Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Colloids Surf B Biointerfaces ; 238: 113922, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678790

RESUMO

The phytoalexin resveratrol has received increasing attention for its potential to prevent oxidative damages in human organism. To shed further light on molecular mechanisms of its interaction with lipid membranes we study resveratrol influence on the organisation and mechanical properties of biomimetic lipid systems composed of synthetic phosphatidylcholines with mixed aliphatic chains and different degree of unsaturation at sn-2 position (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, and 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine, PDPC). High-sensitivity isothermal titration calorimetric measurements reveal stronger spontaneous resveratrol association to polyunsaturated phosphatidylcholine bilayers compared to the monounsaturated ones resulting from hydrophobic interactions, conformational changes of the interacting species and desolvation of molecular surfaces. The latter is supported by the results from Laurdan spectroscopy of large unilamellar vesicles providing data on hydration at the glycerol backbones of glycerophospholipides. Higher degree of lipid order is reported for POPC membranes compared to PDPC. While resveratrol mostly enhances the hydration of PDPC membranes, increasing POPC dehydration is reported upon treatment with the polyphenol. Dehydration of the polyunsaturated lipid bilayers is measured only at the highest phytoalexin content studied (resveratrol/lipid 0.5 mol/mol) and is less pronounced than the effect reported for POPC membranes. The polyphenol effect on membrane mechanics is probed by thermal shape fluctuation analysis of quasispherical giant unilamellar vesicles. Markedly different trend of the bending elasticity with increasing resveratrol concentration is reported for the two types of phospholipid bilayers studied. POPC membranes become more rigid in the presence of resveratrol, whereas PDPC-containing bilayers exhibit softening at lower concentrations of the polyphenol followed by a slight growth without bilayer stiffening even at the highest resveratrol content explored. The new data on the structural organization and membrane properties of resveratrol-treated phosphatidylcholine membranes may underpin the development of future liposomal applications of the polyphenol in medicinal chemistry.


Assuntos
Bicamadas Lipídicas , Resveratrol , Resveratrol/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Glicerofosfolipídeos/química , Glicerofosfolipídeos/metabolismo , Estilbenos/química , Materiais Biomiméticos/química , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
2.
Liver Int ; 44(5): 1176-1188, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353022

RESUMO

BACKGROUND AND AIMS: Bacterial species and microbial pathways along with metabolites and clinical parameters may interact to contribute to non-alcoholic fatty liver disease (NAFLD) and disease severity. We used integrated machine learning models and a cross-validation approach to assess this interaction in bariatric patients. METHODS: 113 patients undergoing bariatric surgery had clinical and biochemical parameters, blood and stool metabolite measurements as well as faecal shotgun metagenome sequencing to profile the intestinal microbiome. Liver histology was classified as normal liver obese (NLO; n = 30), simple steatosis (SS; n = 41) or non-alcoholic steatohepatitis (NASH; n = 42); fibrosis was graded F0 to F4. RESULTS: We found that those with NASH versus NLO had an increase in potentially harmful E. coli, a reduction of potentially beneficial Alistipes putredinis and an increase in ALT and AST. There was higher serum glucose, faecal 3-(3-hydroxyphenyl)-3-hydroxypropionic acid and faecal cholic acid and lower serum glycerophospholipids. In NAFLD, those with severe fibrosis (F3-F4) versus F0 had lower abundance of anti-inflammatory species (Eubacterium ventriosum, Alistipes finegoldii and Bacteroides dorei) and higher AST, serum glucose, faecal acylcarnitines, serum isoleucine and homocysteine as well as lower serum glycerophospholipids. Pathways involved with amino acid biosynthesis and degradation were significantly more represented in those with NASH compared to NLO, with severe fibrosis having an overall stronger significant association with Superpathway of menaquinol-10 biosynthesis and Peptidoglycan biosynthesis IV. CONCLUSIONS: In bariatric patients, NASH and severe fibrosis were associated with specific bacterial species, metabolic pathways and metabolites that may contribute to NAFLD pathogenesis and disease severity.


Assuntos
Cirurgia Bariátrica , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Escherichia coli , Fígado/patologia , Fibrose , Metaboloma , Glicerofosfolipídeos/metabolismo , Glucose/metabolismo , Obesidade Mórbida/complicações
3.
Exp Neurol ; 372: 114619, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38029808

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) have therapeutic potential in the subacute/chronic phase of acute ischemic stroke (AIS), but the underlying mechanisms are not yet fully elucidated. There is a knowledge gap in understanding the metabolic mechanisms of BMSCs in stroke therapy. In this study, we administered BMSCs intravenously 24 h after reperfusion in rats with transient cerebral artery occlusion (MCAO). The treatment with BMSCs for 21 days significantly reduced the modified neurological severity score of MCAO rats (P < 0.01) and increased the number of surviving neurons in both the striatum and hippocampal dentate gyrus region (P < 0.01, respectively). Moreover, BMSCs treatment resulted in significant enhancements in various structural parameters of dendrites in layer V pyramidal neurons in the injured hemispheric motor cortex, including total length (P < 0.05), number of branches (P < 0.05), number of intersections (P < 0.01), and spine density (P < 0.05). Then, we performed plasma untargeted metabolomics analysis to study the metabolic changes of BMSCs on AIS. There were 65 differential metabolites identified in the BMSCs treatment group. Metabolic profiling analysis revealed that BMSCs modulate abnormal sphingolipid metabolism and glycerophospholipid metabolism, particularly affecting core members such as sphingomyelin (SM), ceramide (Cer) and sphingosine-1-phosphate (S1P). The metabolic network analysis and pathway-based compound-reaction-enzyme-gene network analysis showed that BMSCs inhibited the Cer-induced apoptotic pathway and promoted the S1P signaling pathway. These findings suggest that the enhanced effects of BMSCs on neuronal survival and synaptic plasticity after stroke may be mediated through these pathways. In conclusion, our study provides novel insight into the potential mechanisms of BMSCs treatment in stroke and sheds light on the possible clinical translation of BMSCs.


Assuntos
AVC Isquêmico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Ratos , Animais , Ratos Sprague-Dawley , AVC Isquêmico/metabolismo , Esfingolipídeos/metabolismo , Esfingolipídeos/uso terapêutico , Acidente Vascular Cerebral/metabolismo , Células-Tronco Mesenquimais/metabolismo , Glicerofosfolipídeos/metabolismo , Glicerofosfolipídeos/uso terapêutico , Transplante de Células-Tronco Mesenquimais/métodos , Células da Medula Óssea
4.
Mol Biol Cell ; 35(3): ar25, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117591

RESUMO

Lysosomes are acidic organelles responsible for lipid catabolism, and their functions can be disrupted by cationic amphiphilic drugs that neutralize lumenal pH and thereby inhibit most lysosomal hydrolases. These drugs can also induce lysosomal membrane permeabilization and cancer cell death, but the underlying mechanism remains elusive. Here, we uncover that the cationic amphiphilic drugs induce a substantial accumulation of cytolytic lysoglycerophospholipids within the lysosomes of cancer cells, and thereby prevent the recycling of lysoglycerophospholipids to produce common membrane glycerophospholipids. Using quantitative mass spectrometry-based shotgun lipidomics, we demonstrate that structurally diverse cationic amphiphilic drugs, along with other types of lysosomal pH-neutralizing reagents, elevate the amounts of lysoglycerophospholipids in MCF7 breast carcinoma cells. Lysoglycerophospholipids constitute ∼11 mol% of total glycerophospholipids in lysosomes purified from MCF7 cells, compared with ∼1 mol% in the cell lysates. Treatment with cationic amphiphilic drug siramesine further elevates the lysosomal lysoglycerophospholipid content to ∼24 mol% of total glycerophospholipids. Exogenously added traceable lysophosphatidylcholine is rapidly acylated to form diacylphosphatidylcholine, but siramesine treatment sequesters the lysophosphatidylcholine in the lysosomes and prevents it from undergoing acylation. These findings shed light on the unexplored role of lysosomes in the recycling of lysoglycerophospholipids and uncover the mechanism of action of promising anticancer agents.


Assuntos
Glicerofosfolipídeos , Indóis , Neoplasias , Compostos de Espiro , Humanos , Glicerofosfolipídeos/metabolismo , Lisofosfatidilcolinas/metabolismo , Lisossomos/metabolismo , Morte Celular , Neoplasias/metabolismo
5.
Biomolecules ; 13(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38136603

RESUMO

Lysosomes are degradative organelles that facilitate the removal and recycling of potentially cytotoxic materials and mediate a variety of other cellular processes, such as nutrient sensing, intracellular signaling, and lipid metabolism. Due to these central roles, lysosome dysfunction can lead to deleterious outcomes, including the accumulation of cytotoxic material, inflammation, and cell death. We previously reported that cationic amphiphilic drugs, such as imipramine, alter pH and lipid metabolism within macrophage lysosomes. Therefore, the ability for imipramine to induce changes to the lipid content of isolated macrophage lysosomes was investigated, focusing on sphingomyelin, cholesterol, and glycerophospholipid metabolism as these lipid classes have important roles in inflammation and disease. The lysosomes were isolated from control and imipramine-treated macrophages using density gradient ultracentrifugation, and mass spectrometry was used to measure the changes in their lipid composition. An unsupervised hierarchical cluster analysis revealed a clear differentiation between the imipramine-treated and control lysosomes. There was a significant overall increase in the abundance of specific lipids mostly composed of cholesterol esters, sphingomyelins, and phosphatidylcholines, while lysophosphatidylcholines and ceramides were overall decreased. These results support the conclusion that imipramine's ability to change the lysosomal pH inhibits multiple pH-sensitive enzymes in macrophage lysosomes.


Assuntos
Imipramina , Esfingomielinas , Humanos , Esfingomielinas/metabolismo , Imipramina/farmacologia , Colesterol/metabolismo , Macrófagos/metabolismo , Lisossomos/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos , Glicerofosfolipídeos/metabolismo
6.
J Ocul Pharmacol Ther ; 39(8): 519-529, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37192491

RESUMO

Purpose: Optic nerve (ON) injury causes irreversible degeneration, leading to vision loss that cannot be restored with available therapeutics. Current therapies slow further degeneration but do not promote regeneration. New regenerative factors have been discovered that are successful in vivo. However, the mechanisms of efficient long-distance regeneration are still unknown. Membrane expansion by lipid insertion is an essential regenerative process, so lipid profiles for regenerating axons can provide insight into growth mechanisms. This article's analysis aims to add to the increasingly available ON regeneration lipid profiles and relate it to membrane order/properties. Methods: In this study, we present an analysis of glycerophospholipids, one of the largest axonal lipid groups, from three mammalian ON regeneration lipid profiles: Wnt3a, Zymosan + CPT-cAMP, and Phosphatase/Tensin homolog knockout (PTENKO) at 7 and 14 days post crush (dpc). Significant lipid classes, species, and ontological properties were crossreferenced between treatments and analyzed using Metaboanalyst 5.0 and Lipid Ontology (LION). Membrane order changes associated with significant lipid classes were evaluated by C-Laurdan dye and exogenous lipids provided to a neuroblastoma cell line. Results and Conclusions: At 7 dpc, ONs show increased lysoglycerophospholipids and decreased phosphatidylethanolamines (PEs)/negative intrinsic curvature lipids. At 14 dpc, regenerative treatments show divergence: Wnt3a displays higher lysoglycerophospholipid content, while Zymosan and PTENKO decrease lysoglycerophospholipids and increase phosphatidylcholine (PC)-related species. Membrane order imaging indicates lysoglycerophospholipids decreases membrane order while PE and PC had no significant membrane order effects. Understanding these changes will allow therapeutic development targeting lipid metabolic pathways that can be used for vision loss treatments.


Assuntos
Traumatismos do Nervo Óptico , Nervo Óptico , Animais , Nervo Óptico/metabolismo , Regeneração Nervosa/fisiologia , Glicerofosfolipídeos/metabolismo , Zimosan/metabolismo , Lipidômica , Traumatismos do Nervo Óptico/metabolismo , Mamíferos
7.
Environ Toxicol ; 38(8): 1951-1967, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37186041

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) have been reported to play a crucial role in the tumor microenvironment and progression. METHODS: The data used in this study were obtained from the Cancer Genome Atlas and Gene Expression Omnibus databases, and all analyses were performed using R software. RESULTS: We first quantified the CAFs infiltration through single sample gene set enrichment analysis in the TCGA and combined GEO cohort (GSE30219, GSE37745, and GSE50081). Our result showed that patients with high levels of CAF infiltration were associated with worse clinical features and poor prognosis. Immune microenvironment analysis indicated that high CAF infiltration might result in increased infiltration of immune cells, including aDC, B cells, CD8+ T cells, cytotoxic cells, DC, eosinophils, iDC, macrophages, mast cells, neutrophils, NK CD56dim cells, NK cells, pDC, and T cells. Correlation analysis showed a significant positive correlation between CAFs and M2 macrophages, while a negative correlation was found between CAFs and glycerophospholipid metabolism. Kaplan-Meier survival curves indicated that glycerophospholipid metabolism was a protective factor against lung cancer. Biological enrichment analysis showed that pathways such as allograft rejection, epithelial-mesenchymal transition, KRAS signaling, TNF-α signaling, myogenesis, IL6/JAK/STAT3 signaling, IL2/STAT5 signaling were upregulated in the patients with high CAF infiltration. Moreover, patients with high CAF infiltration had a lower proportion of immunotherapy responders. Genome analysis showed that low CAFs infiltration was associated with high genome instability. We identified FGF5 and CELF3 as key genes involved in the interaction between CAFs, M2 macrophages, and glycerophospholipid metabolism, and further analyzed FGF5. In vitro experiments showed that FGF5 promoted the proliferation, invasion and migration of lung cancer cells and was primarily localized in the nucleoli fibrillar center. CONCLUSIONS: Our study provides novel insights into the roles of CAFs in lung cancer progression and the underlying crosstalk of tumor metabolism and immune microenvironment.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Transdução de Sinais , Glicerofosfolipídeos/metabolismo , Microambiente Tumoral/genética
8.
J Nutr Biochem ; 118: 109349, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37085056

RESUMO

Tea polyphenol epigallocatechin-3-gallate (EGCG) has been widely recognized for antiobesity effects. However, the molecular mechanism of lipidomic pathway related to lipid-lowering effect of EGCG is still not well understood. The aim of this study was to investigate the effects and mechanism of EGCG activated hepatic lipidomic pathways on ameliorating obesity-related complications by using newly developed leptin receptor knockout (Lepr KO) rats. Results showed that EGCG supplementation (100 mg/kg body weight) significantly decreased total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels both in the serum and liver, and significantly improved glucose intolerance. In addition, EGCG alleviated fatty liver development and restored the normal liver function in Lepr KO rats. Liver lipidomic analysis revealed that EGCG dramatically changes overall composition of lipid classes. Notably, EGCG significantly decreased an array of triglycerides (TGs) and diglycerides (DGs) levels. While EGCG increased 31 glycerophospholipid species and one sphingolipid species levels, such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylserines (PSs) and phosphatidylinositols (PIs) levels in the liver of Lepr KO rats. Moreover, 14 diversely regulated lipid species were identified as potential lipid biomarkers. Mechanistic analysis revealed that EGCG significantly activated the SIRT6/AMPK/SREBP1/FAS pathway to decrease DGs and TGs levels and upregulated glycerophospholipids synthesis pathways to increase glycerophospholipid level in the liver of Lepr KO rats. These findings suggested that the regulation of glycerolipids and glycerophospholipid homeostasis might be the key pathways for EGCG in ameliorating obesity-related complications in Lepr KO rats.


Assuntos
Catequina , Receptores para Leptina , Ratos , Animais , Receptores para Leptina/genética , Polifenóis/metabolismo , Lipidômica , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Fígado/metabolismo , Catequina/farmacologia , Catequina/metabolismo , Triglicerídeos/metabolismo , Colesterol/metabolismo , Chá , Glicerofosfolipídeos/metabolismo
9.
Physiol Plant ; 175(2): e13886, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36862032

RESUMO

Metabolic profiles in xylem sap are considered a fundamental mechanism for Cadmium (Cd) detoxification in plants. However, the metabolic mechanism of Brassica juncea xylem sap in response to Cd is still unclear. Here, we investigated the effects on the metabolomics of B. juncea xylem sap treated with Cd at different times by utilizing a nontargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics method for further elucidating the response mechanism of Cd exposure. The findings indicated that 48 h and 7 days Cd exposure caused significant differences in metabolic profiles of the B. juncea xylem sap. Those differential metabolites are primarily involved in amino acids, organic acids, lipids, and carbohydrates, and most of them were downregulated, which played essential roles in response to Cd stress. Furthermore, B. juncea xylem sap resisted 48-h Cd exposure via regulation of glycerophospholipid metabolism, carbon metabolism, aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate metabolism, linoleic acid metabolism, C5-branched dibasic acid metabolism, alpha-linolenic acid metabolism, cyanoamino acid metabolism, ABC transporters, biosynthesis of amino acids, and pyrimidine metabolism; whereas alpha-linolenic acid metabolism, glycerophospholipid metabolism, photosynthesis, and oxidative phosphorylation were regulated for resisting 7-day Cd exposure.


Assuntos
Cádmio , Mostardeira , Mostardeira/metabolismo , Ácido alfa-Linolênico/análise , Ácido alfa-Linolênico/metabolismo , Metaboloma , Aminoácidos/metabolismo , Xilema/metabolismo , Glicerofosfolipídeos/análise , Glicerofosfolipídeos/metabolismo
10.
Commun Biol ; 6(1): 306, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949328

RESUMO

Toxoplasma gondii is a prevalent zoonotic pathogen infecting livestock as well as humans. The exceptional ability of this parasite to reproduce in several types of nucleated host cells necessitates a coordinated usage of endogenous and host-derived nutritional resources for membrane biogenesis. Phosphatidylethanolamine is the second most common glycerophospholipid in T. gondii, but how its requirement in the acutely-infectious fast-dividing tachyzoite stage is satisfied remains enigmatic. This work reveals that the parasite deploys de novo synthesis and salvage pathways to meet its demand for ester- and ether-linked PtdEtn. Auxin-mediated depletion of the phosphoethanolamine cytidylyltransferase (ECT) caused a lethal phenotype in tachyzoites due to impaired invasion and cell division, disclosing a vital role of the CDP-ethanolamine pathway during the lytic cycle. In accord, the inner membrane complex appeared disrupted concurrent with a decline in its length, parasite width and major phospholipids. Integrated lipidomics and isotope analyses of the TgECT mutant unveiled the endogenous synthesis of ester-PtdEtn, and salvage of ether-linked lipids from host cells. In brief, this study demonstrates how T. gondii operates various means to produce distinct forms of PtdEtn while featuring the therapeutic relevance of its de novo synthesis.


Assuntos
Toxoplasma , Humanos , Toxoplasma/genética , Toxoplasma/metabolismo , Fosfatidiletanolaminas/metabolismo , Éter/metabolismo , Glicerofosfolipídeos/metabolismo , Etil-Éteres/metabolismo , Éteres/metabolismo
11.
Mediators Inflamm ; 2023: 6051946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36687218

RESUMO

Based on the multiomics analysis, this study is aimed at investigating the underlying mechanism of didymin against acute liver injury (ALI). The mice were administrated with didymin for 2 weeks, followed by injection with lipopolysaccharide (LPS) plus D-galactosamine (D-Gal) to induce ALI. The pathological examination revealed that didymin significantly ameliorated LPS/D-Gal-induced hepatic damage. Also, it markedly reduced proinflammatory cytokines release by inhibiting the TLR4/NF-κB pathway activation, alleviating inflammatory injury. A transcriptome analysis proved 2680 differently expressed genes (DEGs) between the model and didymin groups and suggested that the PI3K/Akt and metabolic pathways might be the most relevant targets. Meanwhile, the metabolome analysis revealed 67 differently expressed metabolites (DEMs) between the didymin and model groups that were mainly clustered into the glycerophospholipid metabolism, which was consistent with the transcriptome study. Importantly, a comprehensive analysis of both the omics indicated a strong correlation between the DEGs and DEMs, and an in-depth study demonstrated that didymin alleviated metabolic disorder and hepatocyte injury likely by inhibiting the glycerophospholipid metabolism pathway through the regulation of PLA2G4B, LPCAT3, and CEPT1 expression. In conclusion, this study demonstrates that didymin can ameliorate LPS/D-Gal-induced ALI by inhibiting the glycerophospholipid metabolism and PI3K/Akt and TLR4/NF-κB pathways.


Assuntos
NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Transcriptoma , Receptor 4 Toll-Like/metabolismo , Fígado/metabolismo , Metaboloma , Glicerofosfolipídeos/metabolismo , Glicerofosfolipídeos/farmacologia , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Fosfolipases A2 do Grupo IV/farmacologia
12.
Clin Transl Med ; 12(12): e1146, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36536477

RESUMO

Tyrosine kinase inhibitors (TKIs) targeting BCR::ABL1 have turned chronic myeloid leukaemia (CML) from a fatal disease into a manageable condition for most patients. Despite improved survival, targeting drug-resistant leukaemia stem cells (LSCs) remains a challenge for curative CML therapy. Aberrant lipid metabolism can have a large impact on membrane dynamics, cell survival and therapeutic responses in cancer. While ceramide and sphingolipid levels were previously correlated with TKI response in CML, the role of lipid metabolism in TKI resistance is not well understood. We have identified downregulation of a critical regulator of lipid metabolism, G0/G1 switch gene 2 (G0S2), in multiple scenarios of TKI resistance, including (1) BCR::ABL1 kinase-independent TKI resistance, (2) progression of CML from the chronic to the blast phase of the disease, and (3) in CML versus normal myeloid progenitors. Accordingly, CML patients with low G0S2 expression levels had a worse overall survival. G0S2 downregulation in CML was not a result of promoter hypermethylation or BCR::ABL1 kinase activity, but was rather due to transcriptional repression by MYC. Using CML cell lines, patient samples and G0s2 knockout (G0s2-/- ) mice, we demonstrate a tumour suppressor role for G0S2 in CML and TKI resistance. Our data suggest that reduced G0S2 protein expression in CML disrupts glycerophospholipid metabolism, correlating with a block of differentiation that renders CML cells resistant to therapy. Altogether, our data unravel a new role for G0S2 in regulating myeloid differentiation and TKI response in CML, and suggest that restoring G0S2 may have clinical utility.


Assuntos
Proteínas de Ciclo Celular , Resistencia a Medicamentos Antineoplásicos , Glicerofosfolipídeos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Animais , Camundongos , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Genes de Troca , Glicerofosfolipídeos/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/uso terapêutico , Humanos , Proteínas de Ciclo Celular/genética
13.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233185

RESUMO

Urothelium is a transitional, stratified epithelium that lines the lower urinary tract, providing a tight barrier to urine whilst retaining the capacity to stretch and rapidly resolve damage. The role of glycerophospholipids in urothelial barrier function is largely unknown, despite their importance in membrane structural integrity, protein complex assembly, and the master regulatory role of PPARγ in urothelial differentiation. We performed lipidomic and transcriptomic characterisation of urothelial differentiation, revealing a metabolic switch signature from fatty acid synthesis to lipid remodelling, including 5-fold upregulation of LPCAT4. LPCAT4 knockdown urothelial cultures exhibited an impaired proliferation rate but developed elevated trans-epithelial electrical resistances upon differentiation, associated with a reduced and delayed capacity to restitute barrier function after wounding. Specific reduction in 18:1 PC fatty acyl chains upon knockdown was consistent with LPCAT4 specificity, but was unlikely to elicit broad barrier function changes. However, transcriptomic analysis of LPCAT4 knockdown supported an LPC-induced reduction in DAG availability, predicted to limit PKC activity, and TSPO abundance, predicted to limit endogenous ATP. These phenotypes were confirmed by PKC and TSPO inhibition. Together, these data suggest an integral role for lipid mediators in urothelial barrier function and highlight the strength of combined lipidomic and transcriptomic analyses for characterising tissue homeostasis.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , PPAR gama , Urotélio , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Trifosfato de Adenosina/metabolismo , Diferenciação Celular/genética , Metabolismo Energético , Ácidos Graxos/metabolismo , Glicerofosfolipídeos/metabolismo , Humanos , Lipídeos , PPAR gama/genética , PPAR gama/metabolismo , Receptores de GABA/metabolismo , Urotélio/metabolismo
14.
Environ Toxicol ; 37(11): 2756-2763, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36214341

RESUMO

Lysophosphatidylcholine (LPC), a major class of glycerophospholipids ubiquitously present in most tissues, plays a dominant role in many diseases, while it is still unknown about the potential mechanism of LPC affecting the testicular Leydig cells. In the present study, mouse TM3 Leydig cells in vitro were treated with LPC for 48 h. LPC was found to significantly induce apoptosis and oxidative stress of mouse TM3 Leydig cells; while inhibition of oxidative stress by N-acetyl-L-cysteine, an inhibitor of oxidative stress, could rescue the induction of apoptosis, indicating that LPC induced apoptosis of mouse TM3 Leydig cells via oxidative stress. Interestingly, LPC was showed to inhibit autophagy; however, induction of autophagy by rapamycin significantly alleviated the induction of apoptosis by LPC. Taken together, oxidative stress was involved in LPC-induced apoptosis of mouse TM3 Leydig cells, and autophagy might play a protective role in LPC-induced apoptosis.


Assuntos
Células Intersticiais do Testículo , Lisofosfatidilcolinas , Acetilcisteína , Animais , Apoptose , Autofagia , Glicerofosfolipídeos/metabolismo , Células Intersticiais do Testículo/metabolismo , Lisofosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/toxicidade , Masculino , Camundongos , Estresse Oxidativo , Sirolimo
15.
Genes (Basel) ; 13(9)2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36140684

RESUMO

Stearoyl-CoA desaturase (SCD) is a key enzyme catalyzing the rate-limiting step in monounsaturated fatty acids (MUFAs) production. There may be a mechanism by which SCD is involved in lipid metabolism, which is assumed to be essential for goose follicular development. For this reason, a cellular model of SCD function in goose granulosa cells (GCs) via SCD overexpression and knockdown was used to determine the role of SCD in GC proliferation using flow cytometry. We found that SCD overexpression induced and SCD knockdown inhibited GCs proliferation. Furthermore, ELISA analysis showed that SCD overexpression increased the total cholesterol (TC), progesterone, and estrogen levels in GCs, while SCD knockdown decreased TC, progesterone, and estrogen levels (p < 0.05). Combining these results with those of related multi-omics reports, we proposed a mechanism of SCD regulating the key lipids and differentially expressed gene (DEGs) in glycerophospholipid and glycerolipid metabolism, which participate in steroidogenesis mediated by the lipid droplet deposition in goose GCs. These results add further insights into understanding the lipid metabolism mechanism of goose GCs.


Assuntos
Gansos , Estearoil-CoA Dessaturase , Animais , Colesterol/metabolismo , Estrogênios/metabolismo , Ácidos Graxos Monoinsaturados , Feminino , Gansos/metabolismo , Glicerofosfolipídeos/metabolismo , Células da Granulosa/metabolismo , Gotículas Lipídicas/metabolismo , Progesterona/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
16.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142408

RESUMO

The epithelial-mesenchymal transition (EMT) is a differentiation process associated with fibrogenesis in diabetic nephropathy (DN). Lysophosphatidic acid (LPA) is a small, naturally occurring glycerophospholipid implicated in the pathogenesis of DN. In this study, we investigated the role of LPA/LPAR1 signaling in the EMT of tubular cells as well as the underlying mechanisms. We observed a decrease in E-cadherin and an increase in vimentin expression levels in the kidney tubules of diabetic db/db mice, and treatment with ki16425 (LPAR1/3 inhibitor) inhibited the expression of these EMT markers. Ki16425 treatment also decreased the expression levels of the fibrotic factors fibronectin and alpha-smooth muscle actin (α-SMA) in db/db mice. Similarly, we found that LPA decreased E-cadherin expression and increased vimentin expression in HK-2 cells, which was reversed by treatment with ki16425 or AM095 (LPAR1 inhibitor). In addition, the expression levels of fibronectin and α-SMA were increased by LPA, and this effect was reversed by treatment with ki16425 and AM095 or by LPAR1 knockdown. Moreover, LPA induced the expression of the transcription factor, Krüppel-like factor 5 (KLF5), which was decreased by AM095 treatment or LPAR1 knockdown. The expression levels of EMT markers and fibrotic factors induced by LPA were decreased upon KLF5 knockdown in HK-2 cells. Inhibition of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and serine-threonine kinase (AKT) pathways decreased LPA-induced expression of KLF5 and EMT markers. In conclusion, these data suggest that LPA contributes to the pathogenesis of diabetic nephropathy by inducing EMT and renal tubular fibrosis via regulation of KLF5 through the LPAR1.


Assuntos
Nefropatias Diabéticas , Actinas/metabolismo , Animais , Caderinas/metabolismo , Nefropatias Diabéticas/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator V , Fibronectinas/metabolismo , Fibrose , Glicerofosfolipídeos/metabolismo , Isoxazóis , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Túbulos Renais/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Lisofosfolipídeos , Camundongos , Propionatos , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Vimentina/metabolismo
17.
Biochem J ; 479(18): 1917-1940, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36149412

RESUMO

As first demonstrated in budding yeast (Saccharomyces cerevisiae), all eukaryotic cells contain two, distinct multi-component protein kinase complexes that each harbor the TOR (Target Of Rapamycin) polypeptide as the catalytic subunit. These ensembles, dubbed TORC1 and TORC2, function as universal, centrally important sensors, integrators, and controllers of eukaryotic cell growth and homeostasis. TORC1, activated on the cytosolic surface of the lysosome (or, in yeast, on the cytosolic surface of the vacuole), has emerged as a primary nutrient sensor that promotes cellular biosynthesis and suppresses autophagy. TORC2, located primarily at the plasma membrane, plays a major role in maintaining the proper levels and bilayer distribution of all plasma membrane components (sphingolipids, glycerophospholipids, sterols, and integral membrane proteins). This article surveys what we have learned about signaling via the TORC2 complex, largely through studies conducted in S. cerevisiae. In this yeast, conditions that challenge plasma membrane integrity can, depending on the nature of the stress, stimulate or inhibit TORC2, resulting in, respectively, up-regulation or down-regulation of the phosphorylation and thus the activity of its essential downstream effector the AGC family protein kinase Ypk1. Through the ensuing effect on the efficiency with which Ypk1 phosphorylates multiple substrates that control diverse processes, membrane homeostasis is maintained. Thus, the major focus here is on TORC2, Ypk1, and the multifarious targets of Ypk1 and how the functions of these substrates are regulated by their Ypk1-mediated phosphorylation, with emphasis on recent advances in our understanding of these processes.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membrana Celular/metabolismo , Glicerofosfolipídeos/metabolismo , Homeostase , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Esfingolipídeos , Esteróis/metabolismo
18.
Chemosphere ; 308(Pt 3): 136474, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36126739

RESUMO

Selenium (Se) is a vital trace element for many living organisms inclusive of aquatic species. Although the antagonistic action of this element against other pollutants has been previously described for mammals and birds, limited information on the join effects in bivalves is available. To this end, bivalves of the species Scrobicularia plana were exposed to Se and Cd individually and jointly. Digestive glands were analysed to determine dose-dependent effects, the potential influence of Se on Cd bioaccumulationas well as the possible recover of the oxidative stress and metabolic alterations induced by Cd. Selenium co-exposure decreased the accumulation of Cd at low concentrations. Cd exposure significantly altered the metabolome of clams such as aminoacyltRNA biosynthesis, glycerophospholipid and amino acid metabolism, while Se co-exposure ameliorated several altered metabolites such asLysoPC (14:0), LysoPE (20:4), LysoPE (22:6), PE (14:0/18:0), PE (20:3/18:4) andpropionyl-l-carnitine.Additionally, Se seems to be able to regulate the redox status of the digestive gland of clams preventing the induction of oxidativedamage in this organ. This study shows the potential Se antagonism against Cd toxicity in S. plana and the importance to study join effects of pollutants to understand the mechanism underlined the effects.


Assuntos
Bivalves , Poluentes Ambientais , Selênio , Oligoelementos , Aminoácidos/metabolismo , Animais , Bioacumulação , Bivalves/metabolismo , Cádmio/metabolismo , Carnitina/metabolismo , Carnitina/farmacologia , Poluentes Ambientais/metabolismo , Glicerofosfolipídeos/metabolismo , Mamíferos/metabolismo , Estresse Oxidativo , Selênio/metabolismo , Selênio/toxicidade , Oligoelementos/metabolismo
19.
Microbiol Spectr ; 10(5): e0171722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35972273

RESUMO

Autoimmune hepatitis (AIH) is a progressive inflammation-associated liver injury. Pyroptosis is a novel inflammatory programmed cell death wherein gasdermin D (GSDMD) serves as the executioner. Our work challenged Gsdmd-/- mice with concanavalin A (ConA) to try to unveil the actual role of GSDMD in AIH. After ConA injection, Gsdmd-/- mice exhibited more severe liver damage characterized by a lower survival rate, more extensive hepatocyte necrosis and apoptosis, and higher serum transaminase levels, indicating the protection of GSDMD in ConA-induced AIH. Furthermore, the Gsdmd-/- mice exhibited higher hepatic expression and serum levels of inflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-17A [IL-17A]) and more infiltration of macrophages and neutrophils after ConA treatment than did wild-type (WT) mice. Gsdmd-/- mice with AIH showed increased hepatic l-glutamine levels but decreased glycerophospholipid metabolites levels. L-glutamine levels showed positive correlations while glycerophospholipid metabolites showed negative associations with liver injury indexes and inflammation markers. We further observed a destroyed intestinal barrier in Gsdmd-/- mice after ConA injection as indicated by decreased transcriptional expressions of Tjp1, Ocln, Reg3g, and Muc2. ConA-treated Gsdmd-/- mice also exhibited higher serum LPS binding protein (LBP) concentrations and hepatic Tlr4 and Cd14 mRNA levels. Further fecal 16S rRNA gene sequencing demonstrated decreased relative abundances of Lactobacillus and Roseburia but increased relative abundances of Allobaculum and Dubosiella in Gsdmd-/- mice with AIH. Lactobacillus was negatively correlated with liver injury and inflammation indexes and positively associated with Ocln, Muc2, and Reg3g levels. Allobaculum was positively related to liver injury and inflammatory cytokines and negatively correlated with gut barrier indexes. IMPORTANCE Our study provides the first direct clues to the protective role of gasdermin D (GSDMD) in autoimmune hepatitis (AIH). We demonstrated that Gsdmd knockout exacerbated concanavalin A (ConA)-induced AIH in mice. It may be due to the destroyed intestinal barrier and changes in certain intestinal microbes and hepatic metabolites resulting in increased liver injury and inflammation in ConA-treated Gsdmd-/- mice. This finding suggested a nonnegligible role of GSDMD in AIH and also confirmed its physiological nonpyroptosis effects on the host. The role of GSDMD in autoimmune liver diseases or other liver diseases is complex and intriguing, deserving deep investigation.


Assuntos
Hepatite Autoimune , Animais , Camundongos , Concanavalina A/toxicidade , Glutamina/metabolismo , Glicerofosfolipídeos/metabolismo , Hepatite Autoimune/genética , Hepatite Autoimune/patologia , Inflamação/metabolismo , Interferon gama , Interleucina-17/metabolismo , Lipopolissacarídeos/metabolismo , Fígado/metabolismo , RNA Ribossômico 16S , Receptor 4 Toll-Like/metabolismo , Transaminases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Fish Shellfish Immunol ; 123: 238-247, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35278640

RESUMO

Vibrio alginolyticus is a devastating bacterial pathogen of Pacific white shrimp (Litopenaeus vannamei), which often causes acute hepatopancreatic necrosis syndrome (AHPNS) and early mortality syndrome (EMS). Elucidation of molecular mechanisms of L. vannamei in responding to infection is essential for controlling the epidemic. In the present study, transcriptomic profiles of L. vannamei hepatopancreas were explored by injecting with PBS or V. alginolyticus. Hepatopancreas morphology of L. vannamei was also assessed. The result reveals that compared with the hepatopancreas of PBS group, the storage cells (R-cell), secretory cells (B-cell) and star-shaped polygonal structures of the lumen were disappeared and necrotic after challenged by V. alginolyticus at 24 h. Transcriptome data showed that a total of 314 differential expression genes were induced by V. alginolyticus, with 133 and 181 genes up- and down-regulated, respectively. These genes were mainly associated with lysosome pathway, glycerophospholipid metabolism, drug metabolism-other enzymes, cysteine and methionine metabolism, aminoacyl-tRNA biosynthesis and PPAR signal pathway. Among these pathways, the lysosome pathway, glycerophospholipid metabolism and PPAR signal pathway were both related with lipid metabolism. Therefore, we detected the lipid accumulation in hepatopancreas by Oil Red O staining, TG and CHOL detection and the relative mRNA expression of several lipid metabolism related genes in the hepatopancreas of shrimp after challenge to V. alginolyticus. The present data reveals that lipids from the L. vannamei are nutrient sources for the V. alginolyticus and define the fate of the infection by modulating lipid homeostasis. These findings may have important implication for understanding the L. vannamei and V. alginolyticus interactions, and provide a substantial dataset for further research and may deliver the basis for preventing the bacterial diseases.


Assuntos
Hepatopâncreas , Penaeidae , Animais , Perfilação da Expressão Gênica , Glicerofosfolipídeos/metabolismo , Hepatopâncreas/metabolismo , Imunidade Inata/genética , Lipídeos , Penaeidae/microbiologia , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Vibrio alginolyticus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA