Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638879

RESUMO

Colorectal cancer (CRC) is one of the most frequently diagnosed cancers in humans. At early stages CRC is treated by surgery and at advanced stages combined with chemotherapy. We examined here the potential effect of glucosylceramide synthase (GCS)-inhibition on CRC biology. GCS is the rate-limiting enzyme in the glycosphingolipid (GSL)-biosynthesis pathway and overexpressed in many human tumors. We suppressed GSL-biosynthesis using the GCS inhibitor Genz-123346 (Genz), NB-DNJ (Miglustat) or by genetic targeting of the GCS-encoding gene UDP-glucose-ceramide-glucosyltransferase- (UGCG). GCS-inhibition or GSL-depletion led to a marked arrest of the cell cycle in Lovo cells. UGCG silencing strongly also inhibited tumor spheroid growth in Lovo cells and moderately in HCT116 cells. MS/MS analysis demonstrated markedly elevated levels of sphingomyelin (SM) and phosphatidylcholine (PC) that occurred in a Genz-concentration dependent manner. Ultrastructural analysis of Genz-treated cells indicated multi-lamellar lipid storage in vesicular compartments. In mice, Genz lowered the incidence of experimentally induced colorectal tumors and in particular the growth of colorectal adenomas. These results highlight the potential for GCS-based inhibition in the treatment of CRC.


Assuntos
Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo , Dioxanos/farmacologia , Glicoesfingolipídeos , Pirrolidinas/farmacologia , Esferoides Celulares , Animais , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/genética , Células HCT116 , Humanos , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
2.
J Lipid Res ; 62: 100128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34597626

RESUMO

The cytosolic-oriented glucosylceramide (GlcCer) synthase is enigmatic, requiring nascent GlcCer translocation to the luminal Golgi membrane to access glycosphingolipid (GSL) anabolic glycosyltransferases. The mechanism by which GlcCer is flipped remains unclear. To investigate the role of GlcCer-binding partners in this process, we previously made cleavable, biotinylated, photoreactive GlcCer analogs in which the reactive nitrene was closely apposed to the GlcCer head group, while maintaining a C16-acyl chain. GlcCer-binding protein specificity was validated for both photoprobes. Using one probe, XLB, here we identified ATP-binding cassette (ABC) transporters ABCA3, ABCB4, and ABCB10 as unfractionated microsomal GlcCer-binding proteins in DU-145 prostate tumor cells. siRNA knockdown (KD) of these transporters differentially blocked GSL synthesis assessed in toto and via metabolic labeling. KD of ABCA3 reduced acid/neutral GSL levels, but increased those of LacCer, while KD of ABCB4 preferentially reduced neutral GSL levels, and KD of ABCB10 reduced levels of both neutral and acidic GSLs. Depletion of ABCA12, implicated in GlcCer transport, preferentially decreased neutral GSL levels, while ABCB1 KD preferentially reduced gangliosides, but increased neutral GSL Gb3. These results imply that multiple ABC transporters may provide distinct but overlapping GlcCer and LacCer pools within the Golgi lumen for anabolism of different GSL series by metabolic channeling. Differential ABC family member usage may fine-tune GSL biosynthesis depending on cell/tissue type. We conclude that ABC transporters provide a new tool for the regulation of GSL biosynthesis and serve as potential targets to reduce selected GSL species/subsets in diseases in which GSLs are dysregulated.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Glicoesfingolipídeos/biossíntese , Humanos , Células Tumorais Cultivadas
3.
EMBO J ; 40(8): e107238, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33749896

RESUMO

Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.


Assuntos
Proliferação de Células , Glicoesfingolipídeos/biossíntese , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Células Cultivadas , Células HeLa , Humanos , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Transdução de Sinais
4.
Biomolecules ; 11(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418847

RESUMO

Every living cell is covered with a dense and complex layer of glycans on the cell surface, which have important functions in the interaction between cells and their environment. Glycosphingolipids (GSLs) are glycans linked to lipid molecules that together with sphingolipids, sterols, and proteins form plasma membrane lipid rafts that contribute to membrane integrity and provide specific recognition sites. GSLs are subdivided into three major series (globo-, ganglio-, and neolacto-series) and are synthesized in a non-template driven process by enzymes localized in the ER and Golgi apparatus. Altered glycosylation of lipids are known to be involved in tumor development and metastasis. Metastasis is frequently linked with reversible epithelial-to-mesenchymal transition (EMT), a process involved in tumor progression, and the formation of new distant metastatic sites (mesenchymal-to-epithelial transition or MET). On a single cell basis, cancer cells lose their epithelial features to gain mesenchymal characteristics via mechanisms influenced by the composition of the GSLs on the cell surface. Here, we summarize the literature on GSLs in the context of reversible and cancer-associated EMT and discuss how the modification of GSLs at the cell surface may promote this process.


Assuntos
Transição Epitelial-Mesenquimal , Glicoesfingolipídeos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/química , Humanos , Modelos Biológicos , Transdução de Sinais
5.
Nat Commun ; 11(1): 4279, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855410

RESUMO

Plasma and tumor caveolin-1 (Cav-1) are linked with disease progression in prostate cancer. Here we report that metabolomic profiling of longitudinal plasmas from a prospective cohort of 491 active surveillance (AS) participants indicates prominent elevations in plasma sphingolipids in AS progressors that, together with plasma Cav-1, yield a prognostic signature for disease progression. Mechanistic studies of the underlying tumor supportive onco-metabolism reveal coordinated activities through which Cav-1 enables rewiring of cancer cell lipid metabolism towards a program of 1) exogenous sphingolipid scavenging independent of cholesterol, 2) increased cancer cell catabolism of sphingomyelins to ceramide derivatives and 3) altered ceramide metabolism that results in increased glycosphingolipid synthesis and efflux of Cav-1-sphingolipid particles containing mitochondrial proteins and lipids. We also demonstrate, using a prostate cancer syngeneic RM-9 mouse model and established cell lines, that this Cav-1-sphingolipid program evidences a metabolic vulnerability that is targetable to induce lethal mitophagy as an anti-tumor therapy.


Assuntos
Caveolina 1/metabolismo , Neoplasias da Próstata/metabolismo , Esfingolipídeos/metabolismo , Idoso , Animais , Caveolina 1/sangue , Caveolina 1/genética , Linhagem Celular Tumoral , Ceramidas/metabolismo , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica , Glicoesfingolipídeos/biossíntese , Humanos , Lipídeos/sangue , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estudos Prospectivos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Pirrolidinas/farmacologia , Esfingomielinas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Sci Rep ; 10(1): 11876, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680999

RESUMO

Glycosphingolipid expression differs between human breast cancer stem cells (CSC) and cancer non-stem cells (non-CSC). We performed studies of viability, type of cell death, cancer stem cell percent and glycosphingolipid expression on CSC and non-CSC after treatment of MDA-MB-231 and MDA-MB-453 triple-negative breast cancer cells with a newly developed thienopyridine anticancer compound (3-amino-N-(3-chloro-2-methylphenyl)-5-oxo-5,6,7,8-tetrahydrothieno[2,3-b]quinoline-2-carboxamide, 1). Compound 1 was cytotoxic for both breast cancer cell lines and the majority of cells died by treatment-induced apoptosis. The percent of cancer stem cells and number of formed mammospheres was significantly lower. Glycosphingolipids IV6Neu5Ac-nLc4Cer and GalNAc-GM1b (IV3Neu5Ac-Gg5Cer) not reported previously, were identified in both CSCs and non-CSCs. IV6Neu5Ac-nLc4Cer had increased expression in both CSCs and non-CSCs of both cell lines after the treatment with 1, while GM3 (II3Neu5Ac-LacCer) had increased expression only on both cell subpopulations in MDA-MB-231 cell line. GalNAc-GM1b, Gb4Cer (GalNAcß1-3Galα1-4Galß1-4Glcß1-1Cer) and GM2 (II3Neu5Ac-GalNAcß1-4Galß1-4Glcß1-1Cer) were increased only in CSCs of both cell lines while GD3 was decreased in CSC of MDA-MB-231 cell line. Due to its effect in reducing the percentage of cancer stem cells and number of mammospheres, and its influence upon several glycosphingolipid expressions, it can be concluded that compound 1 deserves attention as a potential new drug for triple-negative breast cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Glicoesfingolipídeos/biossíntese , Células-Tronco Neoplásicas/metabolismo , Piridinas/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Redes e Vias Metabólicas , Estrutura Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Piridinas/química , Piridinas/uso terapêutico , Células Tumorais Cultivadas
7.
Biochem Biophys Res Commun ; 519(2): 287-293, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31500807

RESUMO

The cell polarity regulator Crumbs3 (Crb3) promotes colon cancer cell migration and metastasis. However, the underlying mechanism of cancer cell migration regulated by Crb3 has not been fully elucidated. Here, we demonstrated that Crb3 is associated with cell migration by regulating glycosphingolipid (GSL) expression in human colon cancer cells. Crb3-knockout (KO) cells showed a remarkable increase in ganglioside GM3 (GM3) on the cell surface. Reduced migration by Crb3-KO cells was restored by forced expression of both Crb3 and Neuraminidase3 (Neu3). Immunofluorescent staining revealed that most Crb3 is colocalized with the recycling endosome marker Rab11. These findings show that Crb3 may promote colon cancer cell migration by regulating the expression of GSLs on the cell surface.


Assuntos
Membrana Celular/metabolismo , Movimento Celular , Neoplasias do Colo/metabolismo , Glicoesfingolipídeos/biossíntese , Glicoproteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Humanos , Glicoproteínas de Membrana/deficiência
8.
Proteomics ; 19(21-22): e1800452, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31373757

RESUMO

Colorectal cancer (CRC) affects both women and men living in societies with a high sedentary lifestyle. Amongst the phenotypic changes exhibited by tumor cells, a wide range of glycosylation has been reported for colon cancer-derived cell lines and CRC tissues. These aberrant modifications affect different aspects of glycosylation, including an increase in core fucosylation and GlcNAc branching on N-glycans, alteration of O-glycans, upregulated sialylation, and O-GlcNAcylation. Although O-GlcNAcylation and complex glycosylations differ in many aspects, sparse evidences report on the interference of O-GlcNAcylation with complex glycosylation. Nevertheless, this relationship is still a matter of debate. Combining different approaches on three human colon cell lines (HT29, HCT116 and CCD841CoN), it is herein reported that silencing O-GlcNAc transferase (OGT, the sole enzyme driving O-GlcNAcylation), only slightly affects overall N- and O-glycosylation patterns. Interestingly, silencing of OGT in HT29 cells upregulates E-cadherin (a major actor of epithelial-to-mesenchymal transition) and changes its glycosylation. On the other hand, OGT silencing perturbs biosynthesis of glycosphingolipids resulting in a decrease in gangliosides and an increase in globosides. Together, these results provide novel insights regarding the selective regulation of complex glycosylations by O-GlcNAcylation in colon cancer cells.


Assuntos
Caderinas/genética , Neoplasias Colorretais/genética , N-Acetilglucosaminiltransferases/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/genética , Glicosilação , Células HCT116 , Células HT29 , Humanos , Polissacarídeos/genética
9.
Int J Parasitol Drugs Drug Resist ; 8(3): 475-487, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30399513

RESUMO

Previous work from our group showed that tamoxifen, an oral drug that has been in use for the treatment of breast cancer for over 40 years, is active both in vitro and in vivo against several species of Leishmania, the etiological agent of leishmaniasis. Using a combination of metabolic labeling with [3H]-sphingosine and myo-[3H]-inositol, alkaline hydrolysis, HPTLC fractionations and mass spectrometry analyses, we observed a perturbation in the metabolism of inositolphosphorylceramides (IPCs) and phosphatidylinositols (PIs) after treatment of L. amazonensis promastigotes with tamoxifen, with a significant reduction in the biosynthesis of the major IPCs (composed of d16:1/18:0-IPC, t16:0/C18:0-IPC, d18:1/18:0-IPC and t16:0/20:0-IPC) and PIs (sn-1-O-(C18:0)alkyl -2-O-(C18:1)acylglycerol-3-HPO4-inositol and sn-1-O-(C18:0)acyl-2-O-(C18:1)acylglycerol-3-HPO4-inositol) species. Substrate saturation kinetics of myo-inositol uptake analyses indicated that inhibition of inositol transport or availability were not the main reasons for the reduced biosynthesis of IPC and PI observed in tamoxifen treated parasites. An in vitro enzymatic assay was used to show that tamoxifen was able to inhibit the Leishmania IPC synthase with an IC50 value of 8.48 µM (95% CI 7.68-9.37), suggesting that this enzyme is most likely one of the targets for this compound in the parasites.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Glicoesfingolipídeos/biossíntese , Leishmania/efeitos dos fármacos , Tamoxifeno/farmacologia , Glicoesfingolipídeos/metabolismo , Hexosiltransferases/efeitos dos fármacos , Hexosiltransferases/metabolismo , Concentração Inibidora 50 , Inositol/metabolismo , Leishmania/fisiologia , Leishmania mexicana/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Fosfatidilinositóis/metabolismo
10.
Sci Rep ; 8(1): 11463, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061606

RESUMO

Sphingolipids have been accorded numerous biological functions however, the effects of feeding a western diet (diet rich in cholesterol and fat) on skin phenotypes, and color is not known. Here, we observed that chronic high-fat and high-cholesterol diet intake in a mouse model of atherosclerosis (ApoE-/-) decreases the level of ceramides and glucosylceramide. At the expense of increased levels of lactosylceramide due to an increase in the expression of lactosylceramide synthase (GalT-V). This is accompanied with neutrophil infiltration into dermis, and enrichment of tumor necrosis factor-stimulated gene-6 (TSG-6) protein. This causes skin inflammation, hair discoloration and loss, in ApoE-/- mice. Conversely, inhibition of glycosphingolipid synthesis, by D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), unbound or encapsulated in a biodegradable polymer (BPD) reversed these phenotypes. Thus, inhibition of glycosphingolipid synthesis represents a unique therapeutic approach relevant to human skin and hair Biology.


Assuntos
Alopecia/patologia , Apolipoproteínas E/deficiência , Dieta Ocidental , Comportamento Alimentar , Glicoesfingolipídeos/biossíntese , Inflamação/patologia , Pele/patologia , Animais , Apolipoproteínas E/metabolismo , Moléculas de Adesão Celular/metabolismo , Ceramidas/metabolismo , Galactosiltransferases/metabolismo , Homeostase , Masculino , Camundongos , Modelos Biológicos , Morfolinas/farmacologia , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fenótipo , Polímeros/farmacologia
11.
Glycoconj J ; 33(6): 963-973, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27538840

RESUMO

Human Gb3/CD77 synthase (α1,4-galactosyltransferase) is the only known glycosyltransferase that changes acceptor specificity because of a point mutation. The enzyme, encoded by A4GALT locus, is responsible for biosynthesis of Gal(α1-4)Gal moiety in Gb3 (CD77, Pk antigen) and P1 glycosphingolipids. We showed before that a single nucleotide substitution c.631C > G in the open reading frame of A4GALT, resulting in replacement of glutamine with glutamic acid at position 211 (substitution p. Q211E), broadens the enzyme acceptor specificity, so it can not only attach galactose to another galactose but also to N-acetylgalactosamine. The latter reaction leads to synthesis of NOR antigens, which are glycosphingolipids with terminal Gal(α1-4)GalNAc sequence, never before described in mammals. Because of the apparent importance of position 211 for enzyme activity, we stably transfected the 2102Ep cells with vectors encoding Gb3/CD77 synthase with glutamine substituted by aspartic acid or asparagine, and evaluated the cells by quantitative flow cytometry, high-performance thin-layer chromatography and real-time PCR. We found that cells transfected with vectors encoding Gb3/CD77 synthase with substitutions p. Q211D or p. Q211N did not express Pk, P1 and NOR antigens, suggesting complete loss of enzymatic activity. Thus, amino acid residue at position 211 of Gb3/CD77 synthase is critical for specificity and activity of the enzyme involved in formation of Pk, P1 and NOR antigens. Altogether, this approach affords a new insight into the mechanism of action of the human Gb3/CD77 synthase.


Assuntos
Galactosiltransferases , Glicoesfingolipídeos/biossíntese , Mutação de Sentido Incorreto , Acetilgalactosamina/genética , Acetilgalactosamina/metabolismo , Substituição de Aminoácidos , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Linhagem Celular Tumoral , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Glicoesfingolipídeos/genética , Humanos , Especificidade por Substrato
12.
J Lipid Res ; 57(9): 1728-36, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27412675

RESUMO

The biosynthesis of glucosylceramide (GlcCer) is a key rate-limiting step in complex glycosphingolipid (GSL) biosynthesis. To further define interacting partners of GlcCer, we have made a cleavable, biotinylated, photoreactive GlcCer analog in which the reactive nitrene is closely apposed to the GlcCer head group, by substituting the native fatty acid with d, l-2-aminohexadecanoic acid. Two amino-GlcCer diastereomer cross-linkers (XLA and XLB) were generated. XLB proved an effective lactosylceramide (LacCer) synthase substrate while XLA was inhibitory. Both probes specifically bound and cross-linked the GlcCer binding protein, glycolipid transfer protein (GLTP), but not other GSL binding proteins (Shiga toxin and cholera toxin). GlcCer inhibited GLTP cross-linking. Both GlcCer cross-linkers competed with microsomal nitrobenzoxadiazole (NBD)-GlcCer anabolism to NBD-LacCer. GLTP showed marked, ATP-dependent enhancement of cell-free intact microsomal LacCer synthesis from endogenous or exogenous liposomal GlcCer, supporting a role in the transport/membrane translocation of cytosolic and extra-Golgi GlcCer. GLTP was specifically labeled by either XLA or XLB GlcCer cross-linker during this process, together with a (the same) small subset of microsomal proteins. These cross-linkers will serve to probe physiologically relevant GlcCer-interacting cellular proteins.


Assuntos
Proteínas de Transporte/genética , Glucosilceramidas/biossíntese , Glicoesfingolipídeos/biossíntese , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Gangliosídeos/genética , Gangliosídeos/metabolismo , Glucosilceramidas/química , Glicolipídeos/química , Glicolipídeos/metabolismo , Glicoesfingolipídeos/química , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Iminas/química
13.
Infect Immun ; 84(1): 172-86, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26502906

RESUMO

Shiga toxin (Stx)-mediated immune responses, including the production of the proinflammatory cytokines tumor necrosis-α (TNF-α) and interleukin-1ß (IL-1ß), may exacerbate vascular damage and accelerate lethality. However, the immune signaling pathway activated in response to Stx is not well understood. Here, we demonstrate that enzymatically active Stx, which leads to ribotoxic stress, triggers NLRP3 inflammasome-dependent caspase-1 activation and IL-1ß secretion in differentiated macrophage-like THP-1 (D-THP-1) cells. The treatment of cells with a chemical inhibitor of glycosphingolipid biosynthesis, which suppresses the expression of the Stx receptor globotriaosylceramide and subsequent endocytosis of the toxin, substantially blocked activation of the NLRP3 inflammasome and processing of caspase-1 and IL-1ß. Processing and release of both caspase-1 and IL-1ß were significantly reduced or abolished in Stx-intoxicated D-THP-1 cells in which the expression of NLRP3 or ASC was stably knocked down. Furthermore, Stx mediated the activation of caspases involved in apoptosis in an NLRP3- or ASC-dependent manner. In Stx-intoxicated cells, the NLRP3 inflammasome triggered the activation of caspase-8/3, leading to the initiation of apoptosis, in addition to caspase-1-dependent pyroptotic cell death. Taken together, these results suggest that Stxs trigger the NLRP3 inflammasome pathway to release proinflammatory IL-1ß as well as to promote apoptotic cell death.


Assuntos
Proteínas de Transporte/imunologia , Caspase 1/imunologia , Interleucina-1beta/biossíntese , Piroptose/imunologia , Toxinas Shiga/imunologia , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Transporte/genética , Caspase 1/genética , Caspase 3/imunologia , Caspase 8/imunologia , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Ativação Enzimática/imunologia , Glicoesfingolipídeos/biossíntese , Humanos , Inflamação/imunologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Interferência de RNA , RNA Interferente Pequeno , Escherichia coli Shiga Toxigênica/metabolismo , Transdução de Sinais/imunologia , Triexosilceramidas/biossíntese , Fator de Necrose Tumoral alfa/imunologia
14.
J Clin Invest ; 125(6): 2279-92, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25915583

RESUMO

Glycosphingolipids (GSLs) are essential constituents of cell membranes and lipid rafts and can modulate signal transduction events. The contribution of GSLs in osteoclast (OC) activation and osteolytic bone diseases in malignancies such as the plasma cell dyscrasia multiple myeloma (MM) is not known. Here, we tested the hypothesis that pathological activation of OCs in MM requires de novo GSL synthesis and is further enhanced by myeloma cell-derived GSLs. Glucosylceramide synthase (GCS) inhibitors, including the clinically approved agent N-butyl-deoxynojirimycin (NB-DNJ), prevented OC development and activation by disrupting RANKL-induced localization of TRAF6 and c-SRC into lipid rafts and preventing nuclear accumulation of transcriptional activator NFATc1. GM3 was the prevailing GSL produced by patient-derived myeloma cells and MM cell lines, and exogenous addition of GM3 synergistically enhanced the ability of the pro-osteoclastogenic factors RANKL and insulin-like growth factor 1 (IGF-1) to induce osteoclastogenesis in precursors. In WT mice, administration of GM3 increased OC numbers and activity, an effect that was reversed by treatment with NB-DNJ. In a murine MM model, treatment with NB-DNJ markedly improved osteolytic bone disease symptoms. Together, these data demonstrate that both tumor-derived and de novo synthesized GSLs influence osteoclastogenesis and suggest that NB-DNJ may reduce pathological OC activation and bone destruction associated with MM.


Assuntos
Glicoesfingolipídeos/biossíntese , Microdomínios da Membrana/metabolismo , Mieloma Múltiplo/metabolismo , Osteoclastos/metabolismo , Osteólise/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacologia , Animais , Proteína Tirosina Quinase CSK , Linhagem Celular , Feminino , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Glicoesfingolipídeos/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Microdomínios da Membrana/genética , Microdomínios da Membrana/patologia , Camundongos , Camundongos Knockout , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Osteoclastos/patologia , Osteólise/genética , Osteólise/patologia , Ligante RANK/genética , Ligante RANK/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
15.
Glycobiology ; 25(4): 351-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25715344

RESUMO

Glucosylceramide synthase (GCS) catalyzes the first committed step in the biosynthesis of glucosylceramide (GlcCer)-related glycosphingolipids (GSLs). Although inhibitors of GCS, PPMP and PDMP have been widely used to elucidate their biological function and relevance, our comprehensive literature review revealed that the available data are ambiguous. We therefore investigated whether and to what extent GCS inhibitors affect the expression of lactosylceramide (LacCer), neolacto (nLc4 and P1), ganglio (GM1 and GD3) and globo (Gb3 and SSEA3) series GSLs in a panel of human cancer cell lines using flow cytometry, a commonly applied method investigating cell-surface GSLs after GCS inhibition. Their cell-surface GSL expression considerably varied among cell lines and more importantly, sublethal concentrations (IC10) of both inhibitors preferentially and significantly reduced the expression of Gb3 in the cancer cell lines IGROV1, BG1, HT29 and T47D, whereas SSEA3 was only reduced in BG1. Unexpectedly, the neolacto and ganglio series was not affected. LacCer, the precursor of all GlcCer-related GSL, was significantly reduced only in BG1 cells treated with PPMP. Future research questions addressing particular GSLs require careful consideration; our results indicate that the extent to which there is a decrease in the expression of one or more particular GSLs is dependent on the cell line under investigation, the type of GCS inhibitor and exposure duration.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucosiltransferases/antagonistas & inibidores , Glicoesfingolipídeos/biossíntese , Meperidina/análogos & derivados , Morfolinas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glucosiltransferases/metabolismo , Humanos , Meperidina/farmacologia
16.
Semin Immunopathol ; 37(2): 123-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25394861

RESUMO

Fungal cell walls contain several types of glycans, which play important roles in the pathogenesis of fungal infection and host immune response. Among them, glycosphingolipids have attracted much attention lately since they contribute actively to the fungi development and fungal-induced pathogenesis. Although glycosphingolipids are present in pathogenic and non-pathogenic fungi, pathogenic strains exhibit distinct glycan structures on their sphingolipids, which contribute to the regulatory processes engaged in inflammatory response. In Candida albicans, phospholipomannan (PLM) represents a prototype of these sphingolipids. Through its glycan and lipid moieties, PLM induces activation of host signaling pathways involved in the initial recognition of fungi, causing immune system disorder and persistent fungal disease. In this review, first we describe the general aspects of C. albicans sphingolipids synthesis with a special emphasize on PLM synthesis and its insertion into the cell wall. Then, we discuss the role of PLM glycosylation in regulating immune system activation and its contribution to the chronic persistent inflammation found in Candida infections and chronic inflammatory diseases.


Assuntos
Candida albicans/imunologia , Candida albicans/metabolismo , Candidíase/imunologia , Candidíase/metabolismo , Glicolipídeos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Candida albicans/patogenicidade , Glicoesfingolipídeos/biossíntese , Humanos , Imunomodulação , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Esfingolipídeos/biossíntese
17.
J Neurochem ; 129(5): 884-94, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24494600

RESUMO

Aggregate-prone mutant proteins, such as α-synuclein and huntingtin, play a prominent role in the pathogenesis of various neurodegenerative disorders; thus, it has been hypothesized that reducing the aggregate-prone proteins may be a beneficial therapeutic strategy for these neurodegenerative disorders. Here, we identified two previously described glucosylceramide (GlcCer) synthase inhibitors, DL-threo-1-Phenyl-2-palmitoylamino-3-morpholino-1-propanol and Genz-123346(Genz), as enhancers of autophagy flux. We also demonstrate that GlcCer synthase inhibitors exert their effects on autophagy by inhibiting AKT-mammalian target of rapamycin (mTOR) signaling. More importantly, siRNA knock down of GlcCer synthase had the similar effect as pharmacological inhibition, confirming the on-target effect. In addition, we discovered that inhibition of GlcCer synthase increased the number and size of lysosomal/late endosomal structures. Although inhibition of GlcCer synthase decreases levels of mutant α-synuclein in neurons, it does so, according to our data, through autophagy-independent mechanisms. Our findings demonstrate a direct link between glycosphingolipid biosynthesis and autophagy in primary neurons, which may represent a novel pathway with potential therapeutic value for the treatment of Parkinson's disease. Inhibition of GlcCer synthase enhances autophagy by inhibiting AKT-mTOR signaling, and increases the number and size of lysosomal/late endosomal structures. Furthermore, inhibition of GlcCer synthase decreased levels of mutant α-synuclein in neurons, which may represent a potential therapeutic target for Parkinson's disease.


Assuntos
Autofagia/fisiologia , Inibidores Enzimáticos/farmacologia , Glucosiltransferases/antagonistas & inibidores , Neurônios/fisiologia , Animais , Western Blotting , Células Cultivadas , Dioxanos/farmacologia , Feminino , Glicoesfingolipídeos/biossíntese , Células HEK293 , Humanos , Masculino , Meperidina/análogos & derivados , Meperidina/farmacologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína Oncogênica v-akt/metabolismo , Doença de Parkinson/genética , Fosforilação , Cultura Primária de Células , Pirrolidinas/farmacologia , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real
18.
Nature ; 501(7465): 116-20, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23913272

RESUMO

Newly synthesized proteins and lipids are transported across the Golgi complex via different mechanisms whose respective roles are not completely clear. We previously identified a non-vesicular intra-Golgi transport pathway for glucosylceramide (GlcCer)--the common precursor of the different series of glycosphingolipids-that is operated by the cytosolic GlcCer-transfer protein FAPP2 (also known as PLEKHA8) (ref. 1). However, the molecular determinants of the FAPP2-mediated transfer of GlcCer from the cis-Golgi to the trans-Golgi network, as well as the physiological relevance of maintaining two parallel transport pathways of GlcCer--vesicular and non-vesicular--through the Golgi, remain poorly defined. Here, using mouse and cell models, we clarify the molecular mechanisms underlying the intra-Golgi vectorial transfer of GlcCer by FAPP2 and show that GlcCer is channelled by vesicular and non-vesicular transport to two topologically distinct glycosylation tracks in the Golgi cisternae and the trans-Golgi network, respectively. Our results indicate that the transport modality across the Golgi complex is a key determinant for the glycosylation pattern of a cargo and establish a new paradigm for the branching of the glycosphingolipid synthetic pathway.


Assuntos
Glucosilceramidas/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Globosídeos/biossíntese , Globosídeos/química , Globosídeos/metabolismo , Glucosilceramidas/química , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/química , Glicoesfingolipídeos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosfatos de Fosfatidilinositol/metabolismo , Rede trans-Golgi/metabolismo
19.
Urology ; 82(2): 295-300, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23896093

RESUMO

OBJECTIVE: To evaluate the mechanisms of bladder uric acid stone (BUAS) formation by analyzing BUAS stone matrix proteins, with mass spectrometry (MS). MATERIALS AND METHODS: Stone matrix proteins were extracted from 5 pure BUASs. The obtained proteins were analyzed with reverse phase liquid chromatography-tandem MS. The acquired data were investigated against a Swiss Prot human protein database, using Matrix Science Mascot. The identified proteins were submitted to UniProtKB website for gene ontology analysis to define their correlation. They were also submitted to Metacore platform and Kyoto Encyclopedia of Genes and Genomes website for pathway analysis. MS-determined protein expressions were validated by immunoblot. RESULTS: The liquid chromatography-tandem MS analysis identified 58-226 proteins in the 5 BUASs (450 proteins). Metacore software analysis suggests that inflammation might play an important role for BUAS formation. The analysis of endogenous metabolic pathways revealed that these proteins were categorized into glycerophospholipid or glycosphingolipid biosynthesis. Four of 5 identified proteins selected for validation, including uromodulin, S100P, Histone 4, and nucleophosmin, can be validated in the immunoblot data. CONCLUSION: Our results suggest that inflammatory process and lipid metabolism might play a role in the formation of BUAS. Whether these inflammatory responses are the etiology of stone formation or whether they result from local damage by stone irritation is uncertain.


Assuntos
Proteínas/análise , Cálculos da Bexiga Urinária/química , Cálculos da Bexiga Urinária/metabolismo , Vias Biossintéticas , Proteínas de Ligação ao Cálcio/análise , Cromatografia Líquida , Cistite/complicações , Cistite/metabolismo , Glicerofosfolipídeos/biossíntese , Glicoesfingolipídeos/biossíntese , Humanos , Metabolismo dos Lipídeos , Proteínas de Neoplasias/análise , Mapeamento de Peptídeos , Proteínas/metabolismo , Espectrometria de Massas em Tandem , Ácido Úrico , Cálculos da Bexiga Urinária/etiologia , Uromodulina/análise
20.
Proc Natl Acad Sci U S A ; 110(13): 4968-73, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23479608

RESUMO

Previous studies demonstrated that certain glycosphingolipids (GSLs) are involved in various cell functions, such as cell growth and motility. Recent studies showed changes in GSL expression during differentiation of human embryonic stem cells; however, little is known about expression profiles of GSLs in cancer stem cells (CSCs). CSCs are a small subpopulation in cancer and are proposed as cancer-initiating cells, have been shown to be resistant to numerous chemotherapies, and may cause cancer recurrence. Here, we analyzed GSLs expressed in human breast CSCs by applying a CSC model induced through epithelial-mesenchymal transition, using mass spectrometry, TLC immunostaining, and cell staining. We found that (i) Fuc-(n)Lc4Cer and Gb3Cer were drastically reduced in CSCs, whereas GD2, GD3, GM2, and GD1a were greatly increased in CSCs; (ii) among various glycosyltransferases tested, mRNA levels for ST3GAL5, B4GALNT1, ST8SIA1, and ST3GAL2 were increased in CSCs, which could explain the increased expression of GD3, GD2, GM2, and GD1a in CSCs; (iii) the majority of GD2+ cells and GD3+ cells were detected in the CD44(hi)/CD24(lo) cell population; and (iv) knockdown of ST8SIA1 and B4GALNT1 significantly reduced the expression of GD2 and GD3 and caused a phenotype change from CSC to a non-CSC, which was detected by reduced mammosphere formation and cell motility. Our results provide insight into GSL profiles in human breast CSCs, indicate a functional role of GD2 and GD3 in CSCs, and suggest a possible novel approach in targeting human breast CSCs to interfere with cancer recurrence.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glucosiltransferases/biossíntese , Glicoesfingolipídeos/biossíntese , Proteínas de Neoplasias/biossíntese , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Técnicas de Silenciamento de Genes , Glucosiltransferases/genética , Humanos , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA