Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Food Chem ; 455: 139909, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843717

RESUMO

In our study, we explored how gluten's role during dough formation and thermal processing can mitigate the adverse effects of physical factors on product quality. We discovered that a gluten network with a gliadin/glutenin ratio of 5:5 effectively limits oil penetration into the dough's core. This particular ratio is found to reduce the exposure of hydrophobic groups due to the presence of hydrated ß-sheet structures. In contrast, gluten networks with higher gliadin proportions than typical wheat gluten tend to be looser, leading to increased chromophore exposure and facilitating more oil absorption. These observations highlighted the complex link between changes in gluten structure, varying protein compositions, and oil content in fried dough sticks. This research provided a foundation for developing specialized low-fat wheat flour and improving the quality of fried dough products.


Assuntos
Culinária , Farinha , Glutens , Temperatura Alta , Triticum , Glutens/química , Glutens/análise , Farinha/análise , Triticum/química , Gliadina/química , Gliadina/análise , Pão/análise
2.
Angew Chem Int Ed Engl ; 63(21): e202317552, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38497459

RESUMO

Celiac disease (CeD) is an autoimmune disorder triggered by gluten proteins, affecting approximately 1 % of the global population. The 33-mer deamidated gliadin peptide (DGP) is a metabolically modified wheat-gluten superantigen for CeD. Here, we demonstrate that the 33-mer DGP spontaneously assembles into oligomers with a diameter of approximately 24 nm. The 33-mer DGP oligomers present two main secondary structural motifs-a major polyproline II helix and a minor ß-sheet structure. Importantly, in the presence of 33-mer DGP oligomers, there is a statistically significant increase in the permeability in the gut epithelial cell model Caco-2, accompanied by the redistribution of zonula occludens-1, a master tight junction protein. These findings provide novel molecular and supramolecular insights into the impact of 33-mer DGP in CeD and highlight the relevance of gliadin peptide oligomerization.


Assuntos
Doença Celíaca , Enterócitos , Gliadina , Humanos , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Células CACO-2 , Gliadina/química , Gliadina/metabolismo , Enterócitos/metabolismo , Superantígenos/química , Superantígenos/metabolismo , Permeabilidade
3.
J Sci Food Agric ; 104(10): 6127-6138, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442023

RESUMO

BACKGROUND: Wheat proteins can be divided into water/salt-soluble protein (albumin/globulin) and water/salt-insoluble protein (gliadins and glutenins (Glu)) according to solubility. Gliadins (Glia) are one of the major allergens in wheat. The inhibition of Glia antigenicity by conventional processing techniques was not satisfactory. RESULTS: In this study, free radical oxidation was used to induce covalent reactions. The effects of covalent reactions by high-intensity ultrasound (HIU) of different powers was compared. The enhancement of covalent grafting effectiveness between gliadin and (-)-epigallo-catechin 3-gallate (EGCG) was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry and Folin-Ciocalteu tests. HIU caused protein deconvolution and disrupted the intrastrand disulfide bonds that maintain the tertiary structure, causing a shift in the side chain structure, as proved by Fourier, fluorescence and Raman spectroscopic analysis. Comparatively, the antigenic response of the conjugates formed in the sonication environment was significantly weaker, while these conjugates were more readily hydrolyzed and less antigenic during simulated gastrointestinal fluid digestion. CONCLUSION: HIU-enhanced free radical oxidation caused further transformation of the spatial structure of Glia, which hid or destroyed the antigenic epitope, effectively inhibiting protein antigenicity. This study widened the application of polyphenol modification in the inhibition of wheat allergens. © 2024 Society of Chemical Industry.


Assuntos
Gliadina , Triticum , Gliadina/química , Gliadina/imunologia , Triticum/química , Triticum/imunologia , Oxirredução , Humanos , Alérgenos/química , Alérgenos/imunologia , Ultrassom
4.
Food Chem ; 445: 138648, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354639

RESUMO

This research investigates the formation of amyloid fibrils using enzymatically hydrolyzed peptides from gluten, including its components glutenin and gliadin. After completing the fibrillation incubation, the gluten group demonstrated the most significant average particle size (908.67 nm) and conversion ratio (57.64 %), with a 19.21 % increase in thioflavin T fluorescence intensity due to self-assembly. The results indicated increased levels of ß-sheet structures after fibrillation. The gliadin group exhibited the highest zeta potential (∼13 mV) and surface hydrophobicity (H0 = 809.70). Around 71.15 % of predicted amyloidogenic regions within gliadin peptides showed heightened hydrophobicity. These findings emphasize the collaborative influence of both glutenin and gliadin in the formation of gluten fibrils, influenced by hydrogen bonding, hydrophobic, and electrostatic interactions. They also highlight the crucial role played by gliadin with amyloidogenic fragments such as ILQQIL and SLVLQTL, aiming to provide a theoretical basis for understanding the utilization of gluten proteins.


Assuntos
Amiloide , Gliadina , Amiloide/metabolismo , Gliadina/química , Peptídeos/química , Glutens/química , Conformação Proteica em Folha beta , Fragmentos de Peptídeos/química
5.
Food Res Int ; 178: 114008, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309890

RESUMO

Pigmented wheat varieties (Triticum aestivum spp.) are getting increasingly popular in modern nutrition and thoroughly researched for their functional and nutraceutical value. The colour of these wheat grains is caused by the expression of natural pigments, including carotenoids and anthocyanins, that can be restricted to either the endosperm, pericarp and/or aleurone layers. While contrasts in phytochemical synthesis give rise to variations among purple, blue, dark and yellow grain's antioxidant and radical scavenging capacities, little is known about their influence on gluten proteins expression, digestibility and immunogenic potential in a Celiac Disease (CD) framework. Herein, it has been found that the expression profile and immunogenic properties of gliadin proteins in pigmented wheat grains might be affected by anthocyanins and carotenoids upregulation, and that the spectra of peptide released upon simulated gastrointestinal digestion is also significantly different. Interestingly, anthocyanin accumulation, as opposed to carotenoids, correlated with a lower immunogenicity and toxicity of gliadins at both protein and peptide levels. Altogether, this study provides first-level evidence on the impact modern breeding practices, seeking higher expression levels of health promoting phytochemicals at the grain level, may have on wheat crops functionality and CD tolerability.


Assuntos
Doença Celíaca , Gliadina , Humanos , Gliadina/química , Triticum/química , Antocianinas , Melhoramento Vegetal , Peptídeos/química , Espectrometria de Massas , Carotenoides
6.
J Sci Food Agric ; 104(4): 1971-1983, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37897157

RESUMO

BACKGROUND: Protein-based nanoparticles have gained considerable interest in recent years due to their biodegradability, biocompatibility, and functional properties. However, nanoparticles formed from hydrophobic proteins are prone to instability under environmental stress, which restricts their potential applications. It is therefore of great importance to develop green approaches for the fabrication of hydrophobic protein-based nanoparticles and to improve their physicochemical performance. RESULTS: Gliadin/shellac complex nanoparticles (168.87 ~ 403.67 nm) with various gliadin/shellac mass ratios (10:0 ~ 5:5) were prepared using a pH-driven approach. In comparison with gliadin nanoparticles, complex nanoparticles have shown enhanced stability against neutral pH, ions, and boiling. They remained stable under neutral conditions at NaCl concentrations ranging from 0 to 100 mmol L-1 and even when boiled at 100 °C for 90 min. These nanoparticles were capable of effectively reducing oil-water interfacial tension (5 ~ 11 mNm-1 ) but a higher amount of shellac in the nanoparticles compromised their ability to lower interfacial tension. Moreover, the wettability of the nanoparticles changed as the gliadin/shellac mass ratio changed, leading to a range of three-phase contact angles from 52.41° to 84.85°. Notably, complex nanoparticles with a gliadin/shellac mass ratio of 8:2 (G/S 8:2) showed a contact angle of 84.85°, which is considered suitable for the Pickering stabilization mechanism. Moreover, these nanoparticles exhibited the highest emulsifying activity of 52.42 m2 g-1 and emulsifying stability of 65.33%. CONCLUSIONS: The findings of the study revealed that gliadin/shellac complex nanoparticles exhibited excellent resistance to environmental stress and demonstrated superior oil-water interfacial behavior. They have strong potential for further development as food emulsifiers or as nano-delivery systems for nutraceuticals. © 2023 Society of Chemical Industry.


Assuntos
Gliadina , Nanopartículas , Emulsões/química , Gliadina/química , Tamanho da Partícula , Nanopartículas/química , Suplementos Nutricionais , Água/química , Concentração de Íons de Hidrogênio
7.
Molecules ; 28(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067520

RESUMO

The changes in the secondary structure of individual gluten protein fractions (gliadin and glutenin) caused by the supplementation of model dough with eight phenolic acids were analysed. Gliadins and glutenins were extracted from gluten samples obtained from overmixed dough. The changes in the gliadin secondary structure depended on the amount of phenolic acid added to the dough. Higher acid concentrations (0.1% and 0.2%) led to a significant reduction in the amount of α-helices and to the formation of aggregates, non-ordered secondary structures, and antiparallel ß-sheets. After the addition of acids at a lower concentration (0.05%), the disaggregation of pseudo-ß-sheet structures and the formation of ß-turns, hydrogen-bonded ß-turns, and antiparallel ß-sheets were detected. In the case of glutenin, most of the phenolic acids induced the formation of intermolecular hydrogen bonds between the polypeptide chains, leading to glutenin aggregation. When phenolic acids were added at a concentration of 0.05%, the process of protein folding and regular secondary structure formation was also observed. In this system, antiparallel ß-sheets and ß-turns were created at the expense of pseudo-ß-sheets.


Assuntos
Gliadina , Glutens , Gliadina/química , Glutens/química , Hidroxibenzoatos
8.
Food Res Int ; 173(Pt 1): 113317, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803626

RESUMO

It has been increasingly demonstrated over the past few years that some proteolytically resistant gluten peptides may directly affect intestinal cell structure and functions by modulating pro-inflammatory gene expression and oxidative stress. The relationship between oxidative cell damage and Celiac Disease (CD) is supported by several studies on human intestinal epithelial cell lines, such as the Caco-2 cell model, already shown to be particularly sensitive to the pro-oxidative and pro-apoptotic properties of gluten protein digests. Through providing valuable evidence concerning some of the pathophysiological mechanisms that may be at play in gluten-related disorders, most of these in vitro studies have been employing simplified digestion schemes and intestinal cell systems that do not fully resemble mature enterocytes in terms of their characteristic tight junctions, microvilli and membrane transporters. Herein the peptide profile and pro-oxidative effect of two different gastrointestinal gliadin digestions was thoroughly characterized and comprehensively compared: one following the complete INFOGEST workflow and a second one by-passing gastric processing, to assess the dependence of gliadin-triggered downstream cell effects on pepsin activity. In both matrices, gluten-derived immunogenic peptide sequences were identified by non-targeted LC-MS/MS. Altogether, this study provides first-hand data concerning the still unexplored peptide composition, gastric-dependence and immunogenicity of physiologically representative gliadin protein digests as well as foundational clues stressing the need for more complex and integrated in vitro cell systems when modelling and exploiting gluten-induced perturbations in the nucleophilic tone and inflammatory status of intestinal epithelial cells.


Assuntos
Gliadina , Glutens , Humanos , Glutens/química , Gliadina/química , Células CACO-2 , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/química , Células Epiteliais/metabolismo
9.
Biochem Genet ; 61(6): 2457-2480, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37103600

RESUMO

Immunogenicity of gliadin peptides in celiac disease (CD) is majorly determined by the pattern of molecular interactions with HLA-DQ and T-cell receptors (TCR). Investigation of the interactions between immune-dominant gliadin peptides, DQ protein, and TCR are warranted to unravel the basis of immunogenicity and variability contributed by the genetic polymorphisms. Homology modeling of HLA and TCR done using Swiss Model and iTASSER, respectively. Molecular interactions of eight common deamidated immune-dominant gliadin with HLA-DQ allotypes and specific TCR gene pairs were evaluated. Docking of the three structures was performed with ClusPro2.0 and ProDiGY was used to predict binding energies. Effects of known allelic polymorphisms and reported susceptibility SNPs were predicted on protein-protein interactions. CD susceptible allele, HLA-DQ2.5 was shown to have considerable binding affinity to 33-mer gliadin (ΔG = - 13.9; Kd = 1.5E - 10) in the presence of TRAV26/TRBV7. Higher binding affinity was predicted (ΔG = - 14.3, Kd = 8.9E - 11) when TRBV28 was replaced with TRBV20 paired with TRAV4 suggesting its role in CD predisposition. SNP rs12722069 at HLA-DQ8 that codes Arg76α forms three H-bonds with Glu12 and two H-bonds with Asn13 of DQ2 restricted gliadin in the presence of TRAV8-3/TRBV6. None of the HLA-DQ polymorphisms was found to be in linkage disequilibrium with reported CD susceptibility markers. Haplotypic presentations of rs12722069-G, rs1130392-C, rs3188043-C and rs4193-A with CD reported SNPs were observed in sub-ethnic groups. Highly polymorphic sites of HLA alleles and TCR variable regions could be utilized for better risk prediction models in CD. Therapeutic strategies by identifying inhibitors or blockers targeting specific gliadin:HLA-DQ:TCR binding sites could be investigated.


Assuntos
Doença Celíaca , Humanos , Doença Celíaca/genética , Doença Celíaca/metabolismo , Gliadina/genética , Gliadina/química , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/química , Antígenos HLA-DQ/metabolismo , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Polimorfismo Genético , Peptídeos/metabolismo
10.
J Phys Chem B ; 127(11): 2407-2417, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36884001

RESUMO

The 33-mer gliadin peptide and its deamidated metabolite, 33-mer DGP, are the immunodominant peptides responsible for the adaptive immune response in celiac disease (CD). CD is a complex autoimmune chronic disorder triggered by gluten ingestion that affects the small intestine and affects ∼1% of the global population. The 33-mers are polyproline II-rich (PPII) and intrinsically disordered peptides (IDPs), whose structures remain elusive. We sampled the conformational ensembles of both 33-mer peptides via molecular dynamics simulations employing two force fields (FFs) (Amber ff03ws and Amber ff99SB-disp) specifically validated for other IDPs. Our results show that both FFs allow the extensive exploration of the conformational landscape, which was not possible with the standard FF GROMOS53A6 reported before. Clustering analysis of the trajectories showed that the five largest clusters (78-88% of the total structures) present elongated, semielongated, and curved conformations in both FFs. Large average radius of gyration and solvent-exposed surfaces characterized these structures. While the structures sampled are similar, the Amber ff99SB-disp trajectories explored folded conformations with a higher probability. In addition, PPII secondary structure was preserved throughout the trajectories (58-73%) together with a non-negligible content of ß structures (11-23%), in agreement with previous experimental results. This work represents the initial step in studying further the interaction of these peptides with other biologically relevant molecules, which could lead to finally disclose the molecular events that lead to CD.


Assuntos
Âmbar , Gliadina , Gliadina/química , Peptídeos/química , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína
11.
Nutrients ; 14(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296938

RESUMO

In non-celiac gluten sensitivity (NCGS), the elimination of wheat results in a clear symptom improvement, but gluten has still not been proven as (the sole) trigger. Due to the increase in the prevalence of gluten-related diseases, the breeding of high-performance wheat cultivars is discussed as a trigger. To analyze the immune stimulation and signal pathways, the immune cells of healthy subjects and patients with NCGS were stimulated with gliadins from wheat, and the expression and secretion of interleukin 1ß (IL1ß) and interleukin 6 (IL6) were studied. To determine the impact of wheat breeding, the monocyte cell line THP1 and human immune cells were stimulated with gliadin, glutenin, and albumin/globulin fractions of ancient and modern cereals, and expression of inflammatory molecules was checked. Immune cells of patients with NCGS showed an increased expression of IL1ß and IL6 after stimulation with gliadins compared to immune cells of healthy controls. Gliadins caused a strong activation of P-STAT3 in immune cells of healthy controls, and inhibitors of JAK and NFκB pathways considerably reduced this response. In addition to gliadins, we further showed that glutenins and albumin/globulins from all wheat cultivars from the last century, and especially from einkorn and spelt, also markedly induced the expression of inflammatory genes in THP1 and human immune cells. There was no correlation between enhanced immune stimulation and ancient or modern cultivars. This does not support the hypothesis that modern wheat breeding is responsible for the increase in gluten-related diseases. An altered immune situation is suggested in patients with NCGS.


Assuntos
Doença Celíaca , Glutens , Proteínas de Plantas , Triticum , Humanos , Albuminas/química , Doença Celíaca/diagnóstico , Gliadina/química , Globulinas/química , Glutens/química , Interleucina-6 , Melhoramento Vegetal , Proteínas de Plantas/química
12.
Chembiochem ; 23(22): e202200552, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36161684

RESUMO

Gluten related-disorders have a prevalence of 1-5 % worldwide triggered by the ingestion of gluten proteins in wheat, rye, barley, and some oats. In wheat gluten, the most studied protein is gliadin, whose immunodominant 33-mer amino acid fragment remains after digestive proteolysis and accumulates in the gut mucosa. Here, we report the formation of 33-mer thin-plate superstructures using intrinsic tyrosine (Tyr) steady-state fluorescence anisotropy and cryo-TEM in combination with water tension measurements. Furthermore, we showed that fluorescence decay measurements of 33-mer intrinsic fluorophore Tyr provided information on the early stages of the formation of the thin-plate structures. Finally, conformational analysis of Tyr residues using minimalist models by molecular dynamic simulations (MD) demonstrated that changes in Tyr rotamer states depend on the oligomerization stage. Our findings further advance the understanding of the formation of the 33-mer gliadin peptide superstructures and their relation to health and disease.


Assuntos
Gliadina , Glutens , Gliadina/química , Gliadina/metabolismo , Glutens/química , Triticum , Proteínas , Peptídeos/química , Fragmentos de Peptídeos/química
13.
J Phys Chem B ; 126(28): 5151-5160, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35796490

RESUMO

Free energy perturbation (FEP) calculations can predict relative binding affinities of an antigen and its point mutants to the same human leukocyte antigen (HLA) with high accuracy (e.g., within 1.0 kcal/mol to experiment); however, a more challenging task is to compare binding affinities of wholly different antigens binding to completely different HLAs using FEP. Researchers have used a variety of different FEP schemes to compute and compare absolute binding affinities, with varied success. Here, we propose and assess a unifying scheme to compute the relative binding affinities of different antigens binding to completely different HLAs using absolute binding affinity FEP calculations. We apply our affinity calculation technique to HLA-antigen-T-cell receptor (TCR) systems relevant to celiac disease (CeD) by investigating binding affinity differences between HLA-DQ2.5 (enhanced CeD risk) and HLA-DQ7.5 (CeD protective) in the binary (HLA-gliadin) and ternary (HLA-gliadin-TCR) binding complexes for three gliadin derived epitopes: glia-α1, glia-α2, and glia-ω1. Based on FEP calculations with our carefully designed thermodynamic cycles, we demonstrate that HLA-DQ2.5 has higher binding affinity than HLA-DQ7.5 for gliadin and enhanced binding affinity with a common TCR, agreeing with known results that the HLA-DQ2.5 serotype exhibits increased risk for CeD. Our findings reveal that our proposed absolute binding affinity FEP method is appropriate for predicting HLA binding for disparate antigens with different genotypes. We also discuss atomic-level details of HLA genotypes interacting with gluten peptides and TCRs in regard to the pathogenesis of CeD.


Assuntos
Doença Celíaca , Glutens , Doença Celíaca/genética , Doença Celíaca/metabolismo , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/metabolismo , Gliadina/química , Glutens/química , Humanos , Peptídeos/química , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/genética
14.
Food Chem ; 393: 133331, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35661606

RESUMO

Understanding wheat gliadin-proanthocyanidin (PA) interactions would be useful to systematically control foams and gels, create novel textures, and reduce inflammatory reactions. This work aimed to determine the effects of heat (50-90 °C) on gliadin-proanthocyanidin (PA) interactions. Gliadin-PA mixtures were heated for 30 min in aqueous ethanol, and resulting morphology, fluorescence, and MW distribution were analyzed. Atomic force microscopy showed that PA greatly increased gliadin particle size, especially with heat. PA significantly quenched gliadin's tryptophan fluorescence. Further fluorescence data analysis indicated that PA interacted with gliadins through static quenching, primarily via hydrophobic interactions, and that 75 °C treatment yielded the greatest gliadin-PA interactions, likely because the proteins unraveled and exposed residues for interaction. PA appeared to interact mostly with ω-gliadins, based on their absence in the SDS-PAGE gel. Though it has been overshadowed in previous studies by non-covalent interactions, staining of quinoproteins indicated that PA covalently cross-linked gliadins at pH âˆ¼ 6.


Assuntos
Gliadina , Proantocianidinas , Eletroforese em Gel de Poliacrilamida , Gliadina/química , Temperatura Alta , Triticum/química
15.
Cells ; 11(10)2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35626704

RESUMO

ZED1227 is a small molecule tissue transglutaminase (TG2) inhibitor. The compound selectively binds to the active state of TG2, forming a stable covalent bond with the cysteine in its catalytic center. The molecule was designed for the treatment of celiac disease. Celiac disease is an autoimmune-mediated chronic inflammatory condition of the small intestine affecting about 1-2% of people in Caucasian populations. The autoimmune disease is triggered by dietary gluten. Consumption of staple foods containing wheat, barley, or rye leads to destruction of the small intestinal mucosa in genetically susceptible individuals, and this is accompanied by the generation of characteristic TG2 autoantibodies. TG2 plays a causative role in the pathogenesis of celiac disease. Upon activation by Ca2+, it catalyzes the deamidation of gliadin peptides as well as the crosslinking of gliadin peptides to TG2 itself. These modified biological structures trigger breaking of oral tolerance to gluten, self-tolerance to TG2, and the activation of cytotoxic immune cells in the gut mucosa. Recently, in an exploratory proof-of-concept study, ZED1227 administration clinically validated TG2 as a "druggable" target in celiac disease. Here, we describe the specific features and profiling data of the drug candidate ZED1227. Further, we give an outlook on TG2 inhibition as a therapeutic approach in indications beyond celiac disease.


Assuntos
Doença Celíaca , Doença Celíaca/tratamento farmacológico , Proteínas de Ligação ao GTP/metabolismo , Gliadina/química , Glutens/química , Humanos , Imidazóis , Peptídeos/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Piridinas , Transglutaminases/metabolismo
16.
Int J Biol Macromol ; 211: 592-615, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35577195

RESUMO

Our aim was to understand mechanisms for clustering and cross-linking of gliadins, a wheat seed storage protein type, monomeric in native state, but incorporated in network while processed. The mechanisms were studied utilizing spectroscopy and high-performance liquid chromatography on a gliadin-rich fraction, in vitro produced α-gliadins, and synthetic gliadin peptides, and by coarse-grained modelling, Monte Carlo simulations and prediction algorithms. In solution, gliadins with α-helix structures (dip at 205 nm in CD) were primarily present as monomeric molecules and clusters of gliadins (peaks at 650- and 700-s on SE-HPLC). At drying, large polymers (Rg 90.3 nm by DLS) were formed and ß-sheets increased (14% by FTIR). Trained algorithms predicted aggregation areas at amino acids 115-140, 150-179, and 250-268, and induction of liquid-liquid phase separation at P- and Poly-Q-sequences (Score = 1). Simulations showed that gliadins formed polymers by tail-to-tail or a hydrophobic core (Kratky plots and Ree = 35 and 60 for C- and N-terminal). Thus, the N-terminal formed clusters while the C-terminal formed aggregates by disulphide and lanthionine bonds, with favoured hydrophobic clustering of similar/exact peptide sections (synthetic peptide mixtures on SE-HPLC). Mechanisms of clustering and cross-linking of the gliadins presented here, contribute ability to tailor processing results, using these proteins.


Assuntos
Gliadina , Triticum , Análise por Conglomerados , Gliadina/química , Peptídeos/metabolismo , Polímeros/metabolismo , Triticum/química
17.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35409015

RESUMO

Celiac disease (CD) is an autoimmune disease characterized by an altered immune response stimulated by gliadin peptides that are not digested and cause damage to the intestinal mucosa. The aim of this study was to investigate whether the postbiotic Lactobacillus paracasei (LP) could prevent the action of gliadin peptides on mTOR, autophagy, and the inflammatory response. Most of the experiments performed were conducted on intestinal epithelial cells Caco-2 treated with a peptic-tryptic digest of gliadin (PTG) and P31-43. Furthermore, we pretreated the Caco-2 with the postbiotic LP before treatment with the previously described stimuli. In both cases, we evaluated the levels of pmTOR, p70S6k, and p4EBP-1 for the mTOR pathway, pNFkß, and pERK for inflammation and LC 3 and p62 for autophagy. For autophagy, we also used immunofluorescence analysis. Using intestinal organoids derivate from celiac (CD) patients, we analyzed the effect of gliadin after postbiotic pretreatment with LP on inflammation marker NFkß. Through these experiments, we showed that gliadin peptides are able to induce the increase of the inflammatory response in a more complex model of intestinal epithelial cells. LP postbiotic was able to induce autophagy in Caco-2 cells and prevent gliadin effects. In conclusion, postbiotic pretreatment with LP could be considered for in vivo clinical trials.


Assuntos
Doença Celíaca , Lacticaseibacillus paracasei , Autofagia , Células CACO-2 , Gliadina/química , Humanos , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Lacticaseibacillus paracasei/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos/farmacologia , Serina-Treonina Quinases TOR/metabolismo
18.
FEMS Microbiol Lett ; 368(21-24)2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35038331

RESUMO

There is increasing interest in gluten-degrading enzymes for use during food and drink processing. The industrially available enzymes usually work best at low to ambient temperatures. However, food manufacturing is often conducted at higher temperatures. Therefore, thermostable gluten-degrading enzymes are of great interest. We have identified a new thermostable gluten-degrading proline-specific prolyl endoprotease from the archaea Thermococcus kodakarensis. We then cloned and expressed it in Escherichia coli. The prolyl endoprotease was found to have a size of 70.1 kDa. The synthetic dipeptide Z-Gly-Pro-p-nitroanilide was used to characterize the prolyl endoprotease and it had maximum activity at pH 7 and 77°C. The Vmax, Km and kcat values of the purified prolyl endoprotease were calculated to be 3.14 mM/s, 1.10 mM and 54 s-1, respectively. When the immunogenic gluten peptides PQPQLPYPQPQLPY (α-gliadin) and SQQQFPQPQQPFPQQP (γ-hordein) were used as substrates, the prolyl endoprotease was able to degrade these. Furthermore, gluten in wort was reduced when the prolyl endoprotease was used during mashing of barley malt. The discoveries open up new food processing possibilities and further the understanding of proline-specific protease diversity.


Assuntos
Glutens , Thermococcus , Gliadina/química , Gliadina/metabolismo , Glutens/química , Glutens/metabolismo , Peptídeos , Prolil Oligopeptidases , Thermococcus/genética , Thermococcus/metabolismo
19.
Sci Rep ; 11(1): 23135, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848764

RESUMO

Prolamins, alcohol soluble storage proteins of the Triticeae tribe of Gramineae family, are known as gliadin, secalin and hordein in wheat, rye and barley respectively. Prolamins were extracted from fifteen cultivars using DuPont protocol to study their physiochemical, morphological and structural characteristics. SDS-PAGE of prolamins showed well resolved low molecular weight proteins with significant amount of albumin and globulin as cross-contaminant. The ß-sheet (32.72-37.41%) and ß-turn (30.36-37.91%) were found higher in gliadins, while α-helix (20.32-28.95%) and random coil (9.05-10.28%) in hordeins. The high colloidal stability as depicted by zeta-potential was observed in gliadins (23.5-27.0 mV) followed secalins (11.2-16.6 mV) and hordeins (4.1-7.8 mV). Surface morphology by SEM illustrated the globular particle arrangement in gliadins, sheet like arrangement in secalins and stacked flaky particle arrangement in hordeins fraction. TEM studies showed that secalin and hordein fractions were globular in shape while gliadins in addition to globular structure also possessed rod-shaped particle arrangement. XRD pattern of prolamin fractions showed the ordered crystalline domain at 2θ values of 44.1°, 37.8° and 10.4°. The extracted prolamins fractions showed amorphous as well as crystalline structures as revealed by XRD and TEM analysis. Space saving hexagonal molecular symmetry was also observed in TEM molecular arrangement of prolamins which has profound application in development of plant-based polymers and fibres.


Assuntos
Técnicas de Química Analítica , Gliadina/análise , Gliadina/química , Glutens/análise , Glutens/química , Albuminas/química , Cromatografia Líquida de Alta Pressão , Globulinas/química , Hordeum/metabolismo , Luz , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Peptídeos/química , Proteínas de Plantas/química , Polímeros/química , Pós , Prolaminas/química , Espalhamento de Radiação , Secale/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Triticum/metabolismo , Difração de Raios X
20.
Molecules ; 26(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34500820

RESUMO

Raman spectroscopy is a useful method in biological, biomedical, food, and agricultural studies, allowing the simultaneous examination of various chemical compounds and evaluation of molecular changes occurring in tested objects. The purpose of our research was to explain how the elimination of ω-fractions from the wheat gliadin complex influences the secondary structures of the remaining αßγ-gliadins. To this aim, we analyzed the endosperm of wheat kernels as well as gliadin proteins extracted from two winter wheat genotypes: wasko.gl+ (control genotype containing the full set of gliadins) and wasko.gl- (modified genotype lacking all ω-gliadins). Based on the decomposition of the amide I band, we observed a moderate increase in ß-forms (sheets and turns) at the expense of α-helical and random coil structures for gliadins isolated from the flour of the wasko.gl- line. Since ω-gliadins contain no cysteine residues, they do not participate in the formation of the disulfide bridges that stabilize the protein structure. However, they can interact with other proteins via weak, low-energetic hydrogen bonds. We conclude that the elimination of ω-fractions from the gliadin complex causes minor modifications in secondary structures of the remaining gliadin proteins. In our opinion, these small, structural changes of proteins may lead to alterations in gliadin allergenicity.


Assuntos
Gliadina/química , Triticum/química , Genótipo , Gliadina/genética , Ligação de Hidrogênio , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA