect renal and cardiac tissues against GEN-induced oxidative stress, inflammation, and apoptosis.


Assuntos
Curcumina , Gentamicinas , Ratos , Animais , Gentamicinas/toxicidade , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Curcumina/farmacologia , Curcumina/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Cardiotoxicidade/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Apoptose , Antioxidantes/farmacologia , Antioxidantes/metabolismo
8.
Ultrastruct Pathol ; 48(1): 29-41, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37970647

RESUMO

Investigation the protective effect of transient receptor potential channel modulator 2-Aminoethoxydiphenyl Borate (2-APB) on aminoglycoside nephrotoxicity caused by reactive oxygen species, calcium-induced apoptosis and inflammation was aimed. Forty Wistar rats were divided (n=8) as follows: Control group; DMSO group; 2-APB group; Gentamicin group (injected 100 mg/kg gentamicin intramuscularly for 10 days); Gentamicin+ 2-APB group (injected 2 mg/kg 2-APB intraperitoneally, then after 30 minutes 100 mg/kg gentamicin was injected intramuscularly for 10 days). Blood samples were collected for biochemical analyses, kidney tissue samples were collected for light, electron microscopic and immunohistochemical investigations. In gentamicin group glomerular degeneration, tubular dilatation, vacuolization, desquamation of tubular cells and hyaline cast formation in luminal space and leukocyte infiltration were seen. Disorganization of microvilli of tubular cells, apical cytoplasmic blebbing, lipid accumulation, myelin figure like structure formation, increased lysosomes, mitochondrial swelling and disorganization of cristae structures, apoptotic changes and widening of intercellular space were found. TNF-α, IL-6 and caspase 3 expressions were increased. BUN and creatinine concentrations were increased. Increase in MDA levels and decrease in SOD activities were determined. Even though degeneration still continues in gentamicin+2-APB treatment group, severity and the area it occupied were decreased and the glomerular and tubule structures were generally preserved. TNF-α, IL-6, caspase 3 immunoreactivities and BUN, creatinine, MDA concentrations were reduced and SOD activities were increased markedly compared to gentamicin group. In conclusion, it has been considered that 2-APB can prevent gentamicin mediated nephrotoxicity with its anti-oxidant, anti-apoptotic and anti-inflammatory effects.


Assuntos
Nefropatias , Rim , Ratos , Animais , Caspase 3/metabolismo , Caspase 3/farmacologia , Aminoglicosídeos/efeitos adversos , Aminoglicosídeos/metabolismo , Ratos Wistar , Creatinina/metabolismo , Creatinina/farmacologia , Fator de Necrose Tumoral alfa , Interleucina-6 , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Antibacterianos/efeitos adversos , Antioxidantes/farmacologia , Gentamicinas/toxicidade , Gentamicinas/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo
9.
Toxicol Mech Methods ; 34(4): 413-422, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38115227

RESUMO

Gentamicin, an aminoglycoside antibiotic, is nowadays widely used in the treatment of gram-negative microorganisms. The antimicrobial, anti-inflammatory, and antioxidant activities of eucalyptol, a type of saturated monoterpene, have been reported in many studies. The aim of this study was to examine the possible effects of eucalyptol on gentamicin-induced renal toxicity. A total of 32 rats were divided into 4 groups; Control (C), Eucalyptol (EUC), Gentamicin (GEN), and Gentamicin + Eucalyptol (GEN + EUC). In order to induce renal toxicity, 100 mg/kg gentamicin was administered intraperitoneally (i.p.) for 10 consecutive days in the GEN and GEN + EUC groups. EUC and GEN + EUC groups were given 100 mg/kg orally of eucalyptol for 10 consecutive days. Afterwards, rats were euthanized and samples were taken and subjected to histopathological, biochemical, immunohistochemical, and real-time PCR examinations. The blood urea nitrogen (BUN) and creatinine (CRE) levels were significantly decreased in the GEN + EUC group (0.76 and 0.69-fold, respectively) compared to the GEN group. The glutathione peroxidase (GPx) and catalase (CAT) activities were significantly increased in the GEN + EUC group (1.35 and 2.67-fold, respectively) compared to the GEN group. In GEN group, Nuclear factor kappa B (NF-kB), Interleukin 1-beta (IL-1ß), Inducible nitric oxide synthase (iNOS), Tumor necrosis factor-α (TNF-α), Caspase-3, 8-Hydroxy-2'-deoxyguanosine (8-OHdG) and Nuclear factor erythroid 2-related factor (Nrf2) expression levels were found to be quite irregular. GEN + EUC group decreased the expressions of NF-kB, IL-1ß, iNOS, TNF-α, Caspase-3, and 8-OHdG (0.55, 0.67, 0.54, 0.54, 0.63 and 0.67-fold, respectively), while it caused increased expression of Nrf2 (3.1 fold). In addition, eucalyptol treatment ameliorated the histopathological changes that occurred with gentamicin. The results of our study show that eucalyptol has anti-inflammatory, antioxidative, antiapoptotic, nephroprotective, and curative effects on gentamicin-induced nephrotoxicity.


Assuntos
Gentamicinas , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Gentamicinas/toxicidade , Eucaliptol/metabolismo , Eucaliptol/farmacologia , Eucaliptol/uso terapêutico , Caspase 3/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Rim , Estresse Oxidativo , Antioxidantes/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose
10.
Iran J Kidney Dis ; 17(6): 294-305, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38043107

RESUMO

INTRODUCTION: Farnesoid-X-activated receptor (FXR) is considered as an upstream controller which could influence the other key regulatory genes encoding cellular antioxidant defense system. METHODS: Thirty-five male Wistar rats (240 ± 20 g) were randomly allocated into five groups: 1) control, 2) received gentamicin (100 mg/kg/d) for three days (GM-3d), 3) seven days (GM-7d), 4) 10 days (GM-10d), and 5) 14 consecutive days (GM-14d). Biochemical measurements of BUN and serum creatinine (SCr), histological assessment of renal samples as well as molecular analysis using real-time qRT-PCR were used to investigate the pattern of changes in different levels. RESULTS: Administration of gentamicin was associated with a significant increase in the BUN and SCr until the 10th day, which then suddenly dropped at the day 14. Meantime, the maximum histological distortion was also seen on the 10th day but in a similar pattern, 14th day was associated with clear improvement. Compared to the control value, the maximum reduction in the mRNA expression of Farnesoid X-activated receptor (FXR), nuclear factor erythroid 2-related factor 2 (Nrf2) and Glutathione cysteine ligase-modulatory subunit (GCLM), occurred at the 3rd and 7th days, respectively. Compared to the control, the mRNA expression of the mentioned genes significantly increased up to day 14. Apart from the 3rd day, the mRNA expression of alpha-glutathione S-transferase (α-GST) and superoxide dismutase (SOD) showed a similar descending and ascending pattern at 7th and 10th days, respectively. CONCLUSION: The expression of FXR, as an upstream controller gene and its downstream pathways mediated by Nrf2, could play a role in gentamicin-induced nephrotoxicity but the pattern of expression was rather biphasic at the acute phase or the subacute ones.  DOI: 10.52547/ijkd.7523.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Insuficiência Renal , Ratos , Masculino , Animais , Gentamicinas/toxicidade , Gentamicinas/metabolismo , Ratos Wistar , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Rim/patologia , RNA Mensageiro/metabolismo , Estresse Oxidativo
11.
Nutrients ; 15(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37892466

RESUMO

In spite of its well-known nephrotoxicity, gentamicin is nonetheless routinely used in humans and animals. However, no adjuvant treatments have been implemented to mitigate this harmful effect. Given this concern, medicinal plants represent a significant reservoir of natural antioxidants that could potentially reduce the renal oxidative stress induced by gentamicin. Therefore, the main objective of this research was to investigate the nephroprotective properties of Cornus mas and Sorbus aucuparia fruits in an experimental model of nephrotoxicity. The 3-week study was performed on male Wistar rats, which were randomly divided into six experimental groups, being subcutaneously treated with 50 mg/kg gentamicin and orally given Cornus mas and Sorbus aucuparia extracts, in doses of 40 mg/kg and 10 mg/kg, respectively. Antioxidant therapy significantly improved the nitro-oxidative stress parameters as well as the specific renal biomarkers KIM-1 and iNAG, demonstrating a considerable renal tubular protective impact. These outcomes were reinforced by biochemical and histopathological enhancements. Nevertheless, neither of the tested extracts succeeded in substantially diminishing BUN levels. Additionally, CysC did not significantly decline following extracts treatment, suggesting that the remedies did not effectively protect renal glomeruli against gentamicin stress. Future studies are required in order to determine the underlying mechanisms of these berries.


Assuntos
Cornus , Insuficiência Renal , Sorbus , Ratos , Humanos , Animais , Antioxidantes/farmacologia , Antioxidantes/química , Ratos Wistar , Cornus/química , Gentamicinas/toxicidade , Sorbus/química , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Biomarcadores
12.
Tissue Cell ; 84: 102191, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37556917

RESUMO

The current investigation was considered to evaluate the beneficial effects of gentisic acid (GA) on gentamicin (GEN)-induced nephrotoxicity in rat kidneys through assessment of oxidative stress, inflammatory cytokines, and histopathological changes. Rats were split into five equal groups. Rats were treated with GA (25, 50, and 100 mg/kg/day, p.o.) for 14 consecutive days and GEN (100 mg/kg, i.p.) was administrated from day 8 to day 14 of the experiment. On the 15th day, blood samples were collected to determine neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), blood urea nitrogen (BUN), and creatinine (Cr) levels. Malondialdehyde (MDA), glutathione (GSH), tumor necrosis factor-alpha (TNF-α) and interleukin-1ß (IL-1ß), and nitric oxide (NO) levels and the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were assessed in the renal tissue. Histopathological evaluations were done to confirm the biochemical results. GEN increased the levels of NGAL, KIM-1, BUN, and Cr in serum as well as MDA, NO, GSH, TNF-α, and IL-1ß in renal tissue. Moreover, GEN administration reduced the activity of CAT, SOD, and GPx in renal tissue. Nonetheless, the administration of GA before and alongside GEN mitigated these deleterious effects. In conclusion, GA has a beneficial effect on biochemical, inflammatory, and oxidative stress indices against GEN-induced nephrotoxicity.


Assuntos
Gentamicinas , Fator de Necrose Tumoral alfa , Ratos , Animais , Gentamicinas/toxicidade , Lipocalina-2/metabolismo , Lipocalina-2/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Rim/patologia , Antioxidantes/metabolismo
13.
Otol Neurotol ; 44(4): 373-381, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791364

RESUMO

HYPOTHESIS: The ototoxicity of gentamicin and cisplatin can be evaluated with a Schwann cell model to screen for otoprotective agents that can be encapsulated into poly (lactic-co-glycolic acid) (PLGA) microparticles for drug delivery to the inner ear. BACKGROUND: Aminoglycosides and cisplatin are widely prescribed but known to cause ototoxicity. There is strong evidence that compromise to Schwann cells ensheathing inner ear afferent neurons results in inner ear dysfunction mimicking drug-induced ototoxicity. There is a need for a model for ototoxic demyelination to screen medications for protective potential and to subsequently target and tune the delivery of any promising agents. METHODS: RT4-D6P2T rat schwannoma cells were used as a Schwann cell model to assess gentamicin and cisplatin toxicity and to screen for protective agents. Cell viability was evaluated with the MTT cell proliferation assay. N -acetylcysteine (NAC) was encapsulated into a PLGA microparticle, and its elution profile was determined. RESULTS: The estimated 50% lethal concentration dose for gentamicin was 805.6 µM, which was 46-fold higher than that for cisplatin (17.5 µM). In several trials, cells dosed with NAC and cisplatin demonstrated a 22.6% ( p < 0.001) increase in cell viability when compared with cisplatin alone. However, this protective effect was not consistent across all trials. NAC was encapsulated into a PLGA microparticle and elution plateaued at 5 days. CONCLUSION: When dosed at their respective therapeutic ranges, cisplatin is more likely than gentamicin to induce damage to the Schwann cell model. Although NAC demonstrates an uncertain role in protecting against cisplatin-induced Schwann cell cytotoxicity, this study establishes a method to screen for other otoprotective medications to encapsulate into a tunable microparticle for localized drug delivery.


Assuntos
Antineoplásicos , Ototoxicidade , Ratos , Animais , Cisplatino/toxicidade , Acetilcisteína/farmacologia , Gentamicinas/toxicidade , Células de Schwann
14.
Int Immunopharmacol ; 114: 109492, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36459920

RESUMO

The current experiment aimed to identify the possible protective role of rivastigmine (RIVA) in gentamicin (GNT)-induced acute kidney injury (AKI) in rats. RIVA was administered in the presence and absence of GNT. Kidney function markers and serum and renal GNT concentrations were measured. Renal oxidative stress parameters as well as inflammatory and apoptotic biomarkers were evaluated. Renal histopathological assessment and nuclear factor kappa-B (NF-κB) immunohistochemical study were performed. GNT administration increased serum creatinine, urea, and cystatin C concentrations. RIVA ameliorated these changes via mitigating GNT-induced increases of renal oxidative stress, inflammation, and apoptotic parameters. RIVA showed a prompt improvement in the histopathological renal damage and a decrease in NF-κB immunoexpression. In conclusion, RIVA protective effects against GNT-induced AKI are mediated by decreasing GNT concentration in renal tissue and other effects like antioxidant and antiapoptotic effects possibly through its cholinergic anti-inflammatory action.


Assuntos
Injúria Renal Aguda , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Ratos , Animais , Gentamicinas/toxicidade , Rivastigmina/uso terapêutico , Rivastigmina/metabolismo , NF-kappa B/metabolismo , Rim/patologia , Estresse Oxidativo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo
15.
Naunyn Schmiedebergs Arch Pharmacol ; 396(4): 789-801, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36482225

RESUMO

This study aimed to establish the relationship between two endoplasmic reticulum (ER) stress proteins, glucose-regulated protein 78 (GRP78/BiP) and PKR-like endoplasmic reticulum kinase (PERK), and oxidative stress markers in cisplatin (CIS)-induced and gentamicin (GEN)-induced nephrotoxicity.The study consisted of five groups: control (saline solution only), CIS D2 (2.5 mg/kg for 2 days), CIS D7 (2.5 mg/kg for 7 days), GEN D2 (160 mg/kg for 2 days), and GEN D7 (160 mg/kg for 7 days). All rats were sacrificed 24 h after the last injection for standard clinical chemistry, and ultrastructural and histological evaluation of the kidney.CIS and GEN increased blood urea nitrogen (BUN) and serum creatinine (Cr) levels, as well as total oxidant status (TOS), while decreasing total antioxidant status (TAS) level in CIS D7 and GEN D7 groups. Histopathological and ultrastructural findings were also consistent with renal tubular damage. In addition, expression of markers of renal inflammation (tumor necrosis factor-α (TNF-α) and interleukin 1ß (IL-1ß)) and ER stress markers (GRP78 and PERK) was significantly increased in the kidney tissue of rats treated with CIS and GEN for 7 days.These findings suggest that CIS and GEN administration for 7 days aggravates nephrotoxicity through the enhancement of oxidative stress, inflammation, and ER stress-related markers. As a result, the recommended course of action is to utilize CIS and GEN as an immediate but brief induction therapy, stopping after 3 days and switching to other drugs instead.


Assuntos
Cisplatino , Chaperona BiP do Retículo Endoplasmático , Animais , Ratos , Cisplatino/toxicidade , Retículo Endoplasmático , Gentamicinas/toxicidade , Gentamicinas/metabolismo , Inflamação/tratamento farmacológico , Rim , Estresse Oxidativo , Estresse do Retículo Endoplasmático
16.
Drug Chem Toxicol ; 46(5): 851-863, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35899710

RESUMO

Gentamicin (GM) is an effective antibiotic administered to treat acute Gram-negative infections. Nevertheless, its clinical application is limited due to nephrotoxicity. Therefore, our research aimed to investigate the potential renoprotective impact of rebamipide (RBM), a gastroprotective drug, on GM-induced kidney damage in rats, as well as putative nephroprotective pathways. RBM was orally administered (100 mg/kg/d for 14 d) commencing 7 d before the administration of GM (100 mg/kg/d, intraperitoneally). Nephrotoxicity was elucidated, and the silent information regulator 1 (SIRT1) and ß-catenin/cyclin D1 pathways were assessed. GM induced a significant elevation in the serum levels of creatinine, blood urea nitrogen (BUN), and kidney injury molecule-1 (KIM-1), as well as the relative kidney index. In addition, GM increased lipid peroxidation and lowered total antioxidant capacity (TAC) level and superoxide dismutase (SOD) activity. GM administration also demonstrated a significant amplification in tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), nuclear factor-κappa B p65 (NF-κB p65), p38 mitogen-activated protein kinase (p38 MAPK), and caspase-3 kidney levels, as well as B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 ratio. Notably, RBM treatment amended all these changes induced by GM. Furthermore, the potential role of SIRT1 and ß-catenin-dependent signaling pathways in GM-induced renal injury was assessed. Our findings showed that GM-treated rats demonstrated a substantial decrease in SIRT1, nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) along with an increase in ß-catenin, forkhead box O-3a (FOXO-3a), and cyclin D1 protein expressions. RMB treatment markedly attenuated the deterioration caused by GM on these pathways. Additionally, RBM alleviated the GM-induced deleterious kidney tissue histopathology. In conclusion, our findings have verified that RBM can halt GM-induced renal injury by partly modulating SIRT1 and ß-catenin pathways.


Assuntos
Gentamicinas , Sirtuína 1 , Ratos , Animais , Gentamicinas/toxicidade , Gentamicinas/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Ciclina D1/metabolismo , beta Catenina/metabolismo , beta Catenina/farmacologia , Rim , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estresse Oxidativo , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo
17.
Int J Pediatr Otorhinolaryngol ; 164: 111405, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36481814

RESUMO

OBJECTIVE: Aminoglycosides are relatively potent antibiotics used against some life-threatening infections but contribute to ototoxicity. Although the beneficial effects of high-dose nigella sativa oil (NSO) on ototoxicity in the form of intratympanic or oral use have been demonstrated, no variable-dose studies have been conducted on this subject. We aimed to investigate the potential protective effect of different doses of intraperitoneal (i.p.) NSO on Gentamicin (GM)-induced ototoxicity with auditory brainstem responses (ABR) testing. METHODS: Thirty adult male Sprague-Dawley rats (300-400 gr) were used in this study. Rats were randomly divided into 5 groups, with six animals in each group: All the groups received GM (120 mg/kg i.p) for ten days. Group 1: 0.9% saline solution (0.3 ml/kg i.p.), Group 2: NSOL (low dose 0.1 ml/kg i.p.), Group 3: NSOM (median dose 0.3 ml/kg i.p.), Group 4: NSOH (high dose 3 ml/kg i.p.), Group 5: NSOML (late onset median dose 0.3 ml/kg i.p) were given for fifteen days. But death occurred in 3 rats in group 4 and they were excluded from the study. The pretreatment and posttreatment ABR testings were performed. RESULTS: The posttreatment ABR results were compared with the pretreatment values. A significant difference was found in group 1 (p:0,002), group 2 (p: 0,040), and group 4 (p: 0,027). When the posttreatment tests were compared with each other, there was a significant difference between groups 1 and 2 (p < 0,001), groups 1 and 3 (p < 0,001), and groups 1 and 5 (p < 0,001). CONCLUSIONS: The administration of 0.1 ml/kg and 3 ml/kg dose of NSO does not prevent ototoxicity. The 0.3 ml/kg dose of NSO effectively prevents GM-induced ototoxicity within both prophylactic and therapeutic use.


Assuntos
Gentamicinas , Ototoxicidade , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Gentamicinas/toxicidade , Ototoxicidade/etiologia , Ototoxicidade/prevenção & controle , Óleos de Plantas/farmacologia , Antibacterianos/toxicidade
18.
Drug Chem Toxicol ; 46(3): 441-450, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35266424

RESUMO

This study was designed, for the first time, to examine the possible nephroprotective effects of exogenous glutathione (EGSH) (100 mg/kg, intraperitoneally) on gentamicin-induced acute kidney injury (GM-induced AKI). EGSH reduced renal histopathological changes, inflammatory cell infiltration, and improved renal dysfunction in rats with AKI. EGSH ameliorated GM-induced renal oxidative stress by promoting the renal activities of catalase, glutathione peroxidase, and superoxide dismutase and diminishing renal malondialdehyde and serum nitric oxide levels. Interestingly, EGSH inhibited intrinsic apoptosis by downregulating Bax and caspase-3 and upregulating Bcl2 in the kidney of rats with AKI. EGSH decreased GM-induced inflammatory response as reflected by a remarkable decrease in the protein expressions of NF-κB-p65, IL-6, TNF-α, and iNOS and a considerable diminish in myeloperoxidase activity. Finally, EGSH markedly declined proliferative cell nuclear antigen (PCNA) protein expression in the animals with AKI. In summary, EGSH alleviated AKI in rats intoxicated with GM, partially by inhibiting oxidative stress, NF-κB pathway, and intrinsic apoptosis and regulating PCNA.


Assuntos
Injúria Renal Aguda , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Gentamicinas/toxicidade , Gentamicinas/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Estresse Oxidativo , Rim , Glutationa/metabolismo , Apoptose
19.
Naunyn Schmiedebergs Arch Pharmacol ; 396(1): 63-71, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121447

RESUMO

Gentamicin is an essential aminoglycoside antibiotic, but it is only used to treat severe bacterial infections due to its high nephrotoxicity in patients. We evaluated the preventive effects of diosmin (as a natural ingredient) on gentamicin-related kidney damage in rats. In this research, 28 male Wistar rats were divided into four groups: control, gentamicin (100 mg/kg (i.p.), daily for 1 week), gentamicin plus diosmin (50 mg/kg, p.o., daily for 2 weeks), and diosmin (50 mg/kg/day, p.o. for 2 weeks). After the final gavage, blood samples were collected for the determination of blood urea nitrogen (BUN) and creatinine. Kidneys are used for biochemical, inflammatory, and histological tests. The concentrations of creatinine, BUN, nitric oxide, malondialdehyde, tumor necrosis factor α (TNF-α), and interleukin 1 beta (IL-1ß) were significantly increased. But, the level of glutathione and activities of catalase, glutathione peroxidase, and superoxide dismutase decreased during treatment with gentamicin. On the other hand, the concentrations of creatinine, BUN, nitric oxide, malondialdehyde, TNF-α, and IL-1ß were significantly reduced, and the glutathione level, activities of catalase, and glutathione peroxidase were significantly increased via co-administration with diosmin. Diosmin had ameliorative impacts against gentamicin-related kidney injury due to its antioxidant and anti-inflammatory activities.


Assuntos
Diosmina , Nefropatias , Ratos , Masculino , Animais , Gentamicinas/toxicidade , Catalase , Diosmina/farmacologia , Diosmina/uso terapêutico , Ratos Wistar , Creatinina , Óxido Nítrico , Fator de Necrose Tumoral alfa/farmacologia , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Rim , Glutationa , Malondialdeído , Glutationa Peroxidase
20.
Neurotoxicology ; 93: 301-310, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36330896

RESUMO

It is known that ototoxicity is the main cause of toxicity induced by aminoglycoside antibiotics. Effects on cochlea and vestibule in vertebrates are variable, depending on the typology of the aminoglycoside and the animal model examined. Despite this, they are routinely used to prevent postoperative and urinary tract infections and in the treatment of tuberculosis and cystic fibrosis. Gentamicin causes hearing loss by damaging stereocilia and by causing degeneration of hair cells due to free radical formation and eventual activation of caspase-dependent pathways. Its toxicity increases with the frequency of administration, dose concentration, and duration of treatment. Turnover of new hair cells may occur spontaneously, throughout life, or may be triggered by an acoustic or ototoxic insult to replace dead cells. Turnover and repair of damage are common in fish and amphibians and in birds' vestibule. In contrast, in the papilla basilaris of birds, and in the vestibule of mammals, hair cell regeneration is activated only after damage. Sensory epithelium repair and hair cell regeneration also occur in the reptiles' vestibule, but no data is available on regeneration or repair in the basilar papilla, involved in sound perception. The purpose of this work is therefore to assess the damage induced by gentamicin on the papilla basilaris of a reptile model organism, the Lacertidae Podarcis siculus. Recovery was also evaluated 3, 8 and 18 days after the end of exposure, in absence of gentamicin and in presence of the otoprotective salicylate. Scanning electron microscopy (SEM) was carried out to check for morphological damage while the occurrence of cell proliferation events was evaluated by fluorescence microscopy, after administration of 5-Bromo-2'-deoxyuridine (BrdU). Results show that salicylate administration facilitates recovery and reduces damage to hair cells after gentamicin treatment. Following the incorporation of bromodeoxyuridine, we demonstrated that sensory epithelium repair and hair cell regeneration have occurred, and that the recovery is due to either proliferation of the supporting cells and/or self-repair of hair cell bundles in the weakly damaged sensory cells.


Assuntos
Lagartos , Ototoxicidade , Animais , Gentamicinas/toxicidade , Ototoxicidade/prevenção & controle , Salicilatos , Órgão Espiral , Antibacterianos/toxicidade , Bromodesoxiuridina , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA