Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 144(4): 774-785.e10, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37827278

RESUMO

Psoriasis is characterized by excessive keratinocyte proliferation and immunocyte infiltration, but the underlying pathogenesis remains unclear. Aminoacyl-tRNA synthetases are universally expressed enzymes that catalyze the first step of protein synthesis. Glycyl-tRNA synthetase (GARS) is a member of the aminoacyl-tRNA synthetase family. In addition to its canonical function, we found that GARS was overexpressed in the serum and skin lesions of patients with psoriasis. Moreover, GARS was highly expressed in human skin keratinocytes, and GARS knockdown in keratinocytes suppressed cell proliferation and promoted apoptosis through NF-κB/MAPK signaling pathway. Moreover, intradermal injection of recombinant GARS protein caused skin thickening, angiogenesis, and IFN/TNF-driven skin inflammation. Intriguingly, the reported functional receptor for GARS, cadherin 6 (CDH6), was specifically expressed in vascular endothelial cells, and we found that keratinocyte-derived GARS promotes inflammation and angiogenesis of vascular endothelial cells through CDH6. In addition, intradermal injection of GARS aggravated the phenotype and angiogenesis in imiquimod-induced psoriasiform dermatitis models, whereas the psoriatic phenotype and angiogenesis were relieved after knockdown of GARS by adeno-associated virus. Taken together, the results of this study identify the critical role of GARS in the pathogenesis of psoriasis and suggest that blocking GARS may be a therapeutic approach for alleviating psoriasis.


Assuntos
Dermatite , Glicina-tRNA Ligase , Psoríase , Humanos , Angiogênese , Dermatite/patologia , Células Endoteliais/patologia , Glicina-tRNA Ligase/genética , Glicina-tRNA Ligase/metabolismo , Inflamação/patologia , Queratinócitos/metabolismo , Psoríase/patologia , Pele/patologia
2.
J Biochem ; 174(3): 291-303, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37261968

RESUMO

Glycyl-tRNA synthetases (GlyRSs) have different oligomeric structures depending on the organisms. While a dimeric α2 GlyRS species is present in archaea, eukaryotes and some eubacteria, a heterotetrameric α2ß2 GlyRS species is found in most eubacteria. Here, we present the crystal structure of heterotetrameric α2ß2 GlyRS, consisting of the full-length α and ß subunits, from Lactobacillus plantarum (LpGlyRS), gram-positive lactic bacteria. The α2ß2LpGlyRS adopts the same X-shaped structure as the recently reported Escherichia coli α2ß2 GlyRS. A tRNA docking model onto LpGlyRS suggests that the α and ß subunits of LpGlyRS together recognize the L-shaped tRNA structure. The α and ß subunits of LpGlyRS together interact with the 3'-end and the acceptor region of tRNAGly, and the C-terminal domain of the ß subunit interacts with the anticodon region of tRNAGly. The biochemical analysis using tRNA variants showed that in addition to the previously defined determinants G1C72 and C2G71 base pairs, C35, C36 and U73 in eubacterial tRNAGly, the identification of bases at positions 4 and 69 in tRNAGly is required for efficient glycylation by LpGlyRS. In this case, the combination of a purine base at Position 4 and a pyrimidine base at Position 69 in tRNAGly is preferred.


Assuntos
Glicina-tRNA Ligase , Lactobacillus plantarum , RNA de Transferência , Lactobacillus plantarum/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Glicina-tRNA Ligase/química , Glicina-tRNA Ligase/metabolismo , Cristalografia por Raios X
3.
Cancer Lett ; 539: 215698, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35523311

RESUMO

Macrophages play important roles in cancer microenvironment. Human cytosolic glycyl-tRNA synthetase (GARS1) was previously shown to be secreted via extracellular vesicles (EVs) from macrophages to trigger cancer cell death. However, the effects of GARS1-containing EVs (GARS1-EVs) on macrophages as well as on cancer cells and the working mechanisms of GARS1 in cancer microenvironment are not yet understood. Here we show that GARS1-EVs induce M1 polarization and facilitate phagocytosis of macrophages. GARS1-EVs triggers M1 polarization of macrophage via the specific interaction of the extracellular cadherin subdomains 1-4 of the cadherin EGF LAG seven-pass G-type receptor 2 (CELSR2) with the N-terminal WHEP domain containing peptide region of GARS1, and activates the RAF-MEK-ERK pathway for M1 type cytokine production and phagocytosis. Besides, GARS1 interacted with cadherin 6 (CDH6) of cancer cells via its C-terminal tRNA-binding domain to induce cancer cell death. In vivo model, GARS1-EVs showed potent suppressive activity against tumor initiation via M1 type macrophages. GARS1 displayed on macrophage-secreted extracellular vesicles suppressed tumor growth in dual mode, namely through pro-apoptotic effect on cancer cells and M1 polarization effect on macrophages. Collectively, these results elucidate the unique tumor suppressive activity and mechanism of GARS1-EVs by activating M1 macrophage via CELSR2 as well as by direct killing of cancer cells via CDH6.


Assuntos
Vesículas Extracelulares , Glicina-tRNA Ligase , Macrófagos , Neoplasias , Caderinas/metabolismo , Polaridade Celular , Vesículas Extracelulares/enzimologia , Vesículas Extracelulares/metabolismo , Glicina-tRNA Ligase/análise , Glicina-tRNA Ligase/metabolismo , Glicina-tRNA Ligase/farmacologia , Humanos , Macrófagos/enzimologia , Macrófagos/metabolismo , Macrófagos/patologia , Neoplasias/enzimologia , Neoplasias/metabolismo , Fagocitose , Microambiente Tumoral
4.
Cell Signal ; 94: 110302, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35271987

RESUMO

OBJECTIVE: Hepatocellular carcinoma (HCC) is a malignant cancer with poor survival rates. Glycyl-tRNA synthetase (GARS) is a tRNA-charging enzyme that can serve as a biomarker for multiple tumors. Nevertheless, the role of GARS in HCC remains unclear. METHODS: The expression, clinical significance, prognostic value, genetic alterations, immune infiltration and histone modification of GARS in HCC were assessed using multiple databases. The role of GARS in HCC cells was also verified by CCK-8, cell cycle analysis and apoptosis assays in vitro and by a xenograft model in vivo. RESULTS: GARS levels were upregulated in HCC tissues and cells. GARS was confirmed to be a prognostic factor in HCC patients and was significantly correlated with immune infiltration. Enhanced GARS expression in HCC was induced by histone modification of the GARS promotor. Functional network analysis showed that GARS and its coexpressed genes regulate the cell cycle, lysosome and spliceosome. Furthermore, we found that GARS depletion inhibited HCC cell proliferation and cell cycle progression and promoted apoptosis in vitro. GARS overexpression promoted growth, reduced xenograft apoptosis and enhanced CD206+ tumor-associated macrophage infiltration in vivo. CONCLUSION: Our study indicates that GARS is a promising prognostic and therapeutic marker in HCC and might provide new directions and strategies for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Glicina-tRNA Ligase , Neoplasias Hepáticas , Apoptose/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glicina-tRNA Ligase/genética , Glicina-tRNA Ligase/metabolismo , Humanos , Neoplasias Hepáticas/patologia
5.
BMC Res Notes ; 12(1): 494, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395095

RESUMO

OBJECTIVES: Glyphosate (N-phosphonomethyl glycine) and its commercial herbicide formulations have been shown to exert toxicity via various mechanisms. It has been asserted that glyphosate substitutes for glycine in polypeptide chains leading to protein misfolding and toxicity. However, as no direct evidence exists for glycine to glyphosate substitution in proteins, including in mammalian organisms, we tested this claim by conducting a proteomics analysis of MDA-MB-231 human breast cancer cells grown in the presence of 100 mg/L glyphosate for 6 days. Protein extracts from three treated and three untreated cell cultures were analysed as one TMT-6plex labelled sample, to highlight a specific pattern (+/+/+/-/-/-) of reporter intensities for peptides bearing true glyphosate treatment induced-post translational modifications as well as allowing an investigation of the total proteome. RESULTS: Comparative statistical analysis of global proteome changes between glyphosate treated and non-treated samples did not show significant differences. Crucially, filtering of data to focus analysis on peptides potentially bearing glycine for glyphosate replacement revealed that the TMT reporter intensity pattern of all candidates showed conclusively that they are all false discoveries, with none displaying the expected TMT pattern for such a substitution. Thus, the assertion that glyphosate substitutes for glycine in protein polypeptide chains is incorrect.


Assuntos
Glicina/análogos & derivados , Glicina/metabolismo , Herbicidas/química , Proteínas de Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Linhagem Celular Tumoral , Expressão Gênica , Glicina/química , Glicina-tRNA Ligase/química , Glicina-tRNA Ligase/genética , Glicina-tRNA Ligase/metabolismo , Herbicidas/metabolismo , Humanos , Modelos Moleculares , Proteínas de Neoplasias/genética , Proteoma/genética , Glifosato
6.
Plant Physiol Biochem ; 139: 495-503, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31015088

RESUMO

The chloroplast is an important organelle that performs photosynthesis as well as biosynthesis and storage of many metabolites. Aminoacyl-tRNA synthetases (aaRSs) are key enzymes in protein synthesis. However, the relationship between chloroplast development and aaRSs still remains unclear. In this study, we isolated a rice albino 1 (ra1) mutant through methane sulfonate (EMS) mutagenesis of rice japonica cultivar Ningjing 4 (Oryza sativa L.), which displayed albinic leaves in seedling stage due to abnormal chloroplast development. Compared with wild type (WT), ra1 showed significantly decreased levels of chlorophylls (Chl) and carotenoids (Car) in 2-week-old seedlings, which also showed obvious plastidic structural defects including abnormal thylakoid membrane structures and more osmiophilic particles. These defects caused albino phenotypes in seedlings. Map-based cloning revealed that RA1 gene encodes a glycyl-tRNA synthetase (GlyRS), which was confirmed by genetic complementation and knockout by Crispr/Cas9 technology. Sequence analysis showed that a single base mutation (T to A) occurred in the sixth exon of RA1 and resulted in a change from Isoleucine (Ile) to Lysine (Lys). Real-time PCR analyses showed that RA1 expression levels were constitutive in most tissues, but most abundant in the leaves and stems. By transient expression in Nicotiana benthamiana, we found that RA1 protein was localized in the chloroplast. Expression levels of chlorophyll biosynthesis and plastid development related genes were disordered in the ra1 mutant. RNA analysis revealed biogenesis of chloroplast rRNAs was abnormal in ra1. Meanwhile, western blotting showed that synthesis of proteins associated with plastid development was significantly repressed. These results suggest that RA1 is involved in early chloroplast development and establishment of the plastidic ribosome system in rice.


Assuntos
Glicina-tRNA Ligase/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Ribossomos/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Glicina-tRNA Ligase/genética , Oryza/genética , Proteínas de Plantas/genética , Plântula/genética , Plântula/metabolismo
7.
J Cell Physiol ; 234(5): 7608-7621, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30471104

RESUMO

Amino acids are required for the activation of mammalian target of rapamycin (mTOR) to increase cell growth, protein and lipid synthesis, and inhibit autophagy. However, the mechanism through which amino acids activate the mTOR signaling is still largely unknown. In our previous study, we discovered that glycyl-tRNA synthetase (GlyRS) is a key mediator of amino-acid-induced mTOR expression and activation in bovine mammary epithelial cells (BMECs). Here we show that amino acids stimulate GlyRS nuclear localization for mTOR expression in BMECs. Met stimulates GlyRS nuclear localization, and the nuclear GlyRS is cleaved into a C-terminus-containing truncated form. We prove that GlyRS has a bipartite nuclear leading sequences, and GlyRS is phosphorylated at Thr544 and Ser704 in the cytoplasm under the stimulation of amino acids (Met, Leu, and Lys). The nuclear GlyRS physically binds to nuclear factor kappa B1, triggers its phosphorylation, thereby enhancing mRNA expression of its target genes including mTOR, S6K1, and 4EBP1. We further demonstrate that GlyRS is required for the inhibition of autophagy by Met. Thus our work elucidates that amino acids trigger GlyRS phosphorylation and nuclear localization to enhance the mRNA expression of mTOR.


Assuntos
Aminoácidos/metabolismo , Células Epiteliais/metabolismo , Glicina-tRNA Ligase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/fisiologia , Bovinos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Feminino , Glândulas Mamárias Animais/metabolismo , Fosforilação/fisiologia , Transdução de Sinais/fisiologia
8.
Cell Death Differ ; 25(11): 2023-2036, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29666468

RESUMO

During tissue repair, the injury site releases various bioactive molecules as damage signals to actively recruit stem cells to the damaged region. Despite convincing evidence that mesenchymal stem cells (MSCs) can sense damage signals and promote repair processes, the identity of these signals and how these signals regulate stem cell-mediated tissue repair remain unknown. Glycyl tRNA synthetase (GRS) is a ubiquitously expressed enzyme that catalyzes the first step of protein synthesis in all organisms. In addition to this canonical function, we identified for the first time that GRS is released by damaged tissues or cells in response to various injury signals and may function as a damage signal that activates the proliferative, differentiation, and migratory potential of MSCs, possibly through its identified receptor, cadherin-6 (CDH-6). Binding between GRS and CDH-6 activates survival signals, such as those of the PI3K/Akt and/or FAK/ERK1/2 pathways. More importantly, we also found that MSCs stimulated with GRS show significantly improved homing and differentiation potential and subsequent in vivo therapeutic effects, in a liver fibrosis animal model. Collectively, our findings provide compelling evidence for a novel function of GRS in enhancing the multiple beneficial functions of stem cells via a non-canonical mechanism as a damage signal.


Assuntos
Glicina-tRNA Ligase/metabolismo , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Caderinas/antagonistas & inibidores , Caderinas/genética , Caderinas/metabolismo , Tetracloreto de Carbono/toxicidade , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quinase 1 de Adesão Focal/metabolismo , Glicina-tRNA Ligase/genética , Glicina-tRNA Ligase/farmacologia , Humanos , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/patologia , Sistema de Sinalização das MAP Quinases , Metaloproteinase 2 da Matriz/metabolismo , Células-Tronco Mesenquimais/citologia , Proteína Homeobox Nanog/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Sci Rep ; 7(1): 9216, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835631

RESUMO

The mechanism by which dominantly inherited mutations in the housekeeping gene GARS, which encodes glycyl-tRNA synthetase (GlyRS), mediate selective peripheral nerve toxicity resulting in Charcot-Marie-Tooth disease type 2D (CMT2D) is still largely unresolved. The transmembrane receptor protein neuropilin 1 (Nrp1) was recently identified as an aberrant extracellular binding partner of mutant GlyRS. Formation of the Nrp1/mutant GlyRS complex antagonises Nrp1 interaction with one of its main natural ligands, vascular endothelial growth factor-A (VEGF-A), contributing to neurodegeneration. However, reduced extracellular binding of VEGF-A to Nrp1 is known to disrupt post-natal blood vessel development and growth. We therefore analysed the vascular system at early and late symptomatic time points in CMT2D mouse muscles, retina, and sciatic nerve, as well as in embryonic hindbrain. Mutant tissues show no difference in blood vessel diameter, density/growth, and branching from embryonic development to three months, spanning the duration over which numerous sensory and neuromuscular phenotypes manifest. Our findings indicate that mutant GlyRS-mediated disruption of Nrp1/VEGF-A signalling is permissive to maturation and maintenance of the vasculature in CMT2D mice.


Assuntos
Vasos Sanguíneos/metabolismo , Glicina-tRNA Ligase/genética , Homeostase , Mutação , Neuropilina-1/genética , Animais , Expressão Gênica , Glicina-tRNA Ligase/metabolismo , Humanos , Camundongos , Neurônios Motores , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Neuropilina-1/metabolismo , Especificidade de Órgãos/genética , Permeabilidade , Ligação Proteica , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Nature ; 526(7575): 710-4, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26503042

RESUMO

Selective neuronal loss is a hallmark of neurodegenerative diseases, which, counterintuitively, are often caused by mutations in widely expressed genes. Charcot-Marie-Tooth (CMT) diseases are the most common hereditary peripheral neuropathies, for which there are no effective therapies. A subtype of these diseases--CMT type 2D (CMT2D)--is caused by dominant mutations in GARS, encoding the ubiquitously expressed enzyme glycyl-transfer RNA (tRNA) synthetase (GlyRS). Despite the broad requirement of GlyRS for protein biosynthesis in all cells, mutations in this gene cause a selective degeneration of peripheral axons, leading to deficits in distal motor function. How mutations in GlyRS (GlyRS(CMT2D)) are linked to motor neuron vulnerability has remained elusive. Here we report that GlyRS(CMT2D) acquires a neomorphic binding activity that directly antagonizes an essential signalling pathway for motor neuron survival. We find that CMT2D mutations alter the conformation of GlyRS, enabling GlyRS(CMT2D) to bind the neuropilin 1 (Nrp1) receptor. This aberrant interaction competitively interferes with the binding of the cognate ligand vascular endothelial growth factor (VEGF) to Nrp1. Genetic reduction of Nrp1 in mice worsens CMT2D symptoms, whereas enhanced expression of VEGF improves motor function. These findings link the selective pathology of CMT2D to the neomorphic binding activity of GlyRS(CMT2D) that antagonizes the VEGF-Nrp1 interaction, and indicate that the VEGF-Nrp1 signalling axis is an actionable target for treating CMT2D.


Assuntos
Ligação Competitiva , Doença de Charcot-Marie-Tooth/metabolismo , Glicina-tRNA Ligase/metabolismo , Animais , Axônios/enzimologia , Axônios/metabolismo , Axônios/patologia , Linhagem Celular , Sobrevivência Celular , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Feminino , Glicina-tRNA Ligase/química , Glicina-tRNA Ligase/genética , Ligantes , Masculino , Camundongos , Modelos Moleculares , Neurônios Motores/enzimologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Destreza Motora/efeitos dos fármacos , Mutação/genética , Neuropilina-1/deficiência , Neuropilina-1/genética , Neuropilina-1/metabolismo , Ligação Proteica , Multimerização Proteica , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
11.
J Chem Neuroanat ; 61-62: 132-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25218976

RESUMO

Distal spinal muscular atrophy type V (dSMA-V), a hereditary axonal neuropathy, is a glycyl-tRNA synthetase (GRS)-associated neuropathy caused by a mutation in GRS. In this study, using an adenovirus vector system equipped with a neuron-specific promoter, we constructed a new GRS-associated neuropathy mouse model. We found that wild-type GRS (WT) is distributed in peripheral axons, dorsal root ganglion (DRG) cell bodies, central axon terminals and motor neuron cell bodies in the mouse model. In contrast, the L129P mutant GRS was localized in DRG and motor neuron cell bodies. Thus, we propose that the disease-causing L129P mutant is linked to a distribution defect in peripheral nerves in vivo.


Assuntos
Axônios/patologia , Glicina-tRNA Ligase/genética , Atrofia Muscular Espinal/genética , Nervo Isquiático/patologia , Adenoviridae , Animais , Axônios/metabolismo , Western Blotting , Modelos Animais de Doenças , Imunofluorescência , Vetores Genéticos , Glicina-tRNA Ligase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Nervo Isquiático/metabolismo
12.
J Korean Med Sci ; 29(8): 1138-44, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25120326

RESUMO

Charcot-Marie-Tooth disease (CMT) is the most common inherited motor and sensory neuropathy. Previous studies have found that, according to CMT patients, neuropathic pain is an occasional symptom of CMT. However, neuropathic pain is not considered to be a significant symptom associated with CMT and, as a result, no studies have investigated the pathophysiology underlying neuropathic pain in this disorder. Thus, the first animal model of neuropathic pain was developed by our laboratory using an adenovirus vector system to study neuropathic pain in CMT. To this end, glycyl-tRNA synthetase (GARS) fusion proteins with a FLAG-tag (wild type [WT], L129P and G240R mutants) were expressed in spinal cord and dorsal root ganglion (DRG) neurons using adenovirus vectors. It is known that GARS mutants induce GARS axonopathies, including CMT type 2D (CMT2D) and distal spinal muscular atrophy type V (dSMA-V). Additionally, the morphological phenotypes of neuropathic pain in this animal model of GARS-induced pain were assessed using several possible markers of pain (Iba1, pERK1/2) or a marker of injured neurons (ATF3). These results suggest that this animal model of CMT using an adenovirus may provide information regarding CMT as well as a useful strategy for the treatment of neuropathic pain.


Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/fisiopatologia , Modelos Animais de Doenças , Glicina-tRNA Ligase/genética , Neuralgia/diagnóstico , Neuralgia/fisiopatologia , Animais , Glicina-tRNA Ligase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Mutação/genética
13.
J Mol Histol ; 45(2): 121-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23990368

RESUMO

Charcot-Marie-Tooth disease type 2D is a hereditary axonal and glycyl-tRNA synthetase (GARS)-associated neuropathy that is caused by a mutation in GARS. Here, we report a novel GARS-associated mouse neuropathy model using an adenoviral vector system that contains a neuronal-specific promoter. In this model, we found that wild-type GARS is distributed to peripheral axons, dorsal root ganglion (DRG) cell bodies, central axon terminals, and motor neuron cell bodies. In contrast, GARS containing a G240R mutation was localized in DRG and motor neuron cell bodies, but not axonal regions, in vivo. Thus, our data suggest that the disease-causing G240R mutation may result in a distribution defect of GARS in peripheral nerves in vivo. Furthermore, a distributional defect may be associated with axonal degradation in GARS-associated neuropathies.


Assuntos
Adenoviridae/genética , Doença de Charcot-Marie-Tooth/enzimologia , Animais , Axônios/enzimologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Modelos Animais de Doenças , Gânglios Espinais/enzimologia , Gânglios Espinais/patologia , Vetores Genéticos , Glicina-tRNA Ligase/genética , Glicina-tRNA Ligase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/enzimologia , Mutação de Sentido Incorreto , Fibras Nervosas Mielinizadas/enzimologia , Especificidade de Órgãos , Nervos Periféricos/enzimologia , Nervos Periféricos/patologia
14.
Antioxid Redox Signal ; 17(4): 521-33, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22530622

RESUMO

AIMS: Protein phosphorylation is a principal signaling mechanism that mediates regulation of enzymatic activities, modulation of gene expression, and adaptation to environmental changes. Recent studies have shown a ubiquitous distribution of eukaryotic-type Serine/Threonine protein kinases in prokaryotic genomes, though the functions, substrates, and possible regulation of these enzymes remain largely unknown. In this study, we investigated whether cyanobacterial protein phosphorylation may be subject to redox regulation through modulation of the cysteine redox state, as has previously been reported for animals and plants. We also explored the role of a cyanobacterial Serine/Threonine kinase in oxidative stress tolerance. RESULTS: The Synechocystis sp. PCC 6803 Serine/Threonine kinase SpkB was found to be inhibited by oxidation and reactivated by thioredoxin-catalyzed reduction. A Synechocystis mutant devoid of the SpkB kinase was unable to phosphorylate the glycyl-tRNA synthetase ß-subunit (GlyS), one of the most prominent phosphoproteins in the wild type, and recombinant purified SpkB could phosphorylate purified GlyS. In vivo characterization of the SpkB mutant showed a pronounced hypersensitivity to oxidative stress and displayed severe growth retardation or death in response to menadione, methyl viologen, and elevated light intensities. INNOVATION: This study points out a previously unrecognised complexity of prokaryotic regulatory pathways in adaptation to the environment and extends the roles of bacterial eukaryotic-like Serine/Threonine kinases to oxidative stress response. CONCLUSION: The SpkB kinase is required for survival of the cyanobacterium Synechocystis sp. PCC 6803 under conditions implying increased concentrations of reactive oxygen species, and the activity of SpkB depends on the redox state of its cysteines.


Assuntos
Adaptação Fisiológica , Estresse Oxidativo , Proteínas Serina-Treonina Quinases/metabolismo , Compostos de Sulfidrila/metabolismo , Synechocystis/enzimologia , Sequência de Bases , Biocatálise , Cisteína/metabolismo , Primers do DNA , Glicina-tRNA Ligase/metabolismo , Mutação , Oxirredução , Fosforilação , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases/genética , Especificidade por Substrato , Tiorredoxinas/metabolismo
15.
Proc Natl Acad Sci U S A ; 109(11): E640-7, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22345558

RESUMO

Although adaptive systems of immunity against tumor initiation and destruction are well investigated, less understood is the role, if any, of endogenous factors that have conventional functions. Here we show that glycyl-tRNA synthetase (GRS), an essential component of the translation apparatus, circulates in serum and can be secreted from macrophages in response to Fas ligand that is released from tumor cells. Through cadherin (CDH)6 (K-cadherin), GRS bound to different ERK-activated tumor cells, and released phosphatase 2A (PP2A) from CDH6. The activated PP2A then suppressed ERK signaling through dephosphorylation of ERK and induced apoptosis. These activities were inhibited by blocking GRS with a soluble fragment of CDH6. With in vivo administration of GRS, growth of tumors with a high level of CDH6 and ERK activation were strongly suppressed. Our results implicate a conventional cytoplasmic enzyme in translation as an intrinsic component of the defense against ERK-activated tumor formation.


Assuntos
Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicina-tRNA Ligase/metabolismo , Animais , Apoptose , Caderinas/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Proteína Ligante Fas/metabolismo , Humanos , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Estresse Fisiológico , Ensaios Antitumorais Modelo de Xenoenxerto
16.
PLoS One ; 4(7): e6218, 2009 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-19593442

RESUMO

BACKGROUND: In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs. METHODOLOGY/PRINCIPAL FINDINGS: We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous Gars(C201R/+) mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the Gars(C201R/+) mice to two other mutants: the TgSOD1(G93A) model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1(Loa)) which has a defect in the heavy chain of the dynein complex. We found the Dync1h1(Loa/+);Gars(C201R/+) double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the Gars(C201R) mutation significantly delayed disease onset in the SOD1(G93A);Gars(C201R/+) double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated. CONCLUSIONS/SIGNIFICANCE: These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains.


Assuntos
Dineínas/fisiologia , Glicina-tRNA Ligase/metabolismo , Doença dos Neurônios Motores/enzimologia , Mutação , Superóxido Dismutase/metabolismo , Animais , Sequência de Bases , Primers do DNA , Modelos Animais de Doenças , Dineínas/genética , Feminino , Glicina-tRNA Ligase/genética , Heterozigoto , Masculino , Camundongos , Camundongos Mutantes , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Fenótipo , Superóxido Dismutase/genética
17.
Proc Natl Acad Sci U S A ; 104(27): 11239-44, 2007 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17595294

RESUMO

Charcot-Marie-Tooth (CMT) diseases are the most common heritable peripheral neuropathy. At least 10 different mutant alleles of GARS (the gene for glycyl-tRNA synthetase) have been reported to cause a dominant axonal form of CMT (type 2D). A unifying connection between these mutations and CMT has been unclear. Here, mapping mutations onto the recently determined crystal structure of human GlyRS showed them within a band encompassing both sides of the dimer interface, with two CMT-causing mutations being at sites that are complementary partners of a "kissing" contact across the dimer interface. The CMT phenotype is shown here to not correlate with aminoacylation activity. However, most mutations affect dimer formation (to enhance or weaken). Seven CMT-causing variants and the wild-type protein were expressed in transfected neuroblastoma cells that sprout primitive neurites. Wild-type GlyRS distributed into the nascent neurites and was associated with normal neurite sprouting. In contrast, all mutant proteins were distribution-defective. Thus, CMT-causing mutations of GlyRS share a common defect in localization. This defect may be connected in some way to a change in the surfaces at the dimer interface.


Assuntos
Doença de Charcot-Marie-Tooth/enzimologia , Doença de Charcot-Marie-Tooth/genética , Glicina-tRNA Ligase/genética , Mutação , Neuritos/enzimologia , Neuritos/patologia , Substituição de Aminoácidos/genética , Animais , Axônios/enzimologia , Axônios/patologia , Linhagem Celular Tumoral , Doença de Charcot-Marie-Tooth/patologia , Dimerização , Glicina-tRNA Ligase/química , Glicina-tRNA Ligase/metabolismo , Humanos , Camundongos , Neuritos/metabolismo , Propriedades de Superfície , Transfecção , Tirosina-tRNA Ligase/genética
18.
Curr Opin Neurol ; 17(5): 579-85, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15367862

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to assist neurologists, neuroscientists and other interested readers in following the expanding volume of information relating to the inherited peripheral neuropathies collectively referred to as Charcot-Marie-Tooth disease. Currently, mutations in multiple different genes expressed in Schwann cells and neurons cause a variety of overlapping clinical phenotypes. RECENT FINDINGS: Recent articles clarify molecular pathways involved in the pathogenesis of these disorders, and for the first time provide rational treatment strategies for the most common form of Charcot-Marie-Tooth disease. The identification of many new genes associated with neuropathy demonstrate the role of axonal transport and abnormal protein trafficking in causing various forms of Charcot-Marie-Tooth. They also further define the role of axonal signaling and the molecular architecture of both Schwann cells and neurons in maintaining normal peripheral nervous system function. Finally, recent reports have shown that progesterone antagonists and ascorbic acid can successfully treat rodent models of Charcot-Marie-Tooth disease type 1A. SUMMARY: Taken together, results from these articles support the concept that genetic causes of Charcot-Marie-Tooth disease serve as a living microarray system to identify molecules necessary for normal peripheral nervous system function. When we can make sense of these microarrays we are likely to understand the pathogenesis and develop rational therapies for many neurodegenerative diseases including Charcot-Marie-Tooth.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Doença de Charcot-Marie-Tooth/fisiopatologia , Animais , Ácido Ascórbico/uso terapêutico , Transporte Axonal/fisiologia , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doença de Charcot-Marie-Tooth/genética , GTP Fosfo-Hidrolases , Glicina-tRNA Ligase/genética , Glicina-tRNA Ligase/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Progesterona/antagonistas & inibidores , Transporte Proteico/fisiologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases não Receptoras , Células de Schwann/metabolismo , Células de Schwann/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
19.
Biochemistry ; 42(18): 5333-40, 2003 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-12731874

RESUMO

The interaction of adenine nucleotides with glycyl-tRNA synthetase was examined by several experimental approaches. ATP and nonsubstrate ATP analogues render glycyl-tRNA synthetase more resistant to digestion by a number of proteases (thrombin, Arg-C, and chymotrypsin) at concentrations that correlate with their Michaelis constants or inhibition constants, consistent with their exerting an effect by binding at the ATP site. Glycine had little effect alone but potentiated the effect of ATP in increasing the resistance to thrombin digestion, consistent with the formation of an enzyme-bound adenylate. No protection from thrombin digestion was afforded by tRNA(gly). Binding constants were determined by isothermal titration calorimetry at 25 degrees C for ATP (2.5 x 10(5) M(-1)), AMPPNP (3.7 x 10(5) M(-1)), and AMPPCP (2.2 x 10(6) M(-1)). The nucleotides had similar values for DeltaH (-71 kJ mol(-1)), with values for TDeltaS that accounted for the differences in the binding constants. Near-ultraviolet CD spectra of the enzyme-nucleotide complexes indicate that the nucleotides are bound in the anti configuration. A glycyl-adenylate analogue, glycine sulfamoyl adenosine (GSAd), bound with a large value for DeltaH (-187 kJ mol(-1)), which was balanced by a large TDeltaS term to give a binding constant (3.7 x 10(6) M(-1)) only slightly larger than that of AMPPCP. Glycine binding to the enzyme could not be detected calorimetrically, and its presence did not change the thermodynamic parameters for binding of AMPPCP. AMPPNP and AMPPCP were not substrates for glycyl-tRNA synthetase. Analysis of the temperature dependence of ATP binding indicated that the heat capacity change is small, whereas the binding of GSAd is accompanied by a large negative heat capacity change (-2.6 kJ K(-1) mol(-1)). Titrations performed in buffers with different ionization enthalpies indicate that the large value for DeltaH for the adenylate analogue does not arise from a coupled protonation event. Differential scanning calorimetry indicated that glycyl-tRNA synthetase is stabilized by nucleotides. Unfolding of the protein is irreversible, and thermodynamic parameters for unfolding could therefore not be determined. The results are consistent with a significant conformational transition in glycyl-tRNA synthetase coupled to the binding of GSAd.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Escherichia coli/enzimologia , Glicina-tRNA Ligase/metabolismo , Nucleotídeos/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Sítios de Ligação , Varredura Diferencial de Calorimetria , Catálise , Quimotripsina/farmacologia , Dicroísmo Circular , Glicina-tRNA Ligase/genética , Cinética , Espectroscopia de Ressonância Magnética , Fosforilação , Ligação Proteica , Conformação Proteica , Serina Endopeptidases/farmacologia , Especificidade por Substrato , Termodinâmica , Trombina/farmacologia
20.
Int J Oncol ; 19(1): 129-35, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11408933

RESUMO

The molecular details of hypoxia-induced cellular responses have been difficult to identify since there is as yet no known oxygen receptor. We used cDNA microarray technology to extend our studies pertaining to these molecular details in human hepatocellular carcinoma (Hep3B) cells that produce erythropoietin (Epo) in response to hypoxia. Of approximately 1200 genes in the array, those associated with integrin-linked kinase (ILK), fibronectin precursor and glycogen synthase kinase-3beta (GSK-3beta) were markedly stimulated after exposure of Hep3B cells to low oxygen (1%) for 6 h. Epo, HIF-1, and von Hippel-Lindau cDNAs were measured in parallel as markers of low oxygen responses in Hep3B cells. ILK is a serine, threonine protein kinase that interacts with the cytoplasmic domains of integrin beta1 and beta3. This interaction localizes ILK to focal adhesion plaques. ILK is stimulated by cell-fibronectin interaction as well as insulin. It is regulated in a phosphatidylinositol 3-kinase dependent manner and can phosphorylate protein kinase B (PKB/AKT) and GSK-3beta. As a result of these and other activities ILK has been shown to affect anchorage-independent cell survival, cell cycle progression and tumorigenesis in nude mice. ILK has also been implicated in the Wnt pathway and as a critical target in PTEN-dependent tumor therapies. To our knowledge this is the first report implicating the ILK pathway in low oxygen responses. Other genes identified as a result of the microarray analysis not previously known to change as a result of low oxygen treatment were elongation factor-1alpha, glycyl-tRNA synthetase, and laminin receptor protein-1. These findings were all corroborated by RT-PCR assays and in some instances Western blot analysis.


Assuntos
Carcinoma Hepatocelular/metabolismo , Perfilação da Expressão Gênica/métodos , Hipóxia/metabolismo , Neoplasias Hepáticas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Transdução de Sinais , Western Blotting , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Carcinoma Hepatocelular/genética , Primers do DNA/química , Fibronectinas/genética , Fibronectinas/metabolismo , Glicina-tRNA Ligase/genética , Glicina-tRNA Ligase/metabolismo , Quinase 3 da Glicogênio Sintase , Quinases da Glicogênio Sintase , Humanos , Neoplasias Hepáticas/genética , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA