Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.962
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biomed Mater ; 19(4)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38857607

RESUMO

Hypothyroidism is caused by insufficient stimulation or disruption of the thyroid. However, the drawbacks of thyroid transplantation have led to the search for new treatments. Decellularization allows tissue transplants to maintain their biomimetic structures while preserving cell adhesion, proliferation, and differentiation. This study aimed to decellularize human thyroid tissues using a structure-preserving optimization strategy and present preliminary data on recellularization. Nine methods were used for physical and chemical decellularization. Quantitative and immunohistochemical analyses were performed to investigate the DNA and extracellular matrix components of the tissues. Biomechanical properties were determined by compression test, and cell viability was examined after seeding MDA-T32 papillary thyroid cancer (PTC) cells onto the decellularized tissues. Decellularized tissues exhibited a notable decrease (<50 ng mg-1DNA, except for Groups 2 and 7) compared to the native thyroid tissue. Nonetheless, collagen and glycosaminoglycans were shown to be conserved in all decellularized tissues. Laminin and fibronectin were preserved at comparatively higher levels, and Young's modulus was elevated when decellularization included SDS. It was observed that the strain value in Group 1 (1.63 ± 0.14 MPa) was significantly greater than that in the decellularized tissues between Groups 2-9, ranging from 0.13 ± 0.03-0.72 ± 0.29 MPa. Finally, viability assessment demonstrated that PTC cells within the recellularized tissue groups successfully attached to the 3D scaffolds and sustained metabolic activity throughout the incubation period. We successfully established a decellularization optimization for human thyroid tissues, which has potential applications in tissue engineering and transplantation research. Our next goal is to conduct recellularization using the methods utilized in Group 1 and transplant the primary thyroid follicular cell-seeded tissues into anin vivoanimal model, particularly due to their remarkable 3D structural preservation and cell adhesion-promoting properties.


Assuntos
Sobrevivência Celular , Matriz Extracelular , Glândula Tireoide , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Humanos , Glândula Tireoide/citologia , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Alicerces Teciduais/química , Colágeno/química , Adesão Celular , Glicosaminoglicanos/metabolismo , Glicosaminoglicanos/química , Linhagem Celular Tumoral , DNA , Módulo de Elasticidade , Proliferação de Células , Neoplasias da Glândula Tireoide/patologia , Matriz Extracelular Descelularizada/química , Laminina/química , Fenômenos Biomecânicos , Diferenciação Celular , Câncer Papilífero da Tireoide/patologia , Fibronectinas/química , Fibronectinas/metabolismo
2.
Sci Rep ; 12(1): 2144, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140269

RESUMO

While the signaling pathways and transcription factors involved in the differentiation of thyroid follicular cells, both in embryonic and adult life, are increasingly well understood, the underlying mechanisms and potential crosstalk between the thyroid transcription factors Nkx2.1, Foxe1 and Pax8 and inductive signals remain unclear. Here, we focused on the transcription factor Sox9, which is expressed in Nkx2.1-positive embryonic thyroid precursor cells and is maintained from embryonic development to adulthood, but its function and control are unknown. We show that two of the main signals regulating thyroid differentiation, TSH and TGFß, modulate Sox9 expression. Specifically, TSH stimulates the cAMP/PKA pathway to transcriptionally upregulate Sox9 mRNA and protein expression, a mechanism that is mediated by the binding of CREB to a CRE site within the Sox9 promoter. Contrastingly, TGFß signals through Smad proteins to inhibit TSH-induced Sox9 transcription. Our data also reveal that Sox9 transcription is regulated by the thyroid transcription factors, particularly Pax8. Interestingly, Sox9 significantly increased the transcriptional activation of Pax8 and Foxe1 promoters and, consequently, their expression, but had no effect on Nkx2.1. Our study establishes the involvement of Sox9 in thyroid follicular cell differentiation and broadens our understanding of transcription factor regulation of thyroid function.


Assuntos
Fatores de Transcrição SOX9/metabolismo , Células Epiteliais da Tireoide/citologia , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Tireotropina/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Camundongos , Fator de Transcrição PAX8/genética , Fator de Transcrição PAX8/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição SOX9/genética , Transdução de Sinais , Glândula Tireoide/citologia , Glândula Tireoide/embriologia , Fator Nuclear 1 de Tireoide/genética , Fator Nuclear 1 de Tireoide/metabolismo , Tireotropina/farmacologia , Transcrição Gênica , Fator de Crescimento Transformador beta/farmacologia
3.
J Endocrinol Invest ; 45(4): 815-824, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34865184

RESUMO

PURPOSE: Primary thyroid lymphoma (PTL) is a rare malignancy, and the literature is limited to small case series and case reports. This study aimed to assess the epidemiologic characteristics, survival, and prognostic factors of patients with PTL. METHODS: We analyzed 2215 PTL patients from the Surveillance, Epidemiology, and End Results database medical records, between 1983 and 2015, as the training cohort. We enrolled 105 patients from the Cancer Hospital, Chinese Academy of Medical Sciences, for the external validation cohort. The nomograms for predicting the 1-, 5-, and 10-year overall survival (OS) and lymphoma-specific survival (LSS) were constructed. RESULTS: PTL incidence steadily increased from 1977 to 1994, with an annual percentage change of 3.2% (95% confidence interval [CI]: 1.2-5.2, P < 0.05). The 1-, 5-, and 10-year OS and LSS rates were 84.66%, 71.61%, and 55.95%; and 90.5%, 85.7%, and 82.2%, respectively. Multivariate Cox regression analysis revealed that shorter OS association with age ≥ 60 years (hazard ratio [HR], 3.94; 95% CI 3.31-4.69; P < 0.001), unmarried status (HR, 1.55; 95% CI 1.37-1.75; P < 0.001), Ann Arbor stage III-IV (HR, 1.55; 95% CI 1.37-1.75; P = 0.020), diffuse large B-cell lymphoma (HR, 2.60; 95% CI 1.15-5.87; P = 0.022), and T cell non-Hodgkin lymphoma (HR, 3.53; 95% CI 1.12-11.10; P = 0.031). In the multivariate competing-risk analyzes, age, stages III-IV, year of diagnosis, surgery, radiation, chemotherapy, and histology were strongly predictive of PTL-specific risk of death. To estimate the 1-, 5-, and 10-year LSS and OS rates, respectively, nomograms were built. In the validation cohort, the results also confirmed the utility. CONCLUSIONS: This study presents the first prognostic model with an external validation that could help clinicians identify patients with high-risk PTL to improve their prognosis.


Assuntos
Linfoma/complicações , Glândula Tireoide/anormalidades , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Área Sob a Curva , Criança , Pré-Escolar , Feminino , Humanos , Estimativa de Kaplan-Meier , Linfoma/sangue , Linfoma/epidemiologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Curva ROC , Programa de SEER/estatística & dados numéricos , Glândula Tireoide/citologia
4.
Surgery ; 171(1): 245-251, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34362588

RESUMO

BACKGROUND: Tall cell variant of papillary thyroid carcinoma is an aggressive subtype of papillary thyroid carcinoma. We examined expression of cancer stem cell markers in tall cell variant compared with other well-differentiated thyroid cancers. METHODS: Expression of cancer stem cell markers was examined in 572 thyroid tumors from The Cancer Genome Atlas Thyroid Cancer database and tall cell variant and papillary thyroid carcinoma tumors by immunohistochemistry. RESULTS: Expression of the PROM1 gene, encoding the cancer stem cell marker CD133, was elevated in tall cell variant compared to classic papillary thyroid carcinoma in a large cohort of unmatched samples from The Cancer Genome Atlas Thyroid Cancer database (P < .001). By immunohistochemistry in age and stage matched samples, CD133 protein was confirmed to be significantly increased in tall cell variant versus classic papillary thyroid carcinoma (P = .006). Analyzing all thyroid cancers, high PROM1 expression was associated with worse disease-specific survival. Optimal cutoffs were determined to define a tall cell variant-like cancer stem cell signature characterized by high PROM1, high ALDH1A3, and low CD24 expression. Classic papillary thyroid carcinoma with a tall cell variant-like gene signature had worse recurrence disease-free survival compared to classic papillary thyroid carcinoma with a non-tall cell variant signature (P = .02). CONCLUSION: Tall cell variant of papillary thyroid carcinoma has increased expression of cancer stem cell markers compared to classic papillary thyroid carcinoma. The tall cell variant-like cancer stem cell gene signature identified a molecular subtype of classic papillary thyroid carcinoma that has a worse recurrence-free survival.


Assuntos
Biomarcadores Tumorais/metabolismo , Recidiva Local de Neoplasia/epidemiologia , Células-Tronco Neoplásicas/metabolismo , Câncer Papilífero da Tireoide/mortalidade , Glândula Tireoide/patologia , Biomarcadores Tumorais/análise , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/prevenção & controle , Células-Tronco Neoplásicas/patologia , Estudos Retrospectivos , Medição de Risco/métodos , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/terapia , Glândula Tireoide/citologia , Neoplasias da Glândula Tireoide/patologia
5.
Front Endocrinol (Lausanne) ; 12: 749609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938270

RESUMO

In previous studies we have demonstrated that the expression of the Major Histocompatibility Complex (MHC) class I gene in thyrocytes is controlled by several hormones, growth factors, and drugs. These substances mainly act on two regions of the MHC class I promoter a "tissue-specific" region (-800 to -676 bp) and a "hormone/cytokines-sensitive" region (-500 to -68 bp). In a previous study, we have shown that the role of the "tissue-specific" region in the MHC class I gene expression is dominant compared to that of the "hormone/cytokines-sensitive" region. In the present report we further investigate the dominant role of the "tissue-specific" region evaluating the effect of thyroid stimulating hormone (TSH), methimazole (MMI), phenylmethimazole (C10), glucose and thymosin-α1. By performing experiments of electrophoretic mobility shift assays (EMSAs) we show that TSH, MMI and C10, which inhibit MHC class I expression, act on the "tissue-specific" region increasing the formation of a silencer complex. Glucose and thymosin-α1, which stimulate MHC class I expression, act decreasing the formation of this complex. We further show that the silencer complex is formed by two distinct members of the transcription factors families activator protein-1 (AP-1) and nuclear factor-kB (NF-kB), c-jun and p65, respectively. These observations are important in order to understand the regulation of MHC class I gene expression in thyroid cells and its involvement in the development of thyroid autoimmunity.


Assuntos
Genes MHC Classe I/genética , Hormônios/fisiologia , Glândula Tireoide/fisiologia , Animais , Antitireóideos/farmacologia , Linhagem Celular , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica/efeitos dos fármacos , Genes MHC Classe I/efeitos dos fármacos , Glucose/farmacologia , Metimazol/análogos & derivados , Metimazol/farmacologia , Ratos , Tionas/farmacologia , Timosina/farmacologia , Glândula Tireoide/citologia , Glândula Tireoide/efeitos dos fármacos , Tireoidite Autoimune/genética , Tireoidite Autoimune/patologia , Tireotropina/farmacologia , Fatores de Transcrição/genética
6.
Cells ; 10(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34831120

RESUMO

Medullary thyroid carcinoma contributes to about 3-4% of thyroid cancers and affects C cells rather than follicular cells. Thyroid C cell differentiation from human pluripotent stem cells has not been reported. We report the stepwise differentiation of human embryonic stem cells into thyroid C cell-like cells through definitive endoderm and anterior foregut endoderm and ultimobranchial body-like intermediates in monolayer and 3D Matrigel culture conditions. The protocol involved sequential treatment with interferon/transferrin/selenium/pyruvate, foetal bovine serum, and activin A, then IGF-1 (Insulin-like growth factor 1), on the basis of embryonic thyroid developmental sequence. As well as expressing C cell lineage relative to follicular-lineage markers by qPCR (quantitative polymerase chain reaction) and immunolabelling, these cells by ELISA (enzyme-linked immunoassay) exhibited functional properties in vitro of calcitonin storage and release of calcitonin on calcium challenge. This method will contribute to developmental studies of the human thyroid gland and facilitate in vitro modelling of medullary thyroid carcinoma and provide a valuable platform for drug screening.


Assuntos
Células-Tronco Pluripotentes/citologia , Glândula Tireoide/citologia , Alicerces Teciduais/química , Biomarcadores/metabolismo , Calcitonina/metabolismo , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Colágeno/farmacologia , Combinação de Medicamentos , Endoderma/citologia , Trato Gastrointestinal/citologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Laminina/farmacologia , Sistemas Neurossecretores/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Proteoglicanas/farmacologia
8.
Front Endocrinol (Lausanne) ; 12: 706101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276566

RESUMO

The synergistic activation of transcription factors can lead to thyroid progenitor cell speciation. We have previously shown in vitro that mouse or human stem cells, expressing the transcription factors NKx2-1 and Pax8, can differentiate into thyroid neo-follicular structures (TFS). We now show that syngeneic mouse TFS when implanted into hypothyroid TSH receptor knockout (TSHR-KO) mice can ameliorate the hypothyroid state for an extended period. ES cells derived from heterozygous TSHR-KO blastocysts were stably transfected with Nkx2-1-GFP and Pax8-mcherry constructs and purified into 91.8% double positive cells by flow cytometry. After 5 days of activin A treatment these double positive cells were then induced to differentiate into neo-follicles in Matrigel for 21 days in the presence of 500µU/mL of TSH. Differentiated TFS expressing thyroglobulin mRNA were implanted under the kidney capsule of 4-6 weeks old TSHR-KO mice (n=5) as well as hind limb muscle (n=2) and anterior chamber of one eye (n=2). Five of the mice tested after 4 weeks were all rendered euthyroid and all mice remained euthyroid at 20 weeks post implantation. The serum T4 fully recovered (pre-bleed 0.62 ± 0.03 to 8.40 ± 0.57 µg/dL) and the previously elevated TSH became normal or suppressed (pre-bleed 391 ± 7.6 to 4.34 ± 1.25 ng/dL) at the end of the 20 week observation period. The final histology obtained from the implanted kidney tissues showed only rudimentary thyroid follicular structures but which stained positive for thyroglobulin expression. The presence of only rudimentary structures at the site of implant on these extended animals suggested possible migration of cells from the site of implant or an inability of TFCs to maintain proper follicular morphology in these external sites for extended periods. However, there were no signs of tumor formation and no immune infiltration. These preliminary studies show that TSHR-KO mice are a useful model for orthotropic implantation of functional thyroid cells without the need for thyroidectomy, radioiodine ablation or anti thyroid drug control of thyroid function. This approach is also proof of principle that thyroid cells derived from mouse ES cells are capable of surviving as functional neo-follicles in vivo for an extended period of 20 weeks.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Hipotireoidismo/terapia , Receptores da Tireotropina/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Glândula Tireoide/citologia , Animais , Feminino , Hipotireoidismo/etiologia , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Testes de Função Tireóidea
9.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202188

RESUMO

Various natural compounds have been successfully tested for preventing or counteracting the toxic effects of exposure to heavy metals. In this study, we analyzed the effects of cadmium chloride (CdCl2) on immortalized, non-tumorigenic thyroid cells Nthy-ori-3-1. We investigated the molecular mechanism underlying its toxic action as well as the potential protective effect of quercetin against CdCl2-induced damage. CdCl2 suppressed cell growth in a dose- and time-dependent manner (IC50 value ~10 µM) associated with a decrease in levels of phospho-ERK. In addition, CdCl2 elicited an increase in reactive oxygen species (ROS) production and lipid peroxidation. A significant increase in GRP78, an endoplasmic reticulum (ER) stress-related protein, was also observed. Supplementation of quercetin counteracted the growth-inhibiting action of CdCl2 by recovering ERK protein phosphorylation levels, attenuating ROS overproduction, decreasing MDA content and reducing the expression of GRP78 in cells exposed to CdCl2. Thus, in addition to revealing the molecular effects involved in cadmium-induced toxicity, the present study demonstrated, for the first time, a protective effect of quercetin against cadmium-induced damages to normal thyroid cells.


Assuntos
Cádmio/toxicidade , Disruptores Endócrinos/toxicidade , Substâncias Protetoras/farmacologia , Quercetina/farmacologia , Glândula Tireoide/citologia , Glândula Tireoide/efeitos dos fármacos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Proliferação de Células/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Glândula Tireoide/metabolismo
10.
Cytopathology ; 32(6): 718-731, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34159645

RESUMO

OBJECTIVE: The morphological features of nuclei in cytological and histological specimens were compared and examined for the presence of BRAFV600E mutation and the appearance rate of intranuclear cytoplasmic inclusions (NI). METHODS: BRAFV600E mutation was identified using a mutation-specific antibody (clone; VE1) in 103 thyroid papillary carcinoma cases at Gunma University Hospital. The nuclear area, perimeter, and roundness of the corresponding cytological specimens and haematoxylin and eosin-stained specimens were analysed using image analysis software, and the appearance rate of NI was calculated and compared. RESULTS: BRAFV600E mutation was detected in 71 (69%) cases. The appearance rate of NI was significantly higher in the BRAFV600E mutation-positive group in cytological and histological specimens (P = .0070 and .0184, respectively). Significant differences were observed between the BRAFV600E mutation-negative and -positive groups in the average nuclear area and average nuclear perimeter in cytological specimens (P = .0137 and .0152, respectively). In addition, nuclear enlargement was correlated with the appearance rate of NI regardless of the presence of BRAFV600E mutation in cytological specimens. In the BRAFV600E mutation-negative group, the nuclear area and perimeter were significantly smaller in the lymph node metastasis-positive cases (P = .0182 and .0260, respectively). CONCLUSION: This study found that the appearance rate of NI was positively correlated with the nuclear area and perimeter and negatively correlated with nuclear roundness in cytological specimens. Furthermore, these results were observed regardless of the existence of BRAFV600E mutation. These results have never been previously reported and clearly demonstrate the usefulness of cytological specimens in computer-assisted image analysis.


Assuntos
Núcleo Celular/patologia , Processamento de Imagem Assistida por Computador/métodos , Corpos de Inclusão/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Câncer Papilífero da Tireoide , Feminino , Humanos , Masculino , Mutação , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Glândula Tireoide/citologia , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia
11.
Front Endocrinol (Lausanne) ; 12: 657195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135860

RESUMO

The thyroid gland regulates metabolism and growth via secretion of thyroid hormones by thyroid follicular cells (TFCs). Loss of TFCs, by cellular dysfunction, autoimmune destruction or surgical resection, underlies hypothyroidism. Recovery of thyroid hormone levels by transplantation of mature TFCs derived from stem cells in vitro holds great therapeutic promise. However, the utilization of in vitro derived tissue for regenerative medicine is restricted by the efficiency of differentiation protocols to generate mature organoids. Here, to improve the differentiation efficiency for thyroid organoids, we utilized single-cell RNA-Seq to chart the molecular steps undertaken by individual cells during the in vitro transformation of mouse embryonic stem cells to TFCs. Our single-cell atlas of mouse organoid systematically and comprehensively identifies, for the first time, the cell types generated during production of thyroid organoids. Using pseudotime analysis, we identify TGF-beta as a negative regulator of thyroid maturation in vitro. Using pharmacological inhibition of TGF-beta pathway, we improve the level of thyroid maturation, in particular the induction of Nis expression. This in turn, leads to an enhancement of iodide organification in vitro, suggesting functional improvement of the thyroid organoid. Our study highlights the potential of single-cell molecular characterization in understanding and improving thyroid maturation and paves the way for identification of therapeutic targets against thyroid disorders.


Assuntos
Biomarcadores/metabolismo , Iodetos/metabolismo , Organoides/citologia , Análise de Célula Única/métodos , Simportadores/metabolismo , Glândula Tireoide/citologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Diferenciação Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Organoides/metabolismo , Simportadores/genética , Glândula Tireoide/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
12.
Front Endocrinol (Lausanne) ; 12: 652675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953698

RESUMO

Thyroid cancer incidence is markedly increased in volcanic areas where residents are biocontaminated by chronic lifelong exposure to slightly increased metals in the environment. Metals can influence the biology of living cells by a variety of mechanisms, depending not only on the dose and length of exposure but also on the type and stage of differentiation of target cells. We explored the effect of five heavy metals (Cu, Hg, Pd, W and Zn) at nanomolar concentrations (the biocontamination level in residents of the volcanic area in Sicily where thyroid cancer is increased) on stimulating the proliferation of undifferentiated (thyrospheres) and differentiated human thyroid cells. Thyrosphere proliferation was significantly increased after exposure to each individual metal and a greater stimulating effect was observed when a mixture of the examined metals was used. No effect was seen in differentiated thyrocytes. For all metals, the dose-response curve followed a biphasic pattern that is typical of hormesis. Thyrosphere growth concerned the size rather than number, except with the metal mixture. An altered morphology was also observed in metal-treated thyrospheres. Metal-induced proliferation was due to activation of the ERK1/2 pathway, as confirmed by growth inhibition when ERK1/2 signaling was blocked. These studies show that stem/precursor thyroid cells are sensitive to small increases in environmental metal concentrations that are harmless for differentiated thyrocytes.


Assuntos
Metais Pesados/efeitos adversos , Células-Tronco Neoplásicas/citologia , Células Epiteliais da Tireoide/citologia , Glândula Tireoide/citologia , Neoplasias da Glândula Tireoide/metabolismo , Adulto , Idoso , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Cloretos/efeitos adversos , Sulfato de Cobre/efeitos adversos , Meios de Cultura , Relação Dose-Resposta a Droga , Exposição Ambiental , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Incidência , Cloreto de Mercúrio/efeitos adversos , Microscopia de Contraste de Fase , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Paládio/efeitos adversos , Fosforilação , Sicília/epidemiologia , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/epidemiologia , Compostos de Tungstênio/efeitos adversos , Erupções Vulcânicas , Compostos de Zinco/efeitos adversos
13.
Front Endocrinol (Lausanne) ; 12: 608697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33716965

RESUMO

Previous studies have demonstrated that, in addition to inducing structural changes in thyroid follicles, cadmium (Cd) increased the number of C cells. We examined the effects of myo-inositol (MI), seleno-L-methionine (Se), MI + Se, and resveratrol on C cells of mice exposed to cadmium chloride (Cd Cl2), as no data are currently available on the possible protective effects of these molecules. In contrast, we have previously shown this protective effect against CdCl2 on the thyroid follicles of mice. Ninety-eight C57 BL/6J adult male mice were divided into 14 groups of seven mice each: (i) 0.9% NaCl (vehicle; 1 ml/kg/day i.p.); (ii) Se (0.2 mg/kg/day per os); (iii) Se (0.4 mg/kg/day per os); (iv) MI (360 mg/kg/day per os); (v) Se (0.2 mg/kg/day) + MI; (vi) Se (0.4 mg/kg/day) + MI; (vii) resveratrol (20 mg/kg); (viii) CdCl2 (2 mg/kg/day i.p.) + vehicle; (ix) CdCl2 + Se (0.2 mg/kg/day); (x) CdCl2 + Se (0.4 mg/kg/day); (xi) CdCl2 + MI; (xii) CdCl2 + Se (0.2 mg/kg/day) + MI; (xiii) CdCl2 + Se (0.4 mg/kg/day) + MI; (xiv) CdCl2 + resveratrol (20 mg/kg). After 14 days, thyroids were processed for histological, immunohistochemical, and morphometric evaluation. Compared to vehicle, Cd significantly decreased follicle mean diameter, increased CT-positive cells number, area and cytoplasmic density, and caused the disappearance of TUNEL-positive C cells, namely, the disappearance of C cells undergoing apoptosis. Se at either 0.2 or 0.4 mg/kg/day failed to significantly increase follicular mean diameter, mildly decreased CT-positive cells number, area and cytoplasmic density, and was ineffective on TUNEL-positive C cells. Instead, MI alone increased significantly follicular mean diameter and TUNEL-positive cells number, and decreased significantly CT-positive cells number, area and cytoplasmic density. MI + Se 0.2 mg/kg/day or MI + Se 0.4 mg/kg/day administration improved all five indices more markedly. Indeed, follicular mean diameter and TUNEL-positive cells number increased significantly, while CT-positive cells number, area and cytoplasmic density decreased significantly. Thus, all five indices overlapped those observed in vehicle-treated mice. Resveratrol improved significantly all the considered parameters, with a magnitude comparable to that of MI alone. In conclusion, the association Myo + Se is effective in protecting the mouse thyroid from the Cd-induced hyperplasia and hypertrophy of C cells. This benefit adds to that exerted by Myo + Se on thyrocytes and testis.


Assuntos
Cádmio/farmacologia , Inositol/farmacologia , Selênio/farmacologia , Glândula Tireoide/efeitos dos fármacos , Animais , Tamanho Celular/efeitos dos fármacos , Bócio/induzido quimicamente , Bócio/patologia , Hiperplasia/induzido quimicamente , Hipertrofia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Células Epiteliais da Tireoide/citologia , Células Epiteliais da Tireoide/efeitos dos fármacos , Glândula Tireoide/citologia , Glândula Tireoide/patologia
14.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669447

RESUMO

Anaplastic thyroid cancer (ATC) is one of the most lethal malignancies with a median survival time of about 4 months. Currently, there is no effective treatment, and the development of new therapies is an important and urgent issue for ATC patients. YM155 is a small molecule that was identified as the top candidate in a high-throughput screen of small molecule inhibitors performed against a panel of ATC cell lines by the National Cancer Institute. However, there were no follow-up studies investigating YM155 in ATC. Here, we determined the effects of YM155 on ATC and human primary benign thyroid cell (PBTC) survival with alamarBlue assay. Our data show that YM155 inhibited proliferation of ATC cell lines while sparing normal thyroid cells, suggesting a high therapeutic window. YM155-induced DNA damage was detected by measuring phosphorylation of γ-H2AX as a marker for DNA double-strand breaks. The formamidopyrimidine-DNA glycosylase (FPG)-modified alkaline comet assay in conjunction with reactive oxygen species (ROS) assay and glutathione (GSH)/glutathione (GSSG) assay suggests that YM155-mediated oxidative stress contributes to DNA damage. In addition, we provide evidence that YM155 causes cell cycle arrest in S phase and in the G2/M transition and causes apoptosis, as seen with flow cytometry. In this study, we show for the first time the multiple effects of YM155 in ATC cells, furthering a potential therapeutic approach for ATC.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Imidazóis/farmacologia , Naftoquinonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Carcinoma Anaplásico da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carcinoma Anaplásico da Tireoide/patologia , Glândula Tireoide/citologia , Glândula Tireoide/efeitos dos fármacos , Neoplasias da Glândula Tireoide/patologia
15.
Stem Cell Reports ; 16(4): 913-925, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33711265

RESUMO

Total thyroidectomy as part of thyroid cancer treatment results in hypothyroidism requiring lifelong daily thyroid hormone replacement. Unbalanced hormone levels result in persistent complaints such as fatigue, constipation, and weight increase. Therefore, we aimed to investigate a patient-derived thyroid organoid model with the potential to regenerate the thyroid gland. Murine and human thyroid-derived cells were cultured as organoids capable of self-renewal and which expressed proliferation and putative stem cell and thyroid characteristics, without a change in the expression of thyroid tumor-related genes. These organoids formed thyroid-tissue-resembling structures in culture. (Xeno-)transplantation of 600,000 dispersed organoid cells underneath the kidney capsule of a hypothyroid mouse model resulted in the generation of hormone-producing thyroid-resembling follicles. This study provides evidence that thyroid-lineage-specific cells can form organoids that are able to self-renew and differentiate into functional thyroid tissue. Subsequent (xeno-)transplantation of these thyroid organoids demonstrates a proof of principle for functional miniature gland formation.


Assuntos
Diferenciação Celular , Organoides/citologia , Glândula Tireoide/citologia , Adulto , Animais , Biomarcadores Tumorais/metabolismo , Autorrenovação Celular , Modelos Animais de Doenças , Humanos , Hipotireoidismo/patologia , Camundongos , Células-Tronco/citologia , Técnicas de Cultura de Tecidos
16.
Am J Physiol Endocrinol Metab ; 320(3): E581-E590, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427048

RESUMO

Current in vitro models have played important roles in improving knowledge and understanding of cellular and molecular biology, but cannot exactly recapitulate the physiology of human tissues such as thyroid. In this article, we conducted a systematic review to present scientific and methodological time-trends of the reconstruction and generation of 3 D functional thyroid follicles and organoids for thyroid research in health and disease. "Web of Science (ISI)", "Scopus", "Embase", "Cochrane Library", and "PubMed" were systematically searched for papers published since 1950 to May 2020 in English language, using the predefined keywords. 212 articles were reviewed and finally 28 papers that met the inclusion and exclusion criteria were selected. Among the evidence for the examination of 3 D cell culture methods in thyroid research, there were only a few studies related to the organoid technology and its potential applications in understanding morphological, histological, and physiological characteristics of the thyroid gland and reconstructing this tissue. Besides, there was no study using organoids to investigate the tumorigenesis process of thyroid. Based on the results of this study, despite all the limitations and controversies, the exciting and promising organoid technology offers researchers a wide range of potential applications for more accurate modeling of thyroid in health and diseases and provides an excellent preclinical in vitro platform. In future, organoid technology can provide a better understanding of the molecular mechanisms of pathogenesis and tumorigenesis of thyroid tissue and more effective treatment for related disorders due to more accurate simulation of the thyroid physiology.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas de Cultura de Células/tendências , Organoides/citologia , Glândula Tireoide/citologia , Técnicas de Cultura de Células/história , História do Século XX , História do Século XXI , Humanos , Modelos Biológicos , Medicina Regenerativa/história , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências
17.
J Endocrinol Invest ; 44(5): 1085-1090, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33025553

RESUMO

PURPOSE: SARS-COV-2 is a pathogenic agent belonging to the coronavirus family, responsible for the current global world pandemic. Angiotensin-converting enzyme 2 (ACE-2) is the receptor for cellular entry of SARS-CoV-2. ACE-2 is a type I transmembrane metallo-carboxypeptidase involved in the Renin-Angiotensin pathway. By analyzing two independent databases, ACE-2 was identified in several human tissues including the thyroid. Although some cases of COVID-19-related subacute thyroiditis were recently described, direct proof for the expression of the ACE-2 mRNA in thyroid cells is still lacking. Aim of the present study was to investigate by RT-PCR whether the mRNA encoding for ACE-2 is present in human thyroid cells. METHODS: RT-PCR was performed on in vitro ex vivo study on thyroid tissue samples (15 patients undergoing thyroidectomy for benign thyroid nodules) and primary thyroid cell cultures. RESULTS: The ACE-2 mRNA was detected in all surgical thyroid tissue samples (n = 15). Compared with two reporter genes (GAPDH: 0.052 ± 0.0026 Cycles-1; ß-actin: 0.044 ± 0.0025 Cycles-1; ACE-2: 0.035 ± 0.0024 Cycles-1), the mean level of transcript expression for ACE-2 mRNA was abundant. The expression of ACE-2 mRNA in follicular cells was confirmed by analyzing primary cultures of thyroid cells, which expressed the ACE-2 mRNA at levels similar to tissues. CONCLUSIONS: The results of the present study demonstrate that the mRNA encoding for the ACE-2 receptor is expressed in thyroid follicular cells, making them a potential target for SARS-COV-2 entry. Future clinical studies in patients with COVID-19 will be required for increase our understanding of the thyroid repercussions of SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/análise , COVID-19/complicações , RNA Mensageiro/análise , Receptores Virais/análise , Tireoidite Subaguda/etiologia , Adulto , COVID-19/metabolismo , Feminino , Humanos , Masculino , Cultura Primária de Células , Reação em Cadeia da Polimerase em Tempo Real , Glândula Tireoide/química , Glândula Tireoide/citologia , Tireoidectomia , Tireoidite Subaguda/metabolismo
18.
J Am Soc Cytopathol ; 10(2): 164-167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32978096

RESUMO

INTRODUCTION: Thyroid fine-needle aspiration (tFNA) is a powerful screening tool for assessing solitary thyroid nodules. Generally, morphologic evaluation of smears yields an accurate diagnosis; but, in some cases it is useful to have a cell block (CB) to conduct ancillary studies such as immunohistochemistry (IHC). Cytologic diagnoses guide clinical decisions, so it is important that accurate and efficient diagnoses be rendered. Our study evaluates the diagnostic utility of the CB in the evaluation of tFNAs. MATERIALS AND METHODS: We performed a retrospective chart review of all tFNA specimens from January 2014 to July 2019. Data collected included TAT (in days), diagnosis, if a CB was prepared, and if it was diagnostically contributory. Descriptive statistics were calculated. Data were analyzed using the χ2 test and the Mann-Whitney U-test. RESULTS: Of the 2321 specimens, 40.2% (933) had CB and only 0.3% (7) were diagnostically contributory. IHC was used for 2 cases. For cases with CB, the median TAT was one day [0-18 days] and the median TAT without CB was 0 [0-9 days]. There was a significant difference in TAT between cases with a CB and those without. Most cases without a CB had same-day TAT (66.4%), whereas only 1.1% of those with a CB had same day TAT. Cases with CB were more likely to have a TAT >1 day (65% versus 12.1%) or >3 days (25.4% versus 10%) than those without a CB (P < 0.0001). CONCLUSIONS: We found the diagnostic utility of CB for tFNAs to be very low. The addition of a CB added at least 1 day to the TAT in all diagnostic strata. The additional time causes patients to wait for results, even for nondiagnostic studies. The increased TAT, resources, and manpower use may be reduced if CB were produced only as needed-if the results of the smear were ambiguous or if ancillary tests were needed to confirm the diagnosis.


Assuntos
Biópsia por Agulha Fina/métodos , Doenças da Glândula Tireoide/diagnóstico , Glândula Tireoide/citologia , Humanos , Estudos Retrospectivos , Doenças da Glândula Tireoide/patologia , Glândula Tireoide/patologia , Nódulo da Glândula Tireoide/diagnóstico , Nódulo da Glândula Tireoide/patologia
19.
J Toxicol Sci ; 45(11): 701-711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132244

RESUMO

We aimed to investigate the role of programmed cell death protein 1 (PD-1) and T lymphocytes in the proliferation, apoptosis and secretion of cells from patients and mice with Graves' disease (GD). The levels of serum hormones, related antibodies and inflammatory cytokines in GD patients were determined by electrochemiluminescence immunoassay and ELISA. The percentages of CD4 and CD8 T-lymphocytes and PD-1 expression were examined by flow cytometry. A GD mouse model, a thyroid follicular epithelial cell, and a CD4+PD-1+, CD4+PD-1- and CD8+PD-1+, CD8+PD-1- T lymphocyte co-culture system were constructed. The viability, apoptosis-related markers, serum hormones, related antibodies and inflammatory cytokines in thyroid follicular epithelial cells were determined by CCK-8, Western blot, qTR-PCR, electrochemiluminescence immunoassay and ELISA. Elevated free thyroid hormones (FT3, FT4), thyroid hormone antibodies (TRAb, TPOAb and TGAb), inflammatory cytokines, and inhibited TSH were observed in GD patients. The percentage of CD4+ T cells was increased, while that of CD8+ T cells was reduced in GD patients. PD-1 expression level was lifted in both CD4+ and CD8+ cells from GD patients. In mouse thyroid follicular epithelial cells co-cultured with CD4+PD-1+ and CD8+PD-1+ T lymphocytes, the cell viability, TH and TRAb levels and inflammatory cytokines level were the highest, while the TSH level and apoptosis were the lowest. PD-1 positive T lymphocytes were able to promote viability and inhibit apoptosis of thyroid follicular epithelial cells, which further caused a more accelerated development of GD.


Assuntos
Antígeno B7-H1/imunologia , Antígeno B7-H1/fisiologia , Proliferação de Células , Citocinas/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/fisiologia , Doença de Graves/genética , Doença de Graves/imunologia , Mediadores da Inflamação/metabolismo , Linfócitos/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/fisiologia , Glândula Tireoide/citologia , Adulto , Animais , Apoptose , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Progressão da Doença , Feminino , Doença de Graves/patologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
20.
DNA Repair (Amst) ; 95: 102954, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32877752

RESUMO

Oxidative stress (OS) is recognized as disturbance of cellular equilibrium between reactive oxygen species (ROS) formation and their elimination by antioxidant defense systems. One example of ROS-mediated damage is generation of potentially mutagenic DNA precursor, 8-oxodGTP. In human cells genomic 8-oxodGTP incorporation is prevented by the MutT homologue 1 (MTH1 or hMTH1 for human MTH1) protein. It is well established that malignant cells, including thyroid cancer cells, require hMTH1 for maintaining proliferation and cancerous transformation phenotype. Above observations led to the development of hMTH1 inhibitors as novel anticancer therapeutics. In the current study we present extensive analysis of oxidative stress responses determining sensitivity to hMTH1 deficiency in cultured thyroid cells. We observe here that hMTH1 depletion results in downregulation of several glutathione-dependent OS defense system factors, including GPX1 and GCLM, making some of the tested thyroid cell lines highly dependent on glutathione levels. This is evidenced by the increased ROS burden and enhanced proliferation defect after combination of hMTH1 siRNA and glutathione synthesis inhibition. Moreover, due to the lack of data on hMTH1 expression in human thyroid tumor specimens we decided to perform detailed analysis of hMTH1 expression in thyroid tumor and peri-tumoral tissues from human patients. Our results allow us to propose here that anticancer activity of hMTH1 suppression may be boosted by combination with agents modulating glutathione pool, but further studies are necessary to precisely identify backgrounds susceptible to such combination treatment.


Assuntos
Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Regulação da Expressão Gênica , Glutationa Peroxidase/metabolismo , Estresse Oxidativo/genética , Monoéster Fosfórico Hidrolases/metabolismo , Glândula Tireoide/metabolismo , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/genética , Glutationa Peroxidase/genética , Humanos , Monoéster Fosfórico Hidrolases/genética , RNA Mensageiro/genética , Glândula Tireoide/citologia , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Glutationa Peroxidase GPX1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA