Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Sci Rep ; 14(1): 24196, 2024 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-39406739

RESUMO

Cadmium (Cd) toxicity significantly threatens agricultural productivity and food safety. Developing effective strategies to enhance plant tolerance to Cd stress is essential. This study investigates the synergistic effects of biochar (BC) and gibberellic acid (GA3) on mitigating Cd toxicity in maize (Zea mays), focusing on their impact on oxidative stress markers and antioxidant enzyme activities. Soil samples were collected from the Cholistan Institute of Desert Studies (CIDS) and analyzed for trace metal ions and other properties. Biochar was produced from fruit and vegetable waste, washed, washed, deashed, and mixed with 10 ppm GA3. FH-1036 hybrid maize seeds were sterilized and planted in pots containing soil with varying Cd levels (0, 8, and 16 mg Cd/kg soil). Twelve treatments were established, including control, GA3, BC, and their combinations under different Cd stress levels. Plants were irrigated to maintain 60% field capacity and harvested at the V10 growth stage. Hydrogen peroxide (H2O2) contents and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were measured in roots, stems, and leaves. Statistical analysis was performed using OriginPro 2021, with ANOVA and Fisher's LSD test used to determine significant differences. GA3 and BC treatments significantly reduced H2O2 levels in maize roots, stems and leaves under Cd stress. The combined treatment of GA3 + BC showed the most significant reduction in H2O2 levels across all plant parts, reducing root H2O2 by 50%, stem H2O2 by 55%, and leaf H2O2 by 53% under severe Cd stress (16 mg Cd/kg). SOD activity increased under non-stress conditions but decreased under Cd stress, with the highest activity observed in the combined treatment. POD activity followed a similar pattern, with GA3 + BC treatment resulting in the most significant increases under non-stress conditions and the least reductions under Cd stress. CAT activity showed substantial increases with GA3 + BC treatment, particularly under severe Cd stress, with a notable rise over the control. APX activity also exhibited enhancements with GA3 and BC treatments, especially in the combined treatment under various Cd stress levels. This study highlights the potential of combined BC and GA3 treatments in improving Cd stress tolerance in maize. Future research should focus on field trials and the long-term impacts of these treatments on crop productivity and soil health.


Assuntos
Cádmio , Carvão Vegetal , Giberelinas , Zea mays , Giberelinas/metabolismo , Giberelinas/farmacologia , Cádmio/toxicidade , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Sinergismo Farmacológico , Peroxidase/metabolismo , Poluentes do Solo/toxicidade
2.
Int J Biol Macromol ; 276(Pt 1): 133880, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025176

RESUMO

Ovate Family Proteins (OFPs) are emerging as novel transcriptional regulators of fruit shape. Despite their established role in various species, their involvement in regulating grape fruit shape remains understudied. This study encompassed a comprehensive evaluation of 16 grape OFP genes in total at the whole genome level. Phylogenetic and synteny analyses established a close relationship between grape VvOFP genes and their tomato counterparts. Expression profiling post-treatment with gibberellic acid (GA3) and thidiazuron (TDZ) revealed that certain OFP genes responded to these regulators, with VvOFP4 showing peak expression three days post-anthesis. Functional assays via overexpression of VvOFP4 in tobacco and tomato altered the morphology of both vegetative and reproductive organs, including leaves, stamens, and fruits/pods. Paraffin sections of transgenic tobacco stems and tomato fruits demonstrated that VvOFP4 overexpression modifies cell dimensions, leading to changes in organ morphology. Additionally, treatments with GA3 and TDZ similarly influenced the shape of grape pulp cells and thereby the overall fruit morphology. These findings suggest that the VvOFP4 gene plays a crucial role in fruit shape determination by modulating cell shape and presents a potential target for future grape breeding programs aimed at diversifying fruit shapes.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Giberelinas , Família Multigênica , Filogenia , Proteínas de Plantas , Vitis , Vitis/genética , Frutas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Plantas Geneticamente Modificadas/genética , Genoma de Planta , Nicotiana/genética , Solanum lycopersicum/genética , Perfilação da Expressão Gênica , Tiadiazóis/farmacologia , Compostos de Fenilureia/farmacologia
3.
J Hazard Mater ; 476: 134868, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38897119

RESUMO

Both selenium (Se) and gibberellins (GA3) can alleviate cadmium (Cd) toxicity in plants. However, the application of Se and GA3 as foliar spray to against Cd stress on soybean and its related mechanisms have been poorly explored. Herein, this experiment evaluated the effects of Se and GA3 alone and combined application on soybean rhizosphere microenvironment, Cd accumulation and growth of soybean seedlings. The results revealed that both Se and GA3 can effectively decrease the accumulation of Cd in soybean seedlings. Foliar application of Se, GA3 and their combination reduced Cd contents in soybean seedlings respectively by 21.70 %, 27.53 % and 45.07 % when compared with the control treatment, suggest a synergistic effect of Se and GA3 in decreasing Cd accumulation. Se and GA3 also significantly increased diversity and abundance of the metabolites in rhizosphere, which consequently played an important role in shaping rhizosphere bacteria community and improve rhizosphere soil physicochemical properties of Cd contaminated soil, as well as decreased the Cd available forms contents but enhance the immobilized form levels. Overall, this study affords a novel approach on mitigating Cd accumulation in soybean seedlings which is attributed to Se and GA3 regulated interplay among rhizosphere soil metabolites, bacteria community and cadmium speciation.


Assuntos
Cádmio , Giberelinas , Glycine max , Rizosfera , Selênio , Microbiologia do Solo , Poluentes do Solo , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Cádmio/toxicidade , Cádmio/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacologia , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Selênio/metabolismo , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/classificação , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento
4.
Funct Plant Biol ; 512024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38467137

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-associated proteins are a class of transmembrane proteins involved in intracellular trafficking pathways. However, the functions of many SNARE domain-containing proteins remain unclear. We have previously identified a SNARE-associated gene in alfalfa (Medicago sativa ) KILLING ME SLOWLY1 (MsKMS1 ), which is involved in various abiotic stresses. In this study, we investigated the function of MsKMS1 in the seed germination of transgenic tobacco (Nicotiana tabacum ). Phylogenetic analysis showed that MsKMS1 was homologous to the SNARE-associated or MAPR component-related proteins of other plants. Germination assays revealed that MsKMS1 negatively regulated seed germination under normal, D-mannitol and abscisic acid-induced stress conditions, yet MsKMS1 -overexpression could confer enhanced heat tolerance in transgenic tobacco. The suppressive effect on germination in MsKMS1 -overexpression lines was associated with higher abscisic acid and salicylic acid contents in seeds. This was accompanied by the upregulation of abscisic acid biosynthetic genes (ZEP and NCED ) and the downregulation of gibberellin biosynthetic genes (GA20ox2 and GA20ox3 ). Taken together, these results suggested that MsKMS1 negatively regulated seed germination by increasing abscisic acid and salicylic acid contents through the expression of genes related to abscisic acid and gibberellin biosynthesis. In addition, MsKMS1 could improve heat tolerance during the germination of transgenic tobacco seeds.


Assuntos
Ácido Abscísico , Germinação , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Germinação/genética , Medicago sativa/genética , Medicago sativa/metabolismo , Giberelinas/metabolismo , Giberelinas/farmacologia , Nicotiana/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacologia
5.
Plant Physiol Biochem ; 210: 108543, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554534

RESUMO

Gibberellin A3 (GA3) is often used as a principal growth regulator to increase plant size. Here, we applied Tween-20 (2%)-formulated GA3 (T1:40 mg/L; T2:70 mg/L) by dipping the clusters at the initial expansion phase of 'Red Globe' grape (Vitis vinifera L.) in 2018 and 2019. Tween-20 (2%) was used as a control. The results showed that GA3 significantly increased fruit cell length, cell size, diameter, and volume. The hormone levels of auxin (IAA) and zeatin (ZT) were significantly increased at 2 h (0 d) -1 d after application (DAA0-1) and remained significantly higher at DAA1 until maturity. Conversely, ABA exhibited an opposite trend. The mRNA and non-coding sequencing results yielded 436 differentially expressed mRNA (DE_mRNAs), 79 DE_lncRNAs and 17 DE_miRNAs. These genes are linked to hormone pathways like cysteine and methionine metabolism (ko00270), glutathione metabolism (ko00480) and plant hormone signal transduction (ko04075). GA3 application reduced expression of insensitive dwarf 2 (GID2, VIT_07s0129g01000), small auxin-upregulated RNA (SAUR, VIT_08s0007g03120) and 1-aminocyclopropane-1-carboxylate synthase (ACS, VIT_18s0001g08520), but increased SAUR (VIT_04s0023g00560) expression. These four genes were predicted to be negatively regulated by vvi-miR156, vvi-miR172, vvi-miR396, and vvi-miR159, corresponding to specific lncRNAs. Therefore, miRNAs could affect grape size by regulating key genes GID2, ACS and SAUR. The R2R3 MYB family member VvRAX2 (VIT_08s0007g05030) was upregulated in response to GA3 application. Overexpression of VvRAX2 in tomato transgenic lines increased fruit size in contrast to the wild type. This study provides a basis and genetic resources for elucidating the novel role of ncRNAs in fruit development.


Assuntos
Frutas , Giberelinas , Reguladores de Crescimento de Plantas , Vitis , Vitis/genética , Vitis/metabolismo , Vitis/efeitos dos fármacos , Vitis/crescimento & desenvolvimento , Giberelinas/metabolismo , Giberelinas/farmacologia , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Cell ; 36(5): 1736-1754, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315889

RESUMO

Roses are among the most popular ornamental plants cultivated worldwide for their great economic, symbolic, and cultural importance. Nevertheless, rapid petal senescence markedly reduces rose (Rosa hybrida) flower quality and value. Petal senescence is a developmental process tightly regulated by various phytohormones. Ethylene accelerates petal senescence, while gibberellic acid (GA) delays this process. However, the molecular mechanisms underlying the crosstalk between these phytohormones in the regulation of petal senescence remain largely unclear. Here, we identified SENESCENCE-ASSOCIATED F-BOX (RhSAF), an ethylene-induced F-box protein gene encoding a recognition subunit of the SCF-type E3 ligase. We demonstrated that RhSAF promotes degradation of the GA receptor GIBBERELLIN INSENSITIVE DWARF1 (RhGID1) to accelerate petal senescence. Silencing RhSAF expression delays petal senescence, while suppressing RhGID1 expression accelerates petal senescence. RhSAF physically interacts with RhGID1s and targets them for ubiquitin/26S proteasome-mediated degradation. Accordingly, ethylene-induced RhGID1C degradation and RhDELLA3 accumulation are compromised in RhSAF-RNAi lines. Our results demonstrate that ethylene antagonizes GA activity through RhGID1 degradation mediated by the E3 ligase RhSAF. These findings enhance our understanding of the phytohormone crosstalk regulating petal senescence and provide insights for improving flower longevity.


Assuntos
Etilenos , Proteínas F-Box , Flores , Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Rosa , Etilenos/metabolismo , Etilenos/farmacologia , Giberelinas/metabolismo , Giberelinas/farmacologia , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rosa/genética , Rosa/efeitos dos fármacos , Rosa/metabolismo , Flores/genética , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Senescência Vegetal/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética
7.
Environ Sci Pollut Res Int ; 31(11): 16972-16985, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329668

RESUMO

Given the adverse impacts of heavy metals on plant development and physiological processes, the present research investigated the protective role of indole-3-acetic acid (IAA) and gibberellic acid (GA3) against cadmium (Cd)-induced injury in chickpea seedlings. Therefore, seeds germinated for 6 days in a medium containing 200 µM Cd alone or combined with 10 µM GA3 or 10 µM IAA. Both GA3 and IAA mitigated Cd-imposed growth delays in roots and shoots (80% and 50% increase in root and shoot length, respectively). This beneficial effect was accompanied by a significant reduction in Cd2+ accumulation in both roots (74% for IAA and 38% for GA3) and shoots (68% and 35%, respectively). Furthermore, these phytohormones restored the cellular redox state by reducing the activity of NADPH oxidase and downregulating the transcription level of RbohF and RbohD genes. Likewise, hydrogen peroxide contents were reduced by GA3 and IAA supply. Additionally, GA3 and IAA countered the Cd-induced reduction in total phenols, flavonoids, and reducing sugars in both roots and shoots. The exogenous effectors enhanced the activities of catalase, ascorbate peroxidase, and thioredoxin, as well as the corresponding gene expressions. Interestingly, adding GA3 and IAA to the Cd-contaminated germination media corrected the level of calcium (Ca2+) ion within seedling tissues. This effect coincided with the upregulation of key genes associated with stress sensing and signal transduction, including auxin-binding protein (ABP19a), mitogen-activated protein kinase (MAPK2), calcium-dependent protein kinase (CDPK1), and calmodulin (CaM). Overall, the current results suggest that GA3 and IAA sustain the Ca2+ signaling pathway, resulting in metal phytotoxicity relief. Amendment of agricultural soils contaminated with heavy metals with GA3 or IAA could represent an effective practice to improve crop yield.


Assuntos
Cicer , Plântula , Giberelinas/farmacologia , Giberelinas/metabolismo , Cádmio/metabolismo , Cicer/metabolismo , Ácido Acético/metabolismo , Sinalização do Cálcio , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo
9.
Plant Physiol Biochem ; 206: 108254, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056037

RESUMO

Gibberellins (GAs) play a crucial role in regulating secondary growth in angiosperms, but their effects on the secondary growth of gymnosperms are rarely reported. In this study, we administered exogenous GA3 to two-year-old P. massoniana seedlings, and examined its effects on anatomical structure, physiological and biochemical changes, and gene expression in stems. The results showed that exogenous GA3 could enhance xylem development in P. massoniana by promoting cell division. The content of endogenous hormone (including auxins, brassinosteroids, and gibberellins) were changed and the genes related to phytohormone biosynthesis and signaling pathway, such as GID1, DELLA, TIR1, ARF, SAUR, CPD, BR6ox1, and CYCD3, were differentially expressed under GA3 treatment. Furthermore, GA3 and BR (brassinosteroid) might act synergistically in promoting secondary growth in P. massoniana. Additionally, lignin content was significantly increased after GA3 treatment accompanied by the express of lignin biosynthesis related genes. PmCAD (TRINITY_DN142116_c0_g1), a crucial gene involved in the lignin biosynthesis, was cloned and overexpressed in Nicotiana benthamiana, significantly promoting the xylem development and enhancing stem lignification. It was regarded as a key candidate gene for improving stem growth of P. massoniana. The findings of this study have demonstrated the impact of GA3 treatment on secondary growth of stems in P. massoniana, providing a foundation for understanding the molecular regulatory mechanism of stem secondary growth in Pinaceae seedlings and offering theoretical guidance for cultivating new germplasm with enhanced growth and yield.


Assuntos
Giberelinas , Pinus , Giberelinas/farmacologia , Giberelinas/metabolismo , Plântula/metabolismo , Lignina/metabolismo , Pinus/genética , Pinus/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas
10.
Plant Physiol Biochem ; 206: 108222, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016371

RESUMO

Hydrogen cyanide has been extensively used worldwide for bud dormancy break in fruit trees, consequently enhancing fruit production via expedited cultivation, especially in areas with controlled environments or warmer regions. A novel and safety nanotechnology was developed since the hazard of hydrogen cyanide for the operators and environments, there is an urgent need for the development of novel and safety approaches to replace it to break bud dormancy for fruit trees. In current study, we have systematically explored the potential of iron oxide nanoparticles, specifically α-Fe2O3, to modulate bud dormancy in sweet cherry (Prunus avium). The synthesized iron oxide nanoparticles underwent meticulous characterization and assessment using various techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible infrared (UV-Vis) spectroscopy. Remarkably, when applied at a concentration of 10 mg L-1 alongside gibberellin (GA4+7), these iron oxide nanoparticles exhibited a substantial 57% enhancement in bud dormancy release compared to control groups, all achieved within a remarkably short time span of 4 days. Our RNA-seq analyses further unveiled that 2757 genes within the sweet cherry buds were significantly up-regulated when treated with 10 mg L-1 α-Fe2O3 nanoparticles in combination with GA, while 4748 genes related to dormancy regulation were downregulated in comparison to the control. Moreover, we discovered an array of 58 transcription factor families among the crucial differentially expressed genes (DEGs). Through hormonal quantification, we established that the increased bud burst was accompanied by a reduced concentration of abscisic acid (ABA) at 761.3 ng/g fresh weight in the iron oxide treatment group, coupled with higher levels of gibberellins (GAs) in comparison to the control. Comprehensive transcriptomic and metabolomic analyses unveiled significant alterations in hormone contents and gene expression during the bud dormancy-breaking process when α-Fe2O3 nanoparticles were combined with GA. In conclusion, our findings provide valuable insights into the intricate molecular mechanisms underlying the impact of iron oxide nanoparticles on achieving uniform bud dormancy break in sweet cherry trees.


Assuntos
Prunus avium , Prunus avium/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Cianeto de Hidrogênio/metabolismo , Flores/genética , Proteínas de Plantas/genética , Nanopartículas Magnéticas de Óxido de Ferro , Regulação da Expressão Gênica de Plantas , Dormência de Plantas
11.
Bioelectrochemistry ; 156: 108634, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38160510

RESUMO

The estrogenic effect of plant growth regulators has been received little attention, which leads to the lack of relevant toxicity data. In this study, the estrogenic effect induced by gibberellin with ERα-dependent manner was found by E-screen and western blot methods, and the electrochemical signals of MCF-7 cells regulated by gibberellin and fulvestrant were investigated. The results showed that the electrochemical signals of MCF-7 cells were increased by gibberellin, while reduced by fulvestrant significantly, and displayed an extremely sensitive response to the effects of estrogenic effect induced by ERα agonist and antagonist. Western blot results showed that the expressions of phosphoribosyl pyrophosphate amidotransferase and hypoxanthine nucleotide dehydrogenase in de novo purine synthesis and adenine deaminase in catabolism were more effective regulated by gibberellin and fulvestrant, resulting in significant changes of the levels of guanine, hypoxanthine and xanthine in cells, and then electrochemical signals. The results provide a theoretical basis for the establishment of new electrochemical detection method of the estrogenic effect of plant regulators.


Assuntos
Receptor alfa de Estrogênio , Giberelinas , Fulvestranto , Giberelinas/farmacologia , Estrogênios , Eletroquímica , Purinas/farmacologia , Purinas/metabolismo , Guanina/metabolismo
12.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003470

RESUMO

Exogenous GA is widely used to efficiently induce grape seedless berry development for significantly improving berry quality. Recently, we found that VvmiR166s are important regulators of response to GA in grapes, but its roles in GA-induced seedless grape berry development remain elusive. Here, the precise sequences of VvmiR166s and their targets VvREV, VvHB15 and VvHOX32 were determined in grape cv. 'Rosario Bianco', and the cleavage interactions of VvmiR166s-VvHB15/VvHOX32/VvREV modules and the variations in their cleavage roles were confirmed in grape berries. Exogenous GA treatment significantly induced a change in their expression correlations from positive to negative between VvmiR166s and their target genes at the seeds during the stone-hardening stages (32 DAF-46 DAF) in grape berries, indicating exogenous GA change action modes of VvmiR166s on their targets in this process, in which exogenous GA mainly enhanced the negative regulatory roles of VvmiR166s on VvHB15 among all three VvmiR166s-target pairs. The transient OE-VvmiR166a-h/OE-VvHB15 in tobacco confirmed that out of the VvmiR166 family, VvmiR166h/a/b might be the main factors in modulating lignin synthesis through inhibiting VvHB15, of which VvmiR166h-VvHB15-NtPAL4/NtCCR1/NtCCR2/NtCCoAMT5/NtCOMT1 and VvmiR166a/b-VvHB15-NtCAD1 are the potential key regulatory modules in lignin synthesis. Together with the GA-induced expression modes of VvmiR166s-VvHB15 and genes related to lignin synthesis in grape berries, we revealed that GA might repress lignin synthesis mainly by repressing VvCAD1/VvCCR2/VvPAL2/VvPAL3/Vv4CL/VvLac7 levels via mediating VvmiR166s-VvHB15 modules in GA-induced grape seedless berries. Our findings present a novel insight into the roles of VvmiR66s that are responsive to GA in repressing the lignin synthesis of grape seedless berries, with different lignin-synthesis-enzyme-dependent action pathways in diverse plants, which have important implications for the molecular breeding of high-quality seedless grape berries.


Assuntos
Frutas , Vitis , Frutas/metabolismo , Vitis/metabolismo , Lignina/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Regulação da Expressão Gênica de Plantas
13.
J Mol Recognit ; 36(9): e3050, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555623

RESUMO

The interactions of the classic phytohormones gibberellic acid (gibberellin A3 , GA3 ) and abscisic acid (dormin, ABA), which antagonistically regulate several developmental processes and stress responses in higher plants, with human placental glutathione S-transferase P1-1 (hpGSTP1-1), an enzyme that plays a role in endo- or xenobiotic detoxification and regulation of cell survival and apoptosis, were investigated. The inhibitory potencies of ABA and GA3 against hpGSTP1, as well as the types of inhibition and the kinetic parameters, were determined by making use of both enzyme kinetic graphs and SPSS nonlinear regression models. The structural basis for the interaction between hpGSTP1-1 and phytohormones was predicted with the aid of molecular docking simulations. The IC50 values of ABA and GA3 were 5.3 and 5.0 mM, respectively. Both phytohormones inhibited hpGSTP1-1 in competitive manner with respect to the cosubstrates GSH and CDNB. When ABA was the inhibitor at [CDNB]f -[GSH]v and at [GSH]f -[CDNB]v , Vm , Km , and Ki values were statistically estimated to be 205 ± 16 µmol/min-mg protein, 1.32 ± 0.18 mM, 1.95 ± 0.25 mM and 175 ± 6 µmol/min-mg protein, 0.85 ± 0.06 mM, 1.85 ± 0.16 mM, respectively. On the other hand, the kinetic parameters Vm , Km , and Ki obtained with GA3 at [CDNB]f -[GSH]v and at [GSH]f -[CDNB]v were found to be 303 ± 14 µmol/min-mg protein, 1.77 ± 0.13 mM, 3.38 ± 0.26 mM and 249 ± 7 µmol/min-mg protein, 1.43 ± 0.07 mM, 2.89 ± 0.19 mM, respectively. Both phytohormones had the potential to engage in hydrogen-bonding and electrostatic interactions with the key residues that line the G- and H-sites of the enzyme's catalytic center. Inhibitory actions of ABA/GA3 on hpGSTP1-1 may guide medicinal chemists through the structure-based design of novel antineoplastic agents. It should be noted, however, that the same interactions may also render fetuses vulnerable to the potentially toxic effects of xenobiotics and noxious endobiotics.


Assuntos
Giberelinas , Placenta , Humanos , Gravidez , Feminino , Placenta/metabolismo , Giberelinas/farmacologia , Simulação de Acoplamento Molecular , Reguladores de Crescimento de Plantas/farmacologia , Glutationa/metabolismo , Glutationa S-Transferase pi/metabolismo , Glutationa Transferase/metabolismo , Cinética
14.
Plant Physiol ; 192(3): 1947-1968, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36913259

RESUMO

Dwarfism is an agronomic trait that has substantial effects on crop yield, lodging resistance, planting density, and a high harvest index. Ethylene plays an important role in plant growth and development, including the determination of plant height. However, the mechanism by which ethylene regulates plant height, especially in woody plants, remains unclear. In this study, a 1-aminocyclopropane-1-carboxylic acid synthase (ACC) gene (ACS), which is involved in ethylene biosynthesis, was isolated from lemon (Citrus limon L. Burm) and named CiACS4. Overexpression of CiACS4 resulted in a dwarf phenotype in Nicotiana tabacum and lemon and increased ethylene release and decreased gibberellin (GA) content in transgenic plants. Inhibition of CiACS4 expression in transgenic citrus significantly increased plant height compared with the controls. Yeast two-hybrid assays revealed that CiACS4 interacted with an ethylene response factor (ERF), CiERF3. Further experiments revealed that the CiACS4-CiERF3 complex can bind to the promoters of 2 citrus GA20-oxidase genes, CiGA20ox1 and CiGA20ox2, and suppress their expression. In addition, another ERF transcription factor, CiERF023, identified using yeast one-hybrid assays, promoted CiACS4 expression by binding to its promoter. Overexpression of CiERF023 in N. tabacum caused a dwarfing phenotype. CiACS4, CiERF3, and CiERF023 expression was inhibited and induced by GA3 and ACC treatments, respectively. These results suggest that the CiACS4-CiERF3 complex may be involved in the regulation of plant height by regulating CiGA20ox1 and CiGA20ox2 expression levels in citrus.


Assuntos
Citrus , Giberelinas , Giberelinas/farmacologia , Giberelinas/metabolismo , Citrus/genética , Citrus/metabolismo , Etilenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
J Environ Manage ; 337: 117723, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36958280

RESUMO

Application of plant growth-promoting rhizobacteria plays a vital role in enhancing phytoremediation efficiency. In this study, multiple approaches were employed to investigate the underlying mechanisms of Burkholderia sp. SRB-1 (SRB-1) on elevating Cd uptake and accumulation. Inoculation experiment indicated that SRB-1 could facilitate plant growth and Cd tolerance, as evidenced by the enhanced plant biomass and antioxidative enzymes activities. Cd content in plant shoots and roots increased about 36.56%-39.66% and 25.97%-130.47% assisted with SRB-1 when compared with control. Transcriptomics analysis revealed that SRB-1 upregulated expression of amiE, AAO1-2 and GA2-ox related to auxin and gibberellin biosynthesis in roots. Auxin and gibberellin, as hormone signals, regulated plant Cd tolerance and growth through activating hormone signal transduction pathways, which might also contribute to 67.94% increase of dry weight. The higher expression levels of ATP-binding cassette transporter subfamilies (ABCB, ABCC, ABCD and ABCG) in Chrysopogon zizanioides roots contributed to higher Cd uptake in Cd15 B (323.83 mg kg-1) than Cd15 (136.28 mg kg-1). Further, SRB-1 facilitated Cd migration from roots to shoots via upregulating the expression of Nramp, ZIP and HMA families. Our integrative analysis provided a molecular-scale perspective on Burkholderia sp. SRB-1 contributing to C. zizanioides performance.


Assuntos
Burkholderia , Vetiveria , Poluentes do Solo , Humanos , Cádmio/farmacologia , Cádmio/metabolismo , Vetiveria/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Giberelinas/farmacologia , Transcriptoma , Antioxidantes/análise , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Biodegradação Ambiental , Raízes de Plantas/química , Hormônios/análise , Hormônios/metabolismo , Hormônios/farmacologia , Poluentes do Solo/análise
16.
Environ Pollut ; 316(Pt 2): 120658, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379292

RESUMO

Adverse environmental stresses occurring simultaneously exhibit a lethal effect on crop productivity at the global level. Here, we investigated the individual and synergistic effects of endophytic T. virens SB10 and glycine betaine (GB) on the physiological and biochemical responses of Glycine max L. to alleviate the devastating effects of combined heat and salinity (HS) stress. Screening against HS stress tolerance showed that SB10 has significant tolerance against heat stress and produces hormones such as gibberellins and indole-3-acetic acid upon GB amendment of the growth medium under HS stress. Moreover, the current findings illustrated that the synergistic application of SB10 and GB was effective in alleviating the negative effects of HS stress on plant growth and physiology. The findings revealed that SB10 + GB led to a reduction in proline accumulation and Na+ uptake. It also maintained a high K+/Na + ratio by regulating GmHKT1 and GmSOS1 expression and enhanced macronutrient uptake (N, Ca, K) in plants. In turn, plants exhibited a higher growth rate and gaseous exchange attributes coupled with the upregulation of APX, SOD, POD, and GSH antioxidant activities and transcript accumulation of GmSOD1 and GmAPX1 to overcome HS-induced oxidative damage. Furthermore, SB10 + GB downregulated DREB2, DREB1B, and GmNCED3 expression and resulted in the reduced accumulation of endogenous ABA while enhancing endogenous SA accumulation via upregulation of PAL genes. In addition, enhanced accumulation of bioactive gibberellins (GA1, GA3, GA4, and GA7) was detected under HS stress in the SB10 + GB treatment group. Moreover, SB10 + GB also significantly regulated GmHsp90A2 and GmHsfA2 expression in tolerance against HS stress. The combination of SB10 and GB was shown to be an effective and alternative approach for growing G. max at high temperature coupled with saline conditions for sustainable agriculture.


Assuntos
Glycine max , Salinidade , Betaína/farmacologia , Betaína/metabolismo , Giberelinas/farmacologia , Oxirredução , Homeostase
17.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142386

RESUMO

Cold stress is known to influence tomato growth, development, and yield. In this study, we analyzed the germination of tomato seeds treated with exogenous glycine betaine (GB) at a low temperature (14 °C). The results showed that cold stress inhibited tomato seed germination, and pretreatment with exogenous GB reduced this inhibition and enhanced the germination rate (GR), germination index (GI), and viability of tomato seeds at low temperatures. Analysis of gene expression and metabolism revealed that GB positively regulated endogenous hormone gibberellin (GA) content and negatively regulated abscisic acid (ABA) content, while GB reduced the starch content in the seeds by up-regulating the amylase gene expression. Gene expression analysis showed that the key genes (SlSOD, SlPOD, and SlchlAPX) involved in reactive oxygen species (ROS) scavenging systems were up-regulated in GB-pretreated tomato seeds compared with the control. At the same time, levels of malondialdehyde and hydrogen peroxide were significantly lower, while the proline content and peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) levels were elevated compared with those in the control. These results demonstrate that exogenous GB as a positive regulator effectively alleviated the inhibition of tomato seed germination under cold stress by different signal pathways.


Assuntos
Germinação , Solanum lycopersicum , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Amilases/metabolismo , Betaína/metabolismo , Betaína/farmacologia , Catalase/metabolismo , Resposta ao Choque Frio , Giberelinas/metabolismo , Giberelinas/farmacologia , Hormônios/metabolismo , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/genética , Malondialdeído/metabolismo , Peroxidases/metabolismo , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sementes/genética , Amido/metabolismo , Superóxido Dismutase/metabolismo
18.
EMBO Rep ; 23(10): e54371, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36062942

RESUMO

Light and ambient high temperature (HT) have opposite effects on seed germination. Light induces seed germination through activating the photoreceptor phytochrome B (phyB), resulting in the stabilization of the transcription factor HFR1, which in turn sequesters the suppressor PIF1. HT suppresses seed germination and triggers protein S-nitrosylation. Here, we find that HT suppresses seed germination by inducing the S-nitrosylation of HFR1 at C164, resulting in its degradation, the release of PIF1, and the activation of PIF1-targeted SOMNUS (SOM) expression to alter gibberellin (GA) and abscisic acid (ABA) metabolism. Active phyB (phyBY276H ) antagonizes HFR1 S-nitrosylation and degradation by increasing S-nitrosoglutathione reductase (GSNOR) activity. In line with this, substituting cysteine-164 of HFR1 with serine (HFR1C164S ) abolishes the S-nitrosylation of HFR1 and decreases the HT-induced degradation of HFR1. Taken together, our study suggests that HT and phyB antagonistically modulate the S-nitrosylation level of HFR1 to coordinate seed germination, and provides the possibility to enhance seed thermotolerance through gene-editing of HFR1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Germinação/genética , Giberelinas/metabolismo , Giberelinas/farmacologia , Luz , Fitocromo/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Proteína S/metabolismo , Proteína S/farmacologia , Sementes/genética , Serina/metabolismo , Temperatura , Fatores de Transcrição/metabolismo
19.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35955901

RESUMO

Seedlessness is one of the important quality and economic traits favored by grapevine consumers, which are mainly affected by phytohormones, especially gibberellin (GA). GA is widely utilized in seedless berry production and could effectively induce grape seed embryo abortion. However, the molecular mechanism underlying this process, like the role of RNA silencing in the biosynthesis pathway of GA remains elusive. Here, Gibberellin 3-ß dioxygenase2 (GA3ox2) as the last key enzyme in GA biosynthesis was predicated as a potential target gene for miR3633a, and two of them were identified as a GA response in grape berries. We also analyzed the promoter regions of genes encoding GA biosynthesis and found the hormone-responsive elements to regulate grape growth and development. The cleavage interaction between VvmiR3633a and VvGA3ox2 was validated by RLM-RACE and the transient co-transformation technique in tobacco in vivo. Interestingly, during GA-induced grape seed embryo abortion, exogenous GA promoted the expression of VvmiR3633a, thereby mainly repressing the level of VvGA3ox2 in seed embryos. We also observed a negative correlation between down-regulated VvGA20ox2/VvGA3ox2 and up-regulated VvGA2ox3/VvGA2ox1, of which GA inactivation was greater than GA synthesis, inhibited active GA content, accompanied by the reduction of VvSOD and VvCAT expression levels and enzymatic activities. These series of changes might be the main causes of grape seed embryo abortion. In conclusion, we have preliminarily drawn a schematic mode of GA-mediated VvmiR3633a and related genes regulatory network during grape seed abortion induced by exogenous GA. Our findings provide novel insights into the GA-responsive roles of the VvmiR3633a-VvGA3ox2 module in the modulation of grape seed-embryo abortion, which has implications for the molecular breeding of high-quality seedless grape berries.


Assuntos
Giberelinas , Vitis , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Giberelinas/farmacologia , Proteínas de Plantas/metabolismo , Sementes , Vitis/metabolismo
20.
Plant Cell ; 34(4): 1273-1288, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35021223

RESUMO

Primary root growth in cereal crops is fundamental for early establishment of the seedling and grain yield. In young rice (Oryza sativa) seedlings, the primary root grows rapidly for 7-10 days after germination and then stops; however, the underlying mechanism determining primary root growth is unclear. Here, we report that the interplay of ethylene and gibberellin (GA) controls the orchestrated development of the primary root in young rice seedlings. Our analyses advance the knowledge that primary root growth is maintained by higher ethylene production, which lowers bioactive GA contents. Further investigations unraveled that ethylene signaling transcription factor ETHYLENE INSENSITIVE3-LIKE 1 (OsEIL1) activates the expression of the GA metabolism genes GIBBERELLIN 2-OXIDASE 1 (OsGA2ox1), OsGA2ox2, OsGA2ox3, and OsGA2ox5, thereby deactivating GA activity, inhibiting cell proliferation in the root meristem, and ultimately gradually inhibiting primary root growth. Mutation in OsGA2ox3 weakened ethylene-induced GA inactivation and reduced the ethylene sensitivity of the root. Genetic analysis revealed that OsGA2ox3 functions downstream of OsEIL1. Taken together, we identify a molecular pathway impacted by ethylene during primary root elongation in rice and provide insight into the coordination of ethylene and GA signals during root development and seedling establishment.


Assuntos
Giberelinas , Oryza , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Giberelinas/metabolismo , Giberelinas/farmacologia , Oryza/metabolismo , Plântula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA