Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Angew Chem Int Ed Engl ; 63(21): e202317552, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38497459

RESUMO

Celiac disease (CeD) is an autoimmune disorder triggered by gluten proteins, affecting approximately 1 % of the global population. The 33-mer deamidated gliadin peptide (DGP) is a metabolically modified wheat-gluten superantigen for CeD. Here, we demonstrate that the 33-mer DGP spontaneously assembles into oligomers with a diameter of approximately 24 nm. The 33-mer DGP oligomers present two main secondary structural motifs-a major polyproline II helix and a minor ß-sheet structure. Importantly, in the presence of 33-mer DGP oligomers, there is a statistically significant increase in the permeability in the gut epithelial cell model Caco-2, accompanied by the redistribution of zonula occludens-1, a master tight junction protein. These findings provide novel molecular and supramolecular insights into the impact of 33-mer DGP in CeD and highlight the relevance of gliadin peptide oligomerization.


Assuntos
Doença Celíaca , Enterócitos , Gliadina , Humanos , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Células CACO-2 , Gliadina/química , Gliadina/metabolismo , Enterócitos/metabolismo , Superantígenos/química , Superantígenos/metabolismo , Permeabilidade
2.
Amino Acids ; 55(11): 1601-1619, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37803248

RESUMO

Enzyme therapy for celiac disease (CeD), which digests gliadin into non-immunogenic and non-toxic peptides, can be an appropriate treatment option for CeD. Here, we have investigated the effectiveness of bromelain and ficin on gliadin digestion using in vitro, such as SDS-PAGE, HPLC, and circular dichroism (CD). Furthermore, the cytotoxicity of gliadin and 19-mer peptide before and after digestion with these enzymes was evaluated using the MTT assay in the Caco-2 cell line. Finally, we examined the effect of these treatments along with Larazotide Acetate on the expression of genes involved in cell-tight junctions, such as Occludin, Claudin 3, tight junction protein-1, and Zonulin in the Caco-2 cell line. Our study demonstrated bromelain and ficin digestion effects on the commercial and wheat-extracted gliadin by SDS-PAGE, HPLC, and CD. Also, the cytotoxicity results on Caco-2 showed that toxicity of the gliadin and synthetic 19-mer peptide was decreased by adding bromelain and ficin. Furthermore, the proteolytic effects of bromelain and ficin on gliadin indicated the expression of genes involved in cell-tight junctions was improved. This study confirms that bromelain and ficin mixture could be effective in improving the symptoms of CeD.


Assuntos
Doença Celíaca , Gliadina , Humanos , Células CACO-2 , Gliadina/farmacologia , Gliadina/metabolismo , Junções Íntimas , Ficina , Bromelaínas/farmacologia , Peptídeos/farmacologia
3.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902226

RESUMO

Enzymatic modification of gliadin peptides by human transglutaminase 2 (TG2) is a key mechanism in the pathogenesis of celiac disease (CD) and represents a potential therapeutic target. Recently, we have identified the small oxidative molecule PX-12 as an effective inhibitor of TG2 in vitro. In this study, we further investigated the effect of PX-12 and the established active-site directed inhibitor ERW1041 on TG2 activity and epithelial transport of gliadin peptides. We analyzed TG2 activity using immobilized TG2, Caco-2 cell lysates, confluent Caco-2 cell monolayers and duodenal biopsies from CD patients. TG2-mediated cross-linking of pepsin-/trypsin-digested gliadin (PTG) and 5BP (5-biotinamidopentylamine) was quantified by colorimetry, fluorometry and confocal microscopy. Cell viability was tested with a resazurin-based fluorometric assay. Epithelial transport of promofluor-conjugated gliadin peptides P31-43 and P56-88 was analyzed by fluorometry and confocal microscopy. PX-12 reduced TG2-mediated cross-linking of PTG and was significantly more effective than ERW1041 (10 µM, 15 ± 3 vs. 48 ± 8%, p < 0.001). In addition, PX-12 inhibited TG2 in cell lysates obtained from Caco-2 cells more than ERW1041 (10 µM; 12 ± 7% vs. 45 ± 19%, p < 0.05). Both substances inhibited TG2 comparably in the intestinal lamina propria of duodenal biopsies (100 µM, 25 ± 13% vs. 22 ± 11%). However, PX-12 did not inhibit TG2 in confluent Caco-2 cells, whereas ERW1041 showed a dose-dependent effect. Similarly, epithelial transport of P56-88 was inhibited by ERW1041, but not by PX-12. Cell viability was not negatively affected by either substance at concentrations up to 100 µM. PX-12 did not reduce TG2 activity or gliadin peptide transport in confluent Caco-2 cells. This could be caused by rapid inactivation or degradation of the substance in the Caco-2 cell culture. Still, our in vitro data underline the potential of the oxidative inhibition of TG2. The fact that the TG2-specific inhibitor ERW1041 reduced the epithelial uptake of P56-88 in Caco-2 cells further strengthens the therapeutic potential of TG2 inhibitors in CD.


Assuntos
Doença Celíaca , Proteína 2 Glutamina gama-Glutamiltransferase , Humanos , Biópsia , Células CACO-2 , Doença Celíaca/tratamento farmacológico , Doença Celíaca/enzimologia , Gliadina/metabolismo , Mucosa Intestinal/metabolismo , Peptídeos/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Transglutaminases/metabolismo , Intestinos/enzimologia
4.
Sci Rep ; 13(1): 3237, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828897

RESUMO

Macrophages (MQs) pro-inflammatory phenotype is triggered by gliadin peptides. Akkermansia muciniphila (A. muciniphila) showed to enhance the anti-inflammatory phenotype of MQs. This study aimed to investigate the anti-inflammatory effects of A. muciniphila, on gliadin stimulated THP-1 derived macrophages. THP-1 cell line monocytes were differentiated into MQs by phorbol 12-myristate 13-acetate (PMA). MQs were treated with A. muciniphila before and after stimulation with gliadin (pre- and post-treat). CD11b, as a marker of macrophage differentiation, and CD206 and CD80, as M1 and M2 markers, were evaluated by flow cytometry technique. The mRNA expression of TGF-ß, IL-6, and IL-10 and protein levels of IL-10 and TNF-α were measured by RT-PCR and ELISA techniques, respectively. Results show an increased percentage of M1 phenotype and release of proinflammatory cytokines (like TNF-α and IL-6) by macrophages upon incubation with gliadin. Pre- and post-treatment of gliadin-stimulated macrophages with A. muciniphila induced M2 phenotype associated with decreased proinflammatory (IL-6, TNF-α) and increased anti-inflammatory (IL-10, TGF-ß) cytokines expression relative to the group that was treated with gliadin alone. This study suggests the potential beneficial effect of A. muciniphila on gliadin-stimulated MQs and the importance of future studies focusing on their exact mechanism of action on these cells.


Assuntos
Gliadina , Interleucina-10 , Interleucina-10/metabolismo , Gliadina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Fator de Crescimento Transformador beta/metabolismo
5.
Sci Adv ; 9(4): eade5800, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696493

RESUMO

CD4+ T cells specific for cereal gluten proteins are key players in celiac disease (CeD) pathogenesis. While several CeD-relevant gluten T cell epitopes have been identified, epitopes recognized by a substantial proportion of gluten-reactive T cells remain unknown. The identification of such CeD-driving gluten epitopes is important for the food industry and in clinical settings. Here, we have combined the knowledge of a distinct phenotype of gluten-reactive T cells and key features of known gluten epitopes for the discovery of unknown epitopes. We tested 42 wheat gluten-reactive T cell clones, isolated on the basis of their distinct phenotype and with no reactivity to known epitopes, against a panel of synthetic peptides bioinformatically identified from a wheat gluten protein database. We were able to assign reactivity to 10 T cell clones and identified a 9-nucleotide oligomer core region of five previously uncharacterized gliadin/glutenin epitopes. This work represents an advance in the effort to identify CeD-driving gluten epitopes.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/metabolismo , Epitopos de Linfócito T , Glutens , Gliadina/genética , Gliadina/metabolismo , Peptídeos/metabolismo
6.
Cell Rep ; 41(4): 111541, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288703

RESUMO

Antibodies to deamidated gluten peptides are accurate diagnostic markers of celiac disease. However, binding of patient antibodies to all possible gluten epitopes has not previously been investigated. Here, we assess serum antibody specificity across the gluten proteome by use of high-density peptide arrays. We confirm the importance of deamidation for antibody binding, and we show that the response is remarkably focused on the known epitope QPEQPFP (where E results from deamidation of Q). In addition, we describe an epitope in native (non-deamidated) gluten, QQPEQII (where E is gene encoded), which is associated with both B cell and T cell reactivity. Antibodies to this native epitope are cross-reactive with the major deamidated epitope due to recognition of the shared PEQ motif. Since cross-reactive B cells can present peptides to different gluten-specific T cells, we propose that such B cells play a role in epitope spreading by engaging T cells with multiple specificities.


Assuntos
Doença Celíaca , Glutens , Humanos , Anticorpos , Epitopos , Gliadina/metabolismo , Glutens/metabolismo , Peptídeos/metabolismo , Proteoma , Transglutaminases , Linfócitos B
7.
Chembiochem ; 23(22): e202200552, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36161684

RESUMO

Gluten related-disorders have a prevalence of 1-5 % worldwide triggered by the ingestion of gluten proteins in wheat, rye, barley, and some oats. In wheat gluten, the most studied protein is gliadin, whose immunodominant 33-mer amino acid fragment remains after digestive proteolysis and accumulates in the gut mucosa. Here, we report the formation of 33-mer thin-plate superstructures using intrinsic tyrosine (Tyr) steady-state fluorescence anisotropy and cryo-TEM in combination with water tension measurements. Furthermore, we showed that fluorescence decay measurements of 33-mer intrinsic fluorophore Tyr provided information on the early stages of the formation of the thin-plate structures. Finally, conformational analysis of Tyr residues using minimalist models by molecular dynamic simulations (MD) demonstrated that changes in Tyr rotamer states depend on the oligomerization stage. Our findings further advance the understanding of the formation of the 33-mer gliadin peptide superstructures and their relation to health and disease.


Assuntos
Gliadina , Glutens , Gliadina/química , Gliadina/metabolismo , Glutens/química , Triticum , Proteínas , Peptídeos/química , Fragmentos de Peptídeos/química
8.
Plant Physiol Biochem ; 183: 23-35, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35537348

RESUMO

Neprosin was first discovered in the insectivorous tropical pitcher plants of Nepenthes species as a novel protease with prolyl endopeptidase (PEP) activity. Neprosin has two uncharacterized domains of neprosin activation peptide and neprosin. A previous study has shown neprosin activity in hydrolyzing proline-rich gliadin, a gluten component that triggers celiac disease. In this study, we performed in silico structure-function analysis to investigate the catalytic mechanism of neprosin. Neprosin sequences lack the catalytic triad and motifs of PEP family S9. Protein structures of neprosins from Nepenthes × ventrata (NvNpr) and N. rafflesiana (NrNpr1) were generated by ab initio methods and comparatively assessed to obtain high-quality models. Structural alignment of models to experimental structures in the Protein Data Bank (PDB) found a high structural similarity to glutamic peptidases. Further investigations reveal other resemblances to the glutamic peptidases with low optimum pH that activates the enzyme via autoproteolysis for maturation. Two highly conserved glutamic acid residues, which are stable according to the molecular dynamics simulation, can be found at the active site of the substrate cleft. Protein docking demonstrated that mature neprosins bind well with potent antigen αI-gliadin at the putative active site. Taken together, neprosins represent a new glutamic peptidase family, with a putative catalytic dyad of two glutamic acids. This study illustrates a hypothetical enzymatic mechanism of the neprosin family and demonstrates the useful application of an accurate ab initio protein structure prediction in the structure-function study of a novel protein family.


Assuntos
Gliadina , Peptídeo Hidrolases , Domínio Catalítico , Gliadina/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Proteólise
9.
J Agric Food Chem ; 70(17): 5357-5368, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442674

RESUMO

An excessive nitrogen (N) supply may weaken dough due to an imbalance between N and sulfur (S) in the grains. However, the mechanism underlying the weakening effect of excessive N supply has yet to be fully elucidated. In this study, we evaluated the effect of the N rate × S rate interaction on the ratio of N to S (N/S ratio), grain protein concentration, amount and composition of protein fractions, and dough properties of a bread wheat cultivar. The concentrations of glutathione and modified gliadins with an odd number of cysteine residues (potential chain terminators for glutenins) were also examined. The results revealed that the weakening effect of excess N input is closely associated with an increased gliadin/glutenin ratio, reduced low-molecular-weight glutenin subunit concentrations, and the degree of polymerization of glutenin. More importantly, we found that the increased concentrations of glutathione and chain terminators in grains are involved in the modification of the polymerization degree in glutenins.


Assuntos
Nitrogênio , Triticum , Pão , Farinha , Gliadina/metabolismo , Glutationa/metabolismo , Glutens/química , Nitrogênio/metabolismo , Triticum/química
10.
FEMS Microbiol Lett ; 368(21-24)2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35038331

RESUMO

There is increasing interest in gluten-degrading enzymes for use during food and drink processing. The industrially available enzymes usually work best at low to ambient temperatures. However, food manufacturing is often conducted at higher temperatures. Therefore, thermostable gluten-degrading enzymes are of great interest. We have identified a new thermostable gluten-degrading proline-specific prolyl endoprotease from the archaea Thermococcus kodakarensis. We then cloned and expressed it in Escherichia coli. The prolyl endoprotease was found to have a size of 70.1 kDa. The synthetic dipeptide Z-Gly-Pro-p-nitroanilide was used to characterize the prolyl endoprotease and it had maximum activity at pH 7 and 77°C. The Vmax, Km and kcat values of the purified prolyl endoprotease were calculated to be 3.14 mM/s, 1.10 mM and 54 s-1, respectively. When the immunogenic gluten peptides PQPQLPYPQPQLPY (α-gliadin) and SQQQFPQPQQPFPQQP (γ-hordein) were used as substrates, the prolyl endoprotease was able to degrade these. Furthermore, gluten in wort was reduced when the prolyl endoprotease was used during mashing of barley malt. The discoveries open up new food processing possibilities and further the understanding of proline-specific protease diversity.


Assuntos
Glutens , Thermococcus , Gliadina/química , Gliadina/metabolismo , Glutens/química , Glutens/metabolismo , Peptídeos , Prolil Oligopeptidases , Thermococcus/genética , Thermococcus/metabolismo
11.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614021

RESUMO

A detailed analysis of the complexes of proline-specific peptidases (PSPs) in the midgut transcriptomes of the larvae of agricultural pests Tenebrio molitor and Tribolium castaneum and in the genome of T. castaneum is presented. Analysis of the T. castaneum genome revealed 13 PSP sequences from the clans of serine and metal-dependent peptidases, of which 11 sequences were also found in the gut transcriptomes of both tenebrionid species' larvae. Studies of the localization of PSPs, evaluation of the expression level of their genes in gut transcriptomes, and prediction of the presence of signal peptides determining secretory pathways made it possible to propose a set of peptidases that can directly participate in the hydrolysis of food proteins in the larvae guts. The discovered digestive PSPs of tenebrionids in combination with the post-glutamine cleaving cysteine cathepsins of these insects effectively hydrolyzed gliadins, which are the natural food substrates of the studied pests. Based on the data obtained, a hypothetical scheme for the complete hydrolysis of immunogenic gliadin peptides by T. molitor and T. castaneum digestive peptidases was proposed. These results show promise regarding the development of a drug based on tenebrionid digestive enzymes for the enzymatic therapy of celiac disease and gluten intolerance.


Assuntos
Besouros , Peptídeo Hidrolases , Animais , Hidrólise , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Gliadina/genética , Gliadina/metabolismo , Transcriptoma , Prolina/metabolismo , Besouros/genética , Larva/metabolismo
12.
Genes (Basel) ; 12(11)2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34828349

RESUMO

Very recently, the genome of the modern durum wheat cv. Svevo was fully sequenced, and its assembly is publicly available. So, we exploited the opportunity to carry out an in-depth study for the systematic characterization of the γ-gliadin gene family in the cv. Svevo by combining a bioinformatic approach with transcript and protein analysis. We found that the γ-gliadin family consists of nine genes that include seven functional genes and two pseudogenes. Three genes, Gli-γ1a, Gli-γ3a and Gli-γ4a, and the pseudogene Gli-γ2a* mapped on the A genome, whereas the remaining four genes, Gli-γ1b, Gli-γ2b, Gli-γ3b and Gli-γ5b, and the pseudogene Gli-γ4b* mapped on the B genome. The functional γ-gliadins presented all six domains and eight-cysteine residues typical of γ-gliadins. The Gli-γ1b also presented an additional cysteine that could possibly have a role in the formation of the gluten network through binding to HMW glutenins. The γ-gliadins from the A and B genome differed in their celiac disease (CD) epitope content and composition, with the γ-gliadins from the B genome showing the highest frequency of CD epitopes. In all the cases, almost all the CD epitopes clustered in the central region of the γ-gliadin proteins. Transcript analysis during seed development revealed that all the functional γ-gliadin genes were expressed with a similar pattern, although significant differences in the transcript levels were observed among individual genes that were sometimes more than 60-fold. A progressive accumulation of the γ-gliadin fraction was observed in the ripening seeds that reached 34% of the total gliadin fraction at harvest maturity. We believe that the insights generated in the present study could aid further studies on gliadin protein functions and future breeding programs aimed at the selection of new healthier durum wheat genotypes.


Assuntos
Doença Celíaca/genética , Epitopos , Genes de Plantas , Gliadina/genética , Gliadina/metabolismo , Triticum/genética , Triticum/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pseudogenes
13.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502187

RESUMO

Gluten-related disorders (GRDs) are a group of diseases that involve the activation of the immune system triggered by the ingestion of gluten, with a worldwide prevalence of 5%. Among them, Celiac disease (CeD) is a T-cell-mediated autoimmune disease causing a plethora of symptoms from diarrhea and malabsorption to lymphoma. Even though GRDs have been intensively studied, the environmental triggers promoting the diverse reactions to gluten proteins in susceptible individuals remain elusive. It has been proposed that pathogens could act as disease-causing environmental triggers of CeD by molecular mimicry mechanisms. Additionally, it could also be possible that unrecognized molecular, structural, and physical parallels between gluten and pathogens have a relevant role. Herein, we report sequence, structural and physical similarities of the two most relevant gluten peptides, the 33-mer and p31-43 gliadin peptides, with bacterial pathogens using bioinformatics going beyond the molecular mimicry hypothesis. First, a stringent BLASTp search using the two gliadin peptides identified high sequence similarity regions within pathogen-derived proteins, e.g., extracellular proteins from Streptococcus pneumoniae and Granulicatella sp. Second, molecular dynamics calculations of an updated α-2-gliadin model revealed close spatial localization and solvent-exposure of the 33-mer and p31-43 peptide, which was compared with the pathogen-related proteins by homology models and localization predictors. We found putative functions of the identified pathogen-derived sequence by identifying T-cell epitopes and SH3/WW-binding domains. Finally, shape and size parallels between the pathogens and the superstructures of gliadin peptides gave rise to novel hypotheses about activation of innate immunity and dysbiosis. Based on our structural findings and the similarities with the bacterial pathogens, evidence emerges that these pathologically relevant gluten-derived peptides could behave as non-replicating pathogens opening new research questions in the interface of innate immunity, microbiome, and food research.


Assuntos
Doença Celíaca/imunologia , Epitopos de Linfócito T , Gliadina/metabolismo , Glutens/metabolismo , Mimetismo Molecular , Fragmentos de Peptídeos/metabolismo , Carnobacteriaceae/metabolismo , Biologia Computacional , Gliadina/química , Gliadina/imunologia , Glutens/química , Glutens/imunologia , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Streptococcus pneumoniae/metabolismo
14.
Biomolecules ; 11(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802942

RESUMO

Celiac disease is an autoimmune disorder triggered by toxic peptides derived from incompletely digested glutens in the stomach. Peptidases that can digest the toxic peptides may formulate an oral enzyme therapy to improve the patients' health condition. Bga1903 is a serine endopeptidase secreted by Burkholderia gladioli. The preproprotein of Bga1903 consists of an N-terminal signal peptide, a propeptide region, and an enzymatic domain that belongs to the S8 subfamily. Bga1903 could be secreted into the culture medium when it was expressed in E. coli. The purified Bga1903 is capable of hydrolyzing the gluten-derived toxic peptides, such as the 33- and 26-mer peptides, with the preference for the peptide bonds at the carbonyl site of glutamine (P1 position). The kinetic assay of Bga1903 toward the chromogenic substrate Z-HPQ-pNA at 37 °C, pH 7.0, suggests that the values of Km and kcat are 0.44 ± 0.1 mM and 17.8 ± 0.4 s-1, respectively. The addition of Bga1903 in the wort during the fermentation step of beer could help in making gluten-free beer. In summary, Bga1903 is usable to reduce the gluten content in processed foods and represents a good candidate for protein engineering/modification aimed to efficiently digest the gluten at the gastric condition.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderia gladioli/enzimologia , Doença Celíaca/metabolismo , Glutens/metabolismo , Peptídeos/metabolismo , Serina Proteases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cerveja , Burkholderia gladioli/genética , Doença Celíaca/imunologia , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Fermentação , Gliadina/imunologia , Gliadina/metabolismo , Glutens/imunologia , Humanos , Hidrólise , Peptídeos/imunologia , Proteínas Recombinantes/metabolismo , Serina Proteases/genética , Especificidade por Substrato
15.
Food Funct ; 12(10): 4434-4445, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881102

RESUMO

The effect of procyanidin dimer B3, a common food tannin, on the digestion of gliadin proteins was investigated by monitoring the changes in the immunogenic peptides produced during in vitro digestion and immunoreactivity. Interaction studies between procyanidin dimer B3, gluten proteins and/or digestive enzymes were performed by SDS-PAGE. The effect of procyanidin B3 on the enzymatic activity of trypsin, chymotrypsin and pancreatin was evaluated. The differences in the number and nature of immunogenic peptides released during digestion were identified by mass spectrometry. Briefly, the enzymatic activity of gastrointestinal enzymes was only slightly affected but a significant decrease in the immunological properties of the peptides produced during digestion was observed. Overall, although further studies are needed, the interaction between polyphenols and gluten proteins clearly influences gluten protein digestion and immunogenicity, thus suggesting that the consumption of dietary polyphenols can significantly affect the degree of celiac disease downstream immune reactions.


Assuntos
Biflavonoides/farmacologia , Catequina/farmacologia , Gliadina/metabolismo , Proantocianidinas/farmacologia , Proteólise , Biflavonoides/imunologia , Catequina/imunologia , Doença Celíaca/metabolismo , Trato Gastrointestinal/metabolismo , Glutens/metabolismo , Humanos , Peptídeos/metabolismo , Proantocianidinas/imunologia
16.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33435615

RESUMO

Celiac disease is an autoimmune disorder characterized by a heightened immune response to gluten proteins in the diet, leading to gastrointestinal symptoms and mucosal damage localized to the small intestine. Despite its prevalence, the only treatment currently available for celiac disease is complete avoidance of gluten proteins in the diet. Ongoing clinical trials have focused on targeting the immune response or gluten proteins through methods such as immunosuppression, enhanced protein degradation and protein sequestration. Recent studies suggest that polyphenols may elicit protective effects within the celiac disease milieu by disrupting the enzymatic hydrolysis of gluten proteins, sequestering gluten proteins from recognition by critical receptors in pathogenesis and exerting anti-inflammatory effects on the system as a whole. This review highlights mechanisms by which polyphenols can protect against celiac disease, takes a critical look at recent works and outlines future applications for this potential treatment method.


Assuntos
Doenças Autoimunes/imunologia , Doença Celíaca/imunologia , Gliadina/imunologia , Polifenóis/imunologia , Doenças Autoimunes/metabolismo , Doenças Autoimunes/prevenção & controle , Doença Celíaca/metabolismo , Doença Celíaca/prevenção & controle , Gliadina/metabolismo , Glutens/imunologia , Glutens/metabolismo , Humanos , Terapia de Imunossupressão/métodos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Polifenóis/metabolismo , Polifenóis/uso terapêutico , Estudos Prospectivos
17.
Nutrients ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35010880

RESUMO

The need of adding the determination of anti-deamidated gliadin peptide (DGP) IgG to anti-transglutaminase (TTG) IgA antibodies for diagnosis of celiac disease (CD) in children <2 years of age is controversial. We performed a systematic review and meta-analysis to evaluate, by head-to-head comparison, the diagnostic accuracy of TTG IgA and DGP IgG antibodies. We searched PubMed, MEDLINE, and Embase databases up to January 2021. The diagnostic reference was intestinal biopsy. We calculated the sensitivity and specificity of these tests and the odds ratio (OR) between the tests. Fifteen articles were eligible for the systematic review and ten were eligible for the meta-analysis. Sensitivity and specificity were 0.96 (95% confidence interval (CI), 0.91-0.98) and 0.96 (95% CI, 0.85-0.99) for DGP IgG and 0.93 (95% CI, 0.88-0.97) and 0.98 (95% CI, 0.96-0.99) for TTG IgA, respectively. TTG IgA specificity was significantly higher (OR 9.3 (95% CI, 2.3-37.49); p < 0.001) while the sensitivity of DGP IgG was higher without reaching statistical significance (OR: 0.6 (95% CI, 0.24-1.51); p = 0.28). Both the meta-analysis and the systematic review showed that some children with early CD are missed without the DGP IgG test. In children <2 years of age, TTG IgA is the best CD screening test; however, the addition of DGP IgG may increase the diagnostic sensitivity.


Assuntos
Doença Celíaca/diagnóstico , Doença Celíaca/metabolismo , Gliadina/metabolismo , Transglutaminases/metabolismo , Autoanticorpos/metabolismo , Doença Celíaca/patologia , Pré-Escolar , Humanos , Imunoglobulina A , Imunoglobulina G , Lactente , Recém-Nascido , Sensibilidade e Especificidade
18.
PLoS One ; 15(9): e0225293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32991576

RESUMO

Grain hardness is an important quality trait of cereal crops. In wheat, it is mainly determined by the Hardness locus that harbors genes encoding puroindoline A (PINA) and puroindoline B (PINB). Any deletion or mutation of these genes leading to the absence of PINA or to single amino acid changes in PINB leads to hard endosperms. Although it is generally acknowledged that hardness is controlled by adhesion strength between the protein matrix and starch granules, the physicochemical mechanisms connecting puroindolines and the starch-protein interactions are unknown as of this time. To explore these mechanisms, we focused on PINA. The overexpression in a hard wheat cultivar (cv. Courtot with the Pina-D1a and Pinb-D1d alleles) decreased grain hardness in a dose-related effect, suggesting an interactive process. When PINA was added to gliadins in solution, large aggregates of up to 13 µm in diameter were formed. Turbidimetry measurements showed that the PINA-gliadin interaction displayed a high cooperativity that increased with a decrease in pH from neutral to acid (pH 4) media, mimicking the pH change during endosperm development. No turbidity was observed in the presence of isolated α- and γ-gliadins, but non-cooperative interactions of PINA with these proteins could be confirmed by surface plasmon resonance. A significant higher interaction of PINA with γ-gliadins than with α-gliadins was observed. Similar binding behavior was observed with a recombinant repeated polypeptide that mimics the repeat domain of gliadins, i.e., (Pro-Gln-Gln-Pro-Tyr)8. Taken together, these results suggest that the interaction of PINA with a monomeric gliadin creates a nucleation point leading to the aggregation of other gliadins, a phenomenon that could prevent further interaction of the storage prolamins with starch granules. Consequently, the role of puroindoline-prolamin interactions on grain hardness should be addressed on the basis of previous observations that highlight the similar subcellular routing of storage prolamins and puroindolines.


Assuntos
Grão Comestível/metabolismo , Gliadina/metabolismo , Dureza/fisiologia , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Produção Agrícola , Difusão Dinâmica da Luz , Grão Comestível/química , Gliadina/química , Concentração de Íons de Hidrogênio , Nefelometria e Turbidimetria , Tamanho da Partícula , Proteínas de Plantas/química , Agregados Proteicos/fisiologia , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Sequências Repetitivas de Aminoácidos/fisiologia , Amido/química , Amido/metabolismo , Ressonância de Plasmônio de Superfície , Triticum/química
19.
Arab J Gastroenterol ; 21(3): 174-178, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32732170

RESUMO

BACKGROUND AND STUDY AIMS: Serological tests for coeliac disease (CD) are important in the clinical diagnosis and monitoring of response to a gluten free diet (GFD). The tests differ in their sensitivity, specificity, and diagnostic accuracy. In this study, tissue transglutaminase (IgA) (tTG-IgA) antibody was compared with the deamidated gliadin peptide (DGP), of both IgG (DGP-IgG) and IgA (DGP-IgA) types, in patients with CD. PATIENTS AND METHODS: This cross-sectional study was conducted over a period of 2 years, between 2016 and 2018, at King Abdulaziz University Hospital in children 18 years of age or younger with biopsy-proven CD. Patients' sera were tested for DGP-IgA, DGP-IgG, and tTG-IgA antibodies using enzyme-linked immunosorbent assay (ELISA). A Pearson correlation coefficient and Cohen's kappa coefficient were performed to analyse the serological tests. RESULTS: The study included 26 patients with CD, with a median age of 15 years (range, 5-18 years). Seventeen patients (65.4%) were males. The median disease duration was 5 years (range, 3-14 years). Fifteen patients (57.7%) reported good adherence to a GFD. The patients' serological tests showed a mean ± SD tTG-IgA titer of 149.8 ± 75 u/ml, a mean DGP-IgG titer of 62.5 ± 36.5, and a mean DGP-IgA of 32 ± 23.3 µ/ml. We found a significant correlation between tTG-IgA and DGP-IgG (r = 0.69, P < 0.001), tTG-IgA and DGP-IgA (r = 0.67, P < 0.001), and DGP-IgG and DGP-IgA (r = 0.83, P < 0.001). Cohen's kappa coefficient (k) showed substantial agreement between tTG-IgA and DGP-IgG (k = 0.71, P < 0.001) and DGP-IgG and DGP-IgA (k = 0.69, P < 0.001), but moderate agreement between tTG-IgA and DGP-IgA (k = 0.45, P = 0.006). CONCLUSION: We found a good correlation between tTG-IgA and DGP-IgG and tTG-IgA and DGP-IgA, and substantial agreement between tTG-IgA and DGP-IgG, but moderate agreement between tTG-IgA and DGP-IgA. These results indicate that DGP-IgG was comparable to tTG-IgA and may be useful as an alternative to tTG-IgA in the diagnosis and follow-up of patients with CD.


Assuntos
Doença Celíaca , Gliadina , Adolescente , Autoanticorpos/metabolismo , Doença Celíaca/metabolismo , Criança , Pré-Escolar , Correlação de Dados , Estudos Transversais , Proteínas de Ligação ao GTP , Gliadina/metabolismo , Humanos , Imunoglobulina A , Imunoglobulina G , Masculino , Peptídeos , Proteína 2 Glutamina gama-Glutamiltransferase , Sensibilidade e Especificidade , Transglutaminases
20.
J Agric Food Chem ; 68(15): 4485-4492, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32195585

RESUMO

Celiac disease (CD) is a chronic illness characterized by an inflammatory process triggered by gluten protein intake. Recent evidence has suggested that the lower relative abundance of bifidobacteria in the intestinal lumen may be associated with CD. Herein, we assessed the effect of the Bifidobacterium species Bifidobacterium bifidum, Bifidobacterium longum, Bembidion breve, Bifidobacterium animalis alone, and also a Bifidobacterium consortium on the digestion of intact gluten proteins (gliadins and glutenins) and the associated immunomodulatory responses elicited by the resulting peptides. The cytotoxicity and proinflammatory responses were evaluated through the activation of NF-kB p65 and the expression of cytokines TNF-α and IL-1ß in Caco-2 cell cultures exposed to gluten-derived peptides. The peptides induced a clear reduction in cytotoxic responses and proinflammatory marker levels compared to the gluten fragments generated during noninoculated gastrointestinal digestion. These results highlight the possible use of probiotics based on bifidobacteria as a prospective treatment for CD.


Assuntos
Bifidobacterium/metabolismo , Gliadina/metabolismo , Glutens/metabolismo , Biotransformação , Células CACO-2 , Doença Celíaca/tratamento farmacológico , Doença Celíaca/genética , Doença Celíaca/imunologia , Gliadina/química , Gliadina/imunologia , Glutens/imunologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Probióticos/administração & dosagem , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA