Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Biochem Pharmacol ; 225: 116264, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710334

RESUMO

The retrosplenial cortex (RSC) plays a central role in processing contextual fear conditioning. In addition to corticocortical and thalamocortical projections, the RSC receives subcortical inputs, including a substantial projection from the nucleus incertus in the pontine tegmentum. This GABAergic projection contains the neuropeptide, relaxin-3 (RLN3), which inhibits target neurons via its Gi/o-protein-coupled receptor, RXFP3. To assess this peptidergic system role in contextual fear conditioning, we bilaterally injected the RSC of adult rats with an adeno-associated-virus (AAV), expressing the chimeric RXFP3 agonist R3/I5 or a control AAV, and subjected them to contextual fear conditioning. The R3/I5 injected rats did not display any major differences to control-injected and naïve rats but displayed a significantly delayed extinction. Subsequently, we employed acute bilateral injections of the specific RXFP3 agonist peptide, RXFP3-Analogue 2 (A2), into RSC. While the administration of A2 before each extinction trial had no impact on the extinction process, treatment with A2 before each acquisition trial resulted in delayed extinction. In related anatomical studies, we detected an enrichment of RLN3-immunoreactive nerve fibers in deep layers of the RSC, and a higher level of co-localization of RXFP3 mRNA with vesicular GABA transporter (vGAT) mRNA than with vesicular glutamate transporter-1 (vGLUT1) mRNA across the RSC, consistent with an effect of RLN3/RXFP3 signalling on the intrinsic, inhibitory circuits within the RSC. These findings suggest that contextual conditioning processes in the RSC involve, in part, RLN3 afferent modulation of local inhibitory neurons that provides a stronger memory acquisition which, in turn, retards the extinction process.


Assuntos
Extinção Psicológica , Medo , Receptores Acoplados a Proteínas G , Animais , Masculino , Medo/fisiologia , Medo/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Ratos , Extinção Psicológica/fisiologia , Extinção Psicológica/efeitos dos fármacos , Relaxina/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiologia , Receptores de Peptídeos
2.
Mol Pain ; 20: 17448069241258110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38744422

RESUMO

Recent studies using different experimental approaches demonstrate that silent synapses may exist in the adult cortex including the sensory cortex and anterior cingulate cortex (ACC). The postsynaptic form of long-term potentiation (LTP) in the ACC recruits some of these silent synapses and the activity of calcium-stimulated adenylyl cyclases (ACs) is required for such recruitment. It is unknown if the chemical activation of ACs may recruit silent synapses. In this study, we found that activation of ACs contributed to synaptic potentiation in the ACC of adult mice. Forskolin, a selective activator of ACs, recruited silent responses in the ACC of adult mice. The recruitment was long-lasting. Interestingly, the effect of forskolin was not universal, some silent synapses did not undergo potentiation or recruitment. These findings suggest that these adult cortical synapses are not homogenous. The application of a selective calcium-permeable AMPA receptor inhibitor 1-naphthyl acetyl spermine (NASPM) reversed the potentiation and the recruitment of silent responses, indicating that the AMPA receptor is required. Our results strongly suggest that the AC-dependent postsynaptic AMPA receptor contributes to the recruitment of silent responses at cortical LTP.


Assuntos
Adenilil Ciclases , Colforsina , Giro do Cíngulo , Potenciação de Longa Duração , Animais , Camundongos , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Colforsina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Masculino , Receptores de AMPA/metabolismo , Camundongos Endogâmicos C57BL , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Cálcio/metabolismo
3.
Addict Biol ; 27(1): e13085, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390300

RESUMO

Disrupted brain gamma-aminobutyric acid (GABA)/glutamate homeostasis is a promising target for pharmacological intervention in co-occurring bipolar disorder (BD) and cannabis use disorder (CUD). Gabapentin is a safe and well-tolerated medication, FDA-approved to treat other neurological diseases, that restores GABA/glutamate homeostasis, with treatment studies supporting efficacy in treating CUD, as well as anxiety and sleep disorders that are common to both BD and CUD. The present manuscript represents the primary report of a randomized, double-blind, placebo-controlled, crossover (1-week/condition), multimodal-MRI (proton-MR spectroscopy, functional MRI) pilot study of gabapentin (1200 mg/day) in BD + CUD (n = 22). Primary analyses revealed that (1) gabapentin was well tolerated and adherence and retention were high, (2) gabapentin increased dorsal anterior cingulate cortex (dACC) and right basal ganglia (rBG) glutamate levels and (3) gabapentin increased activation to visual cannabis cues in the posterior midcingulate cortex (pMCC, a region involved in response inhibition to rewarding stimuli). Exploratory evaluation of clinical outcomes further found that in participants taking gabapentin versus placebo, (1) elevations of dACC GABA levels were associated with lower manic/mixed and depressive symptoms and (2) elevations of rBG glutamate levels and pMCC activation to cannabis cues were associated with lower cannabis use. Though promising, the findings from this study should be interpreted with caution due to observed randomization order effects on dACC glutamate levels and identification of statistical moderators that differed by randomization order (i.e. cigarette-smoking status on rBG glutamate levels and pMCC cue activation). Nonetheless, they provide the necessary foundation for a more robustly designed (urn-randomized, parallel-group) future study of adjuvant gabapentin for BD + CUD.


Assuntos
Transtorno Bipolar/tratamento farmacológico , Gabapentina/uso terapêutico , Ácido Glutâmico/efeitos dos fármacos , Abuso de Maconha/tratamento farmacológico , Ácido gama-Aminobutírico/efeitos dos fármacos , Adolescente , Adulto , Transtorno Bipolar/epidemiologia , Fumar Cigarros/epidemiologia , Método Duplo-Cego , Feminino , Gabapentina/administração & dosagem , Gabapentina/efeitos adversos , Giro do Cíngulo/efeitos dos fármacos , Humanos , Imageamento por Ressonância Magnética , Masculino , Abuso de Maconha/epidemiologia , Pessoa de Meia-Idade , Projetos Piloto , Espectroscopia de Prótons por Ressonância Magnética , Adulto Jovem
4.
Mol Brain ; 14(1): 140, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526080

RESUMO

Previous studies have demonstrated that brain-derived neurotrophic factor (BDNF) is one of the diffusible messengers for enhancing synaptic transmission in the hippocampus. Less information is available about the possible roles of BDNF in the anterior cingulate cortex (ACC). In the present study, we used 64-electrode array field recording system to investigate the effect of BDNF on ACC excitatory transmission. We found that BDNF enhanced synaptic responses in a dose-dependent manner in the ACC in C57/BL6 mice. The enhancement was long-lasting, and persisted for at least 3 h. In addition to the enhancement, BDNF also recruited inactive synaptic responses in the ACC. Bath application of the tropomyosin receptor kinase B (TrkB) receptor antagonist K252a blocked BDNF-induced enhancement. L-type voltage-gated calcium channels (L-VGCC), metabotropic glutamate receptors (mGluRs), but not NMDA receptors were required for BDNF-produced enhancement. Moreover, calcium-stimulated adenylyl cyclase subtype 1 (AC1) but not AC8 was essential for the enhancement. A selective AC1 inhibitor NB001 completely blocked the enhancement. Furthermore, BDNF-produced enhancement occluded theta burst stimulation (TBS) induced long-term potentiation (LTP), suggesting that they may share similar signaling mechanisms. Finally, the expression of BDNF-induced enhancement depends on postsynaptic incorporation of calcium-permeable AMPA receptors (CP-AMPARs) and protein kinase Mζ (PKMζ). Our results demonstrate that cortical BDNF may contribute to synaptic potentiation in the ACC.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Giro do Cíngulo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Adenilil Ciclases/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Carbazóis/farmacologia , Relação Dose-Resposta a Droga , Eletrodos Implantados , Alcaloides Indólicos/farmacologia , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase C/fisiologia , Receptores de AMPA/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Sinapses/fisiologia , Ritmo Teta/efeitos dos fármacos
5.
Neurosci Lett ; 762: 136146, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34332028

RESUMO

INTRODUCTION: Current treatments for cocaine use disorder (CUD) are not very effective and better treatments are needed. This study investigates the effectiveness of a combined intervention that targets the assumed underlying glutamate pathology in cocaine users. To this end, the combined effects of N-acetylcysteine (NAC) and working memory (WM) training on glutamate concentrations in the dorsal and rostral ACC were investigated in a randomized, double-blind placebo-controlled design. METHODS: In this study, 38 regular cocaine-using men were randomized to either 25-days with 2400 mg/day NAC and WM-training or 25 days with placebo with WM-training. Cocaine use, impulsivity, and glutamate concentrations in the dACC and rACC using proton Magnetic Resonance Spectroscopy were assessed at baseline and after treatment. RESULTS: Twenty-four participants completed the study, of which 9 received NAC and 15 received placebo. There were no baseline correlations of glutamate concentrations in the dACC or rACC with cocaine use measures or impulsivity. Additionally, there were no effects of NAC, WM-training, or the combination thereof on (changes in) glutamate concentrations in the dACC or rACC. DISCUSSION: This randomized proof of concept study could not confirm our hypotheses. Possible explanations are insufficient power and the possible absence of deviant baseline glutamate concentrations in the included participants. Future studies should consider larger samples and a non-using control group to confirm baseline deviations in glutamate in cocaine users.


Assuntos
Acetilcisteína/uso terapêutico , Transtornos Relacionados ao Uso de Cocaína/terapia , Ácido Glutâmico/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Aprendizagem , Adulto , Método Duplo-Cego , Ácido Glutâmico/metabolismo , Giro do Cíngulo/metabolismo , Humanos , Masculino , Memória de Curto Prazo , Pessoa de Meia-Idade , Estudo de Prova de Conceito
6.
Psychopharmacology (Berl) ; 238(2): 589-597, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33216167

RESUMO

RATIONALE: Previous neuroimaging studies of cognition involving nicotinic acetylcholine receptor (nAChR) agonist administration have repeatedly found enhanced task-induced deactivation of regions of the default mode network (DMN), a group of brain systems that is more active at rest and mediates task-independent thought processes. This effect may be related to pro-cognitive nAChR agonist effects OBJECTIVES: The present study sought to test whether nAChR modulation of the DMN is bi-directional, i.e., whether a nAChR antagonist would reduce task-induced deactivation. METHODS: Eighteen healthy non-smokers underwent functional magnetic resonance imaging while performing a letter N-back task. Scans were performed after nicotine administration (7 mg/24 h, transdermally), after administration of the nAChR antagonist mecamylamine (7.5 mg, p.o.), and after double placebo, in counterbalanced sequence. Blood-oxygen-level-dependent (BOLD) signal was analyzed within ventromedial prefrontal cortex (vmPFC) and posterior cingulate cortex (PCC) regions of interest-central hubs of the DMN in which consistent nAChR agonist-induced changes had previously been identified. RESULTS: Nicotine enhanced hit rate in both the 0-back and 2-back condition, while mecamylamine slowed reaction time in the 2-back condition. Mecamylamine reduced task-induced deactivation of vmPFC and PCC. Nicotine had no significant effects on the BOLD signal. CONCLUSIONS: The finding that nAChR tone reduction by mecamylamine weakened task-induced DMN deactivation indicates that a constant tone of nAChR activation helps regulate DMN activity in healthy individuals. This suggests that low nAChR tone may play a causal role in DMN dysregulation seen in conditions such as mild cognitive impairment or Alzheimer's disease.


Assuntos
Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Rede de Modo Padrão/efeitos dos fármacos , Imageamento por Ressonância Magnética , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/metabolismo , Feminino , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Humanos , Masculino , Mecamilamina/farmacologia , Pessoa de Meia-Idade , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Tempo de Reação/efeitos dos fármacos , Análise e Desempenho de Tarefas
7.
J Neurochem ; 156(6): 1020-1032, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32785947

RESUMO

Propofol is the most common intravenous anesthetic agent for induction and maintenance of anesthesia, and has been used clinically for more than 30 years. However, the mechanism by which propofol induces loss of consciousness (LOC) remains largely unknown. The adenosine A2A receptor (A2A R) has been extensively proven to have an effect on physiological sleep. It is, therefore, important to investigate the role of A2A R in the induction of LOC using propofol. In the present study, the administration of the highly selective A2A R agonist (CGS21680) and antagonist (SCH58261) was utilized to investigate the function of A2A R under general anesthesia induced by propofol by means of animal behavior studies, resting-state magnetic resonance imaging and c-Fos immunofluorescence staining approaches. Our results show that CGS21680 significantly prolonged the duration of LOC induced by propofol, increased the c-Fos expression in nucleus accumbens (NAc) and suppressed the functional connectivity of NAc-dorsal raphe nucleus (DR) and NAc-cingulate cortex (CG). However, SCH58261 significantly shortened the duration of LOC induced by propofol, decreased the c-Fos expression in NAc, increased the c-Fos expression in DR, and elevated the functional connectivity of NAc-DR and NAc-CG. Collectively, our findings demonstrate the important roles played by A2A R in the LOC induced by propofol and suggest that the neural circuit between NAc-DR maybe controlled by A2A R in the mechanism of anesthesia induced by propofol.


Assuntos
Anestesia Geral , Anestésicos Intravenosos/farmacologia , Propofol/farmacologia , Receptor A2A de Adenosina/efeitos dos fármacos , Inconsciência/diagnóstico por imagem , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genes fos/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Imageamento por Ressonância Magnética , Núcleo Accumbens/efeitos dos fármacos , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Inconsciência/induzido quimicamente
8.
Addict Biol ; 26(2): e12900, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32212237

RESUMO

N-acetylcysteine (NAC) is a cystine prodrug shown to reduce cocaine- and cue-primed reinstatement of cocaine-seeking behavior in preclinical studies. In this inpatient study, the effects of NAC maintenance versus placebo on cocaine-seeking behavior were examined during cocaine-primed and unprimed self-administration sessions among non-treatment-seeking, cocaine-dependent individuals. Twelve participants completed this double-blind, placebo-controlled, within-subject crossover study. Each participant was maintained for 1 week (Sat-Fri) on NAC (1200-mg TID; 3600 mg/day total) and 1 week on placebo (0-mg TID); medication order was randomized. A subset of participants underwent proton magnetic resonance spectroscopy scans (n = 8) on the third day of medication (Mon) to assess neurochemistry in the rostral anterior cingulate (rACC; voxel = 4.5 cm3 ). In four randomized sessions (Tue-Fri) each week, each participant could earn unit amounts of cocaine (10 mg, fixed) versus money ($0.50 vs. $1.50) on a choice, progressive ratio schedule after insufflating active versus placebo cocaine-priming doses (110 mg vs. 4 mg). Relative to the placebo priming dose, the active cocaine priming dose (110 mg) increased cocaine-seeking behavior (p = .003). NAC reduced cocaine-primed cocaine-seeking behavior compared with placebo levels (p = .044) but did not alter placebo-primed cocaine-seeking behavior. The larger money alternative ($1.50) suppressed cocaine-seeking behavior relative to the smaller money alternative ($0.50; p = .011). Compared with placebo levels, NAC significantly decreased rACC glutamate + glutamine levels (p = .035) and numerically decreased rACC glutamate levels (p = .085). These preliminary findings indicate that NAC suppresses cocaine-seeking behavior in some, but not all, experimental scenarios. Further, our findings suggest NAC may exert its therapeutic effects by modulating excitatory tone in the rACC.


Assuntos
Acetilcisteína/uso terapêutico , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Comportamento de Procura de Droga/efeitos dos fármacos , Ácido Glutâmico/efeitos dos fármacos , Glutamina/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Acetilcisteína/farmacologia , Adulto , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância Magnética , Recompensa
9.
Cereb Cortex ; 31(4): 2169-2186, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33251536

RESUMO

In a changing environment, organisms need to decide when to select items that resemble previously rewarded stimuli and when it is best to switch to other stimulus types. Here, we used chemogenetic techniques to provide causal evidence that activity in the rodent anterior cingulate cortex and its efferents to the anterior thalamic nuclei modulate the ability to attend to reliable predictors of important outcomes. Rats completed an attentional set-shifting paradigm that first measures the ability to master serial discriminations involving a constant stimulus dimension that reliably predicts reinforcement (intradimensional-shift), followed by the ability to shift attention to a previously irrelevant class of stimuli when reinforcement contingencies change (extradimensional-shift). Chemogenetic disruption of the anterior cingulate cortex (Experiment 1) as well as selective disruption of anterior cingulate efferents to the anterior thalamic nuclei (Experiment 2) impaired intradimensional learning but facilitated 2 sets of extradimensional-shifts. This pattern of results signals the loss of a corticothalamic system for cognitive control that preferentially processes stimuli resembling those previously associated with reward. Previous studies highlight a separate medial prefrontal system that promotes the converse pattern, that is, switching to hitherto inconsistent predictors of reward when contingencies change. Competition between these 2 systems regulates cognitive flexibility and choice.


Assuntos
Núcleos Anteriores do Tálamo/metabolismo , Atenção/fisiologia , Giro do Cíngulo/metabolismo , Optogenética/métodos , Recompensa , Adenoviridae/metabolismo , Animais , Núcleos Anteriores do Tálamo/química , Núcleos Anteriores do Tálamo/efeitos dos fármacos , Atenção/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Aprendizagem por Discriminação/fisiologia , Giro do Cíngulo/química , Giro do Cíngulo/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Vias Neurais/química , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Piperazinas/administração & dosagem , Piperazinas/análise , Piperazinas/metabolismo , Ratos
10.
Acta Neuropathol Commun ; 8(1): 193, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33183353

RESUMO

Frequently reported neurotoxic sequelae of cancer treatment include cognitive deficits and sensorimotor abnormalities that have long-lasting negative effects on the quality of life of an increasing number of cancer survivors. The underlying mechanisms are not fully understood and there is no effective treatment. We show here that cisplatin treatment of mice not only caused cognitive dysfunction but also impaired sensorimotor function. These functional deficits are associated with reduced myelin density and complexity in the cingulate and sensorimotor cortex. At the ultrastructural level, myelin abnormalities were characterized by decompaction. We used this model to examine the effect of bexarotene, an agonist of the RXR-family of nuclear receptors. Administration of only five daily doses of bexarotene after completion of cisplatin treatment was sufficient to normalize myelin density and fiber coherency and to restore myelin compaction in cingulate and sensorimotor cortex. Functionally, bexarotene normalized performance of cisplatin-treated mice in tests for cognitive and sensorimotor function. RNAseq analysis identified the TR/RXR pathway as one of the top canonical pathways activated by administration of bexarotene to cisplatin-treated mice. Bexarotene also activated neuregulin and netrin pathways that are implicated in myelin formation/maintenance, synaptic function and axonal guidance. In conclusion, short term treatment with bexarotene is sufficient to reverse the adverse effects of cisplatin on white matter structure, cognitive function, and sensorimotor performance. These encouraging findings warrant further studies into potential clinical translation and the underlying mechanisms of bexarotene for chemobrain.


Assuntos
Antineoplásicos/farmacologia , Bexaroteno/farmacologia , Cisplatino/toxicidade , Cognição/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Bainha de Mielina/efeitos dos fármacos , Desempenho Psicomotor/efeitos dos fármacos , Córtex Sensório-Motor/efeitos dos fármacos , Animais , Antineoplásicos/toxicidade , Comprometimento Cognitivo Relacionado à Quimioterapia/metabolismo , Comprometimento Cognitivo Relacionado à Quimioterapia/patologia , Comprometimento Cognitivo Relacionado à Quimioterapia/fisiopatologia , Marcha/efeitos dos fármacos , Perfilação da Expressão Gênica , Giro do Cíngulo/metabolismo , Giro do Cíngulo/patologia , Giro do Cíngulo/fisiopatologia , Camundongos , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Netrinas/efeitos dos fármacos , Netrinas/genética , Netrinas/metabolismo , Neurregulinas/efeitos dos fármacos , Neurregulinas/genética , Neurregulinas/metabolismo , Teste de Campo Aberto , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , RNA-Seq , Receptores X de Retinoides/efeitos dos fármacos , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Córtex Sensório-Motor/metabolismo , Córtex Sensório-Motor/patologia , Córtex Sensório-Motor/fisiopatologia , Substância Branca/efeitos dos fármacos , Substância Branca/metabolismo , Substância Branca/patologia
11.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198169

RESUMO

Dopaminergic medication for Parkinson's disease is associated with troubling dystonia and dyskinesia and, in rodents, dopaminergic agonists likewise induce a variety of orofacial motor responses, certain of which are mimicked by serotonin2C (5-HT2C) receptor agonists. However, the neural substrates underlying these communalities and their interrelationship remain unclear. In Sprague-Dawley rats, the dopaminergic agonist, apomorphine (0.03-0.3 mg/kg) and the preferential D2/3 receptor agonist quinpirole (0.2-0.5 mg/kg), induced purposeless oral movements (chewing, jaw tremor, tongue darting). The 5-HT2C receptor antagonist 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxyl]-5-pyridyl]carbamoyl]-6-trifluoromethylindone (SB 243213) (1 mg/kg) reduced the oral responses elicited by specific doses of both agonists (0.1 mg/kg apomorphine; 0.5 mg/kg quinpirole). After having confirmed that the oral bouts induced by quinpirole 0.5 mg/kg were blocked by another 5-HT2C antagonist (6-chloro-5-methyl-1-[6-(2-methylpiridin-3-yloxy)pyridine-3-yl carbamoyl] indoline (SB 242084), 1 mg/kg), we mapped the changes in neuronal activity in numerous sub-territories of the basal ganglia using c-Fos expression. We found a marked increase of c-Fos expression in the subthalamic nucleus (STN) in combining quinpirole (0.5 mg/kg) with either SB 243213 or SB 242084. In a parallel set of electrophysiological experiments, the same combination of SB 243213/quinpirole produced an irregular pattern of discharge and an increase in the firing rate of STN neurons. Finally, it was shown that upon the electrical stimulation of the anterior cingulate cortex, quinpirole (0.5 mg/kg) increased the response of substantia nigra pars reticulata neurons corresponding to activation of the "hyperdirect" (cortico-subthalamonigral) pathway. This effect of quinpirole was abolished by the two 5-HT2C antagonists. Collectively, these results suggest that induction of orofacial motor responses by D2/3 receptor stimulation involves 5-HT2C receptor-mediated activation of the STN by recruitment of the hyperdirect (cortico-subthalamonigral) pathway.


Assuntos
Agonistas de Dopamina/farmacologia , Receptor 5-HT2C de Serotonina/metabolismo , Serotonina/metabolismo , Núcleo Subtalâmico/efeitos dos fármacos , Aminopiridinas/farmacologia , Animais , Apomorfina/farmacologia , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Indóis/farmacologia , Masculino , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Piridinas/farmacologia , Quimpirol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Núcleo Subtalâmico/metabolismo
12.
Learn Mem ; 27(8): 292-300, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32669384

RESUMO

Reconsolidation is a time-limited process under which reactivated memory content can be modified. Works focused on studying reconsolidation mainly restrict intervention to the moments immediately after reactivation and to recently acquired memories. However, the brain areas activated during memory retrieval depend on when it was acquired, and it is relatively unknown how different brain sites contribute to reconsolidation and persistence of reactivated recent and remote fear memories. Here, we sought to investigate the participation of prelimbic (PL) and anterior cingulate cortices (ACC) in recent (1 d old) and remote (21 d old) fear memory reconsolidation and persistence. Male Wistar rats were submitted to the contextual fear conditioning protocol. Tamoxifen (TMX), an estrogen receptor modulator known to inhibit protein kinase C activity was used to interfere with these processes. When infused into the PL cortex, but not into the ACC, TMX administration immediately or 6 h after recent fear memory reactivation impaired memory reconsolidation and persistence, respectively. TMX administered immediately after remote memory reactivation impaired memory reconsolidation when infused into the PL cortex and ACC. However, remote memory persistence was only affected when TMX was infused 6 h after memory reactivation into the ACC and no effect was observed when TMX was infused 6 h after memory reactivation into PL cortex. Together, the findings provide further evidence on the participation of PL cortex and ACC in reconsolidation of recent and remote fear memories and suggest that the persistence of a reactivated fear memory becomes independent on the PL cortex with memory age and dependent on the ACC.


Assuntos
Medo/fisiologia , Giro do Cíngulo/fisiologia , Consolidação da Memória/fisiologia , Memória de Longo Prazo/fisiologia , Memória de Curto Prazo/fisiologia , Rememoração Mental/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Giro do Cíngulo/efeitos dos fármacos , Masculino , Consolidação da Memória/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Ratos , Ratos Wistar , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Fatores de Tempo
13.
Behav Brain Res ; 393: 112790, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603799

RESUMO

Empathy toward the distress of others is thought to motivate helping behaviour, in the form of voluntary action to eliminate that distress. Neuropeptide oxytocin is associated with various social cognitive abilities, including empathy and prosocial behaviour. The anterior cingulate cortex is known to be one of the brain regions underlying empathy, and one in which oxytocin receptors are expressed. However, the relationship between helping behaviour and oxytocin in the anterior cingulate cortex is still unclear. The present study investigated whether oxytocin in the anterior cingulate cortex is involved in rats' helping behaviour. In Experiment 1, we examined the influence of blockading the oxytocin receptors in the anterior cingulate cortex on helping behaviour. Impeding oxytocin in the anterior cingulate cortex delayed learning of the helping behaviour. In Experiment 2, we examined immunofluorescent colocalization of oxytocin receptors and c-fos proteins in the anterior cingulate cortex, the anterior insular cortex, and the amygdala in rats that acquired helping behaviour. We found increased c-fos expression in oxytocin receptor-containing neurons in the anterior cingulate cortex and amygdala when the rats acquired helping behaviour. In addition, the change in neural activation was found in the late phase of the learning. These results suggest that the oxytocin in the cingulate-amygdala pathways may play an important role in helping behaviour.


Assuntos
Giro do Cíngulo/fisiologia , Comportamento de Ajuda , Aprendizagem/fisiologia , Neurônios/fisiologia , Ocitocina/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Empatia/fisiologia , Feminino , Giro do Cíngulo/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Ocitocina/administração & dosagem , Ocitocina/agonistas , Proteínas Proto-Oncogênicas c-fos/análise , Ratos Sprague-Dawley
14.
J Cell Mol Med ; 24(12): 7000-7014, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32394486

RESUMO

Spatial recognition memory impairment is an important complication after traumatic brain injury (TBI). We previously found that spatial recognition memory impairment can be alleviated in adenosine A2A receptor knockout (A2A R KO) mice after TBI, but the mechanism remains unclear. In the current study, we used manganese-enhanced magnetic resonance imaging and the Y-maze test to determine whether the electrical activity of neurons in the retrosplenial cortex (RSC) was reduced and spatial recognition memory was impaired in wild-type (WT) mice after moderate TBI. Furthermore, spatial recognition memory was damaged by optogenetically inhibiting the electrical activity of RSC neurons in WT mice. Additionally, the electrical activity of RSC neurons was significantly increased and spatial recognition memory impairment was reduced in A2A R KO mice after moderate TBI. Specific inhibition of A2A R in the ipsilateral RSC alleviated the impairment in spatial recognition memory in WT mice. In addition, A2A R KO improved autophagic flux in the ipsilateral RSC after injury. In primary cultured neurons, activation of A2A R reduced lysosomal-associated membrane protein 1 and cathepsin D (CTSD) levels, increased phosphorylated protein kinase A and phosphorylated extracellular signal-regulated kinase 2 levels, reduced transcription factor EB (TFEB) nuclear localization and impaired autophagic flux. These results suggest that the impairment of spatial recognition memory after TBI may be associated with impaired autophagic flux in the RSC and that A2A R activation may reduce lysosomal biogenesis through the PKA/ERK2/TFEB pathway to impair autophagic flux.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Autofagia , Lesões Encefálicas Traumáticas/complicações , Giro do Cíngulo/patologia , Giro do Cíngulo/fisiopatologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Memória Espacial/efeitos dos fármacos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Giro do Cíngulo/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/patologia , Biogênese de Organelas
15.
Schizophr Bull ; 46(3): 690-698, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32275755

RESUMO

The adenosine hypothesis of schizophrenia posits that reduced availability of the neuromodulator adenosine contributes to dysregulation of dopamine and glutamate transmission and the symptoms associated with schizophrenia. It has been proposed that increased expression of the enzyme adenosine kinase (ADK) may drive hypofunction of the adenosine system. While animal models of ADK overexpression support such a role for altered ADK, the expression of ADK in schizophrenia has yet to be examined. In this study, we assayed ADK gene and protein expression in frontocortical tissue from schizophrenia subjects. In the dorsolateral prefrontal cortex (DLPFC), ADK-long and -short splice variant expression was not significantly altered in schizophrenia compared to controls. There was also no significant difference in ADK splice variant expression in the frontal cortex of rats treated chronically with haloperidol-decanoate, in a study to identify the effect of antipsychotics on ADK gene expression. ADK protein expression was not significantly altered in the DLPFC or anterior cingulate cortex (ACC). There was no significant effect of antipsychotic medication on ADK protein expression in the DLPFC or ACC. Overall, our results suggest that increased ADK expression does not contribute to hypofunction of the adenosine system in schizophrenia and that alternative mechanisms are involved in dysregulation of this system in schizophrenia.


Assuntos
Adenosina Quinase/metabolismo , Adenosina/metabolismo , Antipsicóticos/farmacologia , Expressão Gênica , Giro do Cíngulo/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , Adenosina Quinase/efeitos dos fármacos , Adenosina Quinase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Expressão Gênica/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/enzimologia , Células Hep G2 , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/enzimologia , Ratos , Ratos Sprague-Dawley , Esquizofrenia/tratamento farmacológico , Esquizofrenia/enzimologia , Bancos de Tecidos
16.
Mol Psychiatry ; 25(8): 1640-1650, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32205866

RESUMO

Early response to antipsychotic medications is one of the most important determinants of later symptomatic and functional outcomes in psychosis. Glutathione and glutamate have emerged as promising therapeutic targets for patients demonstrating inadequate response to dopamine-blocking antipsychotics. Nevertheless, the role of these neurochemicals in the mechanism of early antipsychotic response remains poorly understood. Using a longitudinal design and ultrahigh field 7-T magnetic resonance spectroscopy (MRS) protocol in 53 subjects, we report the association between dorsal anterior cingulate cortex glutamate and glutathione, with time to treatment response in drug naive (34.6% of the sample) or minimally medicated first episode patients with schizophreniform disorder, schizophrenia, and schizoaffective disorder. Time to response was defined as the number of weeks required to reach a 50% reduction in the PANSS-8 scores. Higher glutathione was associated with shorter time to response (F = 4.86, P = 0.017), while higher glutamate was associated with more severe functional impairment (F = 5.33, P = 0.008). There were no significant differences between patients and controls on measures of glutamate or glutathione. For the first time, we have demonstrated an association between higher glutathione and favorable prognosis in FEP. We propose that interventions that increase brain glutathione levels may improve outcomes of early intervention in psychosis.


Assuntos
Antipsicóticos/uso terapêutico , Ácido Glutâmico/metabolismo , Glutationa/metabolismo , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/tratamento farmacológico , Antipsicóticos/farmacologia , Feminino , Ácido Glutâmico/análise , Glutationa/análise , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Humanos , Estudos Longitudinais , Espectroscopia de Ressonância Magnética , Masculino , Prognóstico , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/metabolismo , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Fatores de Tempo , Adulto Jovem
17.
Psychopharmacology (Berl) ; 237(2): 443-451, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31786651

RESUMO

RATIONALE: There is interest in employing N-acetylcysteine (NAC) in the treatment of schizophrenia, but investigations of the functional signatures of its pharmacological action are scarce. OBJECTIVES: The aim of this study was to identify the changes in resting-state functional connectivity (rs-FC) that occur following administration of a single dose of NAC in patients with schizophrenia. A secondary aim was to examine whether differences in rs-FC between conditions were mediated by glutamate metabolites in the anterior cingulate cortex (ACC). METHODS: In a double-blind, placebo-controlled crossover design, 20 patients with schizophrenia had two MRI scans administered 7 days apart, following oral administration of either 2400 mg NAC or placebo. Resting state functional fMRI (rsfMRI) assessed the effect of NAC on rs-FC within the default mode network (DMN) and the salience network (SN). Proton magnetic resonance spectroscopy was used to measure Glx/Cr (glutamate plus glutamine, in ratio to creatine) levels in the ACC during the same scanning sessions. RESULTS: Compared to the placebo condition, the NAC condition was associated with reduced within the DMN and SN, specifically between the medial pre-frontal cortex to mid frontal gyrus, and ACC to frontal pole (all p < 0.04). There were no significant correlations between ACC Glx/Cr and rs-FC in either condition (p > 0.6). CONCLUSIONS: These findings provide preliminary evidence that NAC can reduce medial frontal rs-FC in schizophrenia. Future studies assessing the effects of NAC on rs-FC in early psychosis and on repeated administration in relation to efficacy would be of interest.


Assuntos
Acetilcisteína/administração & dosagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Descanso/fisiologia , Esquizofrenia/diagnóstico por imagem , Adulto , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Feminino , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo
18.
Pain ; 161(2): 288-299, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31651580

RESUMO

Patients with chronic pain often report being sensitive to pain at night before falling asleep, a time when the synchronization of cortical activity is initiated. However, how cortical activity relates to pain sensitivity is still unclear. Because sleep is characterized by enhanced cortical delta power, we hypothesized that enhanced cortical delta power may be an indicator of intensified pain. To test this hypothesis, we used pain thresholds tests, EEG/electromyogram recordings, c-Fos staining, and chemogenetic and pharmacological techniques in mice. We found that sleep deprivation or pharmacologic enhancement of EEG delta power by reserpine and scopolamine dramatically decreased mechanical pain thresholds, but not thermal withdrawal latency, in a partial sciatic nerve ligation model of neuropathic pain mice. On the contrary, suppression of EEG delta power using a wake-promoting agent modafinil significantly attenuated mechanical allodynia. Moreover, when EEG delta power was enhanced, c-Fos expression decreased in most regions of the cortex, except the anterior cingulate cortex (ACC), where c-Fos was increased in the somatostatin- and parvalbumin-positive GABAergic neurons. Chemogenetic activation of GABAergic neurons in ACC enhanced EEG delta power and lowered mechanical pain thresholds simultaneously in naive mice. However, chemogenetic inhibition of ACC GABAergic neurons could not block mechanical allodynia. These results provided compelling evidence that elevated EEG delta power is accompanied with aggravated neuropathic pain, whereas decreased delta power attenuated it, suggesting that enhanced delta power can be a specific marker of rising chronic neuropathic pain and that wake-promoting compounds could be used as analgesics in the clinic.


Assuntos
Córtex Cerebral/fisiopatologia , Ritmo Delta/fisiologia , Hiperalgesia/fisiopatologia , Neuralgia/fisiopatologia , Limiar da Dor/fisiologia , Sono/fisiologia , Inibidores da Captação Adrenérgica/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Antagonistas Colinérgicos/farmacologia , Sincronização Cortical/efeitos dos fármacos , Sincronização Cortical/fisiologia , Ritmo Delta/efeitos dos fármacos , Eletroencefalografia , Eletromiografia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Hiperalgesia/metabolismo , Camundongos , Modafinila/farmacologia , Neuralgia/metabolismo , Limiar da Dor/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Reserpina/farmacologia , Nervo Isquiático/cirurgia , Escopolamina/farmacologia , Sono/efeitos dos fármacos , Privação do Sono/induzido quimicamente , Privação do Sono/fisiopatologia , Promotores da Vigília/farmacologia
19.
J Psychopharmacol ; 33(12): 1600-1609, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31542980

RESUMO

BACKGROUND: Changes in resting state functional connectivity between the insula and dorsal anterior cingulate cortex as well as between the insula and nucleus accumbens have been linked to nicotine withdrawal and/or administration. However, because many of nicotine's effects in humans appear to depend, at least in part, on the belief that nicotine has been administered, the relative contribution of nicotine's pharmacological actions to such effects requires clarification. AIMS: The purpose of this study was to examine the impacts of perceived and actual nicotine administration on neural responses. METHODS: Twenty-six smokers were randomly assigned to receive either a nicotine inhaler (4 mg deliverable) or a nicotine-free inhaler across two sessions. Inhaler content instructions (told nicotine vs told nicotine-free) differed across sessions. Resting state functional connectivity between sub-regions of the insula and the dorsal anterior cingulate cortex and nucleus accumbens was measured using magnetic resonance imaging before and after inhaler administration. RESULTS: Both actual and perceived nicotine administration independently altered resting state functional connectivity between the anterior insula and the dorsal anterior cingulate cortex, with actual administration being associated with decreased resting state functional connectivity, and perceived administration with increased resting state functional connectivity. Actual nicotine administration also contralaterally reduced resting state functional connectivity between the anterior insula and nucleus accumbens, while reductions in resting state functional connectivity between the mid-insula and right nucleus accumbens were observed when nicotine was administered unexpectedly. Changes in resting state functional connectivity associated with actual or perceived nicotine administration were unrelated to changes in subjective withdrawal and craving. Changes in withdrawal and craving were however independently associated with resting state functional connectivity between the nucleus accumbens and insula. CONCLUSIONS: Our findings highlight the importance of considering non-pharmacological factors when examining drug mechanisms of action.


Assuntos
Nicotina/administração & dosagem , Fumantes/psicologia , Fumar/psicologia , Síndrome de Abstinência a Substâncias/psicologia , Adulto , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Fissura , Método Duplo-Cego , Feminino , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Nicotina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Adulto Jovem
20.
Int J Neuropsychopharmacol ; 22(8): 478-487, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31283822

RESUMO

BACKGROUND: There is increasing evidence that redox dysregulation, which can lead to oxidative stress and eventually to impairment of oligodendrocytes and parvalbumin interneurons, may underlie brain connectivity alterations in schizophrenia. Accordingly, we previously reported that levels of brain antioxidant glutathione in the medial prefrontal cortex were positively correlated with increased functional connectivity along the cingulum bundle in healthy controls but not in early psychosis patients. In a recent randomized controlled trial, we observed that 6-month supplementation with a glutathione precursor, N-acetyl-cysteine, increased brain glutathione levels and improved symptomatic expression and processing speed. METHODS: We investigated the effect of N-acetyl-cysteine supplementation on the functional connectivity between regions of the cingulate cortex, which have been linked to positive symptoms and processing speed decline. In this pilot study, we compared structural connectivity and resting-state functional connectivity between early psychosis patients treated with 6-month N-acetyl-cysteine (n = 9) or placebo (n = 11) supplementation with sex- and age-matched healthy control subjects (n = 74). RESULTS: We observed that 6-month N-acetyl-cysteine supplementation increases functional connectivity along the cingulum and more precisely between the caudal anterior part and the isthmus of the cingulate cortex. These functional changes can be partially explained by an increase of centrality of these regions in the functional brain network. CONCLUSIONS: N-acetyl-cysteine supplementation has a positive effect on functional connectivity within the cingulate cortex in early psychosis patients. To our knowledge, this is the first study suggesting that increased brain glutathione levels via N-acetyl-cysteine supplementation may improve brain functional connectivity.


Assuntos
Acetilcisteína/uso terapêutico , Antioxidantes/uso terapêutico , Suplementos Nutricionais , Giro do Cíngulo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transtornos Psicóticos/tratamento farmacológico , Acetilcisteína/efeitos adversos , Adulto , Antioxidantes/efeitos adversos , Mapeamento Encefálico/métodos , Suplementos Nutricionais/efeitos adversos , Método Duplo-Cego , Europa (Continente) , Feminino , Glutationa/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , Giro do Cíngulo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Projetos Piloto , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/metabolismo , Transtornos Psicóticos/psicologia , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA