RESUMO
Cancer cells frequently alter their lipids to grow and adapt to their environment1-3. Despite the critical functions of lipid metabolism in membrane physiology, signalling and energy production, how specific lipids contribute to tumorigenesis remains incompletely understood. Here, using functional genomics and lipidomic approaches, we identified de novo sphingolipid synthesis as an essential pathway for cancer immune evasion. Synthesis of sphingolipids is surprisingly dispensable for cancer cell proliferation in culture or in immunodeficient mice but required for tumour growth in multiple syngeneic models. Blocking sphingolipid production in cancer cells enhances the anti-proliferative effects of natural killer and CD8+ T cells partly via interferon-γ (IFNγ) signalling. Mechanistically, depletion of glycosphingolipids increases surface levels of IFNγ receptor subunit 1 (IFNGR1), which mediates IFNγ-induced growth arrest and pro-inflammatory signalling. Finally, pharmacological inhibition of glycosphingolipid synthesis synergizes with checkpoint blockade therapy to enhance anti-tumour immune response. Altogether, our work identifies glycosphingolipids as necessary and limiting metabolites for cancer immune evasion.
Assuntos
Glicoesfingolipídeos , Evasão da Resposta Imune , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Evasão Tumoral , Animais , Feminino , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/deficiência , Glicoesfingolipídeos/imunologia , Glicoesfingolipídeos/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Interferon gama/metabolismo , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , LipidômicaRESUMO
Aberrant expression of glycosphingolipids is a hallmark of cancer cells and is associated with their malignant properties. Disialylated gangliosides GD2 and GD3 are considered as markers of neuroectoderm origin in tumors, whereas fucosyl-GM1 is expressed in very few normal tissues but overexpressed in a variety of cancers, especially in small cell lung carcinoma. These gangliosides are absent in most normal adult tissues, making them targets of interest in immuno-oncology. Passive and active immunotherapy strategies have been developed, and have shown promising results in clinical trials. In this review, we summarized the current knowledge on GD2, GD3, and fucosyl-GM1 expression in health and cancer, their biosynthesis pathways in the Golgi apparatus, and their biological roles. We described how their overexpression can affect intracellular signaling pathways, increasing the malignant phenotypes of cancer cells, including their metastatic potential and invasiveness. Finally, the different strategies used to target these tumor-associated gangliosides for immunotherapy were discussed, including the use and development of monoclonal antibodies, vaccines, immune system modulators, and immune effector-cell therapy, with a special focus on adoptive cellular therapy with T cells engineered to express chimeric antigen receptors.
Assuntos
Anticorpos Monoclonais/farmacologia , Biomarcadores Tumorais/metabolismo , Glicoesfingolipídeos/antagonistas & inibidores , Glicoesfingolipídeos/metabolismo , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Animais , Glicoesfingolipídeos/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Transdução de SinaisRESUMO
Colorectal cancer (CRC) is one of the main causes of cancer death in the world. Post-translational modifications (PTMs) have been extensively studied in malignancies due to its relevance in tumor pathogenesis and therapy. This review is focused on the dysregulation of glycosyltransferase expression in CRC and its impact in cell function and in several biological pathways associated with CRC pathogenesis, prognosis and therapeutic approaches. Glycan structures act as interface molecules between cells and their environment and in several cases facilitate molecule function. CRC tissue shows alterations in glycan structures decorating molecules, such as annexin-1, mucins, heat shock protein 90 (Hsp90), ß1 integrin, carcinoembryonic antigen (CEA), epidermal growth factor receptor (EGFR), insulin-like growth factor-binding protein 3 (IGFBP3), transforming growth factor beta (TGF-ß) receptors, Fas (CD95), PD-L1, decorin, sorbin and SH3 domain-containing protein 1 (SORBS1), CD147 and glycosphingolipids. All of these are described as key molecules in oncogenesis and metastasis. Therefore, glycosylation in CRC can affect cell migration, cell-cell adhesion, actin polymerization, mitosis, cell membrane repair, apoptosis, cell differentiation, stemness regulation, intestinal mucosal barrier integrity, immune system regulation, T cell polarization and gut microbiota composition; all such functions are associated with the prognosis and evolution of the disease. According to these findings, multiple strategies have been evaluated to alter oligosaccharide processing and to modify glycoconjugate structures in order to control CRC progression and prevent metastasis. Additionally, immunotherapy approaches have contemplated the use of neo-antigens, generated by altered glycosylation, as targets for tumor-specific T cells or engineered CAR (Chimeric antigen receptors) T cells.
Assuntos
Neoplasias Colorretais/genética , Glicoesfingolipídeos/imunologia , Glicosiltransferases/genética , Mucinas/genética , Proteínas de Neoplasias/genética , Processamento de Proteína Pós-Traducional , Anexina A1/genética , Anexina A1/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Decorina/genética , Decorina/imunologia , Receptores ErbB/genética , Receptores ErbB/imunologia , Regulação Neoplásica da Expressão Gênica , Glicoesfingolipídeos/metabolismo , Glicosilação , Glicosiltransferases/imunologia , Humanos , Imunoterapia Adotiva/métodos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/imunologia , Integrina beta1/genética , Integrina beta1/imunologia , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/imunologia , Mucinas/imunologia , Proteínas de Neoplasias/imunologia , Receptor fas/genética , Receptor fas/imunologiaRESUMO
HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.
Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Linfócitos T CD8-Positivos/imunologia , Glioma/imunologia , Glicoesfingolipídeos/metabolismo , Glicosiltransferases/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoterapia/métodos , Apresentação de Antígeno , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/mortalidade , Glicoesfingolipídeos/imunologia , Antígenos HLA/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Ativação Linfocitária , Transdução de Sinais , Análise de Sobrevida , Evasão TumoralRESUMO
AIMS: In this work, we aimed to evaluate the effects of the Leishmania infantum chagasi infection on the liver of vaccinated mice, considering parameters of tissue damage and the inflammatory response elicited by vaccination. MAIN METHODS: We used recombinant LPG3 protein (rLPG3) as immunogen in BALB/c mice before challenge with promastigote forms of L. infantum chagasi. The animals were separated into five groups: NI: non-infected animals; NV: non-vaccinated; SAP: treated with saponin; rLPG3: immunized with rLPG3; rLPG3 + SAP: immunized with rLPG3 plus SAP. The experiment was conducted in replicate, and the vaccination protocol consisted of three subcutaneous doses of rLPG3 (40 µg + two boosters of 20 µg). The mice were challenged two weeks after the last immunization. KEY FINDINGS: Our results showed that rLPG3 + SAP immunization decreased the parasite burden in 99 %, conferring immunological protection in the liver of the infected animals. Moreover, the immunization improved the antioxidant defenses, increasing CAT and GST activity, while reducing the levels of oxidative stress markers, such as H2O2 and NO3/NO2, and carbonyl protein in the organ. As a consequence, rLPG3 + SAP immunization preserved tissue integrity and reduced the granuloma formation, inflammatory infiltrate and serum levels of AST, ALT, and ALP. SIGNIFICANCE: Taken together, these results showed that rLPG3 vaccine confers liver protection against L. infantum chagasi in mice, while maintaining the liver tissue protected against the harmful inflammatory effects caused by the vaccine followed by the infection.
Assuntos
Glicoesfingolipídeos/imunologia , Leishmania infantum/imunologia , Leishmaniose/prevenção & controle , Leishmaniose/parasitologia , Hepatopatias Parasitárias/prevenção & controle , Hepatopatias Parasitárias/parasitologia , Vacinas Protozoárias/imunologia , Proteínas Recombinantes/imunologia , Animais , Anticorpos Antiprotozoários , Antioxidantes , Modelos Animais de Doenças , Imunização , Leishmaniose/patologia , Hepatopatias Parasitárias/patologia , Camundongos , Estresse Oxidativo , Carga Parasitária , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismoRESUMO
We previously found that artificial glycosphingolipids (artGSLs) containing very-long-chain fatty acids behave as strong immunogens in mice and promote the production of antibodies recognizing the oligosaccharide portion of artGSLs as the epitope. Here, we report that the oligosaccharide structure of artGSLs influences these immunogenic properties. We evaluated the antibody-inducing activity of artGSLs with different oligosaccharide structures in mice and found strong IgG-inducing activity only with an artGSL containing a core-fucosylated tetraoligosaccharide (Manß1,4GlcNAcß1,4[Fucα1,6]GlcNAc). To characterize the immunogenic properties of this artGSL, we analyzed various derivatives and found that the non-reducing terminal mannose structure was critical for the antibody-inducing activity. These artGSLs also exhibited IgG-inducing activity dependent on co-administration of lipid A adjuvant, but no cytokine-inducing activity similar to α-galactosylceramide was detected. Furthermore, repetitive immunization with the artGSL promoted the production of antibodies against a core-fucosylated α-fetoprotein isoform (AFP-L3) known as a hepatocellular carcinoma-specific antigen. These results indicate that the newly designed artGSLs specifically induce adaptive immune responses and promote antibody production by B cells, which can be utilized to develop anti-glycoconjugate antibodies and cancer vaccines targeting tumor-associated carbohydrate antigens.
Assuntos
Glicoesfingolipídeos/imunologia , Imunidade Humoral , Imunização , Adjuvantes Imunológicos , Animais , Carcinoma Hepatocelular/imunologia , Lipídeo A/imunologia , Neoplasias Hepáticas/imunologia , Camundongos , alfa-Fetoproteínas/imunologiaRESUMO
Invariant NKT (iNKT) cells have the unique ability to shape immunity during antitumor immune responses and other forms of sterile and nonsterile inflammation. Recent studies have highlighted a variety of classes of endogenous and pathogen-derived lipid antigens that can trigger iNKT cell activation under sterile and nonsterile conditions. However, the context and mechanisms that drive the presentation of self-lipid antigens in sterile inflammation remain unclear. Here we report that endoplasmic reticulum (ER)-stressed myeloid cells, via signaling events modulated by the protein kinase RNA-like ER kinase (PERK) pathway, increase CD1d-mediated presentation of immunogenic endogenous lipid species, which results in enhanced iNKT cell activation both in vitro and in vivo. In addition, we demonstrate that actin cytoskeletal reorganization during ER stress results in an altered distribution of CD1d on the cell surface, which contributes to enhanced iNKT cell activation. These results define a previously unidentified mechanism that controls iNKT cell activation during sterile inflammation.
Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Dendríticas/imunologia , Estresse do Retículo Endoplasmático/imunologia , Ativação Linfocitária , Células T Matadoras Naturais/imunologia , Animais , Apresentação de Antígeno , Antígenos CD1d/biossíntese , Antígenos CD1d/imunologia , Autoantígenos/imunologia , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Citoesqueleto/ultraestrutura , Endossomos/imunologia , Glicoesfingolipídeos/imunologia , Glicoesfingolipídeos/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Lipídeos/imunologia , Lisossomos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células THP-1 , Tapsigargina/farmacologia , Resposta a Proteínas não Dobradas/imunologia , eIF-2 Quinase/deficiência , eIF-2 Quinase/fisiologiaRESUMO
Lipophosphoglycan (LPG) is the major Leishmania surface glycoconjugate having importance during the host-parasite interface. Leishmania (Viannia) braziliensis displays a spectrum of clinical forms including: typical cutaneous leishmaniasis (TL), mucocutaneous (ML), and atypical lesions (AL). Those variations in the immunopathology may be a result of intraspecies polymorphisms in the parasite's virulence factors. In this context, we evaluated the role of LPG of strains originated from patients with different clinical manifestations and the sandfly vector. Six isolates of L. braziliensis were used: M2903, RR051 and RR418 (TL), RR410 (AL), M15991 (ML), and M8401 (vector). LPGs were extracted and purified by hydrophobic interaction. Peritoneal macrophages from C57BL/6 and respective knock-outs (TLR2-/- and TLR-4-/-) were primed with IFN-γ and exposed to different LPGs for nitric oxide (NO) and cytokine production (IL-1ß, IL-6, IL-12, and TNF-α). LPGs differentially activated the production of NO and cytokines via TLR4. In order to ascertain if such functional variations were related to intraspecies polymorphisms in the LPG, the purified glycoconjugates were subjected to western blot with specific LPG antibodies (CA7AE and LT22). Based on antibody reactivity preliminary variations in the repeat units were detected. To confirm these findings, LPGs were depolymerized for purification of repeat units. After thin layer chromatography, intraspecies polymorphisms were confirmed especially in the type and/size of sugars branching-off the repeat units motif. In conclusion, different isolates of L. braziliensis from different clinical forms and hosts possess polymorphisms in their LPGs that functionally affected macrophage responses.
Assuntos
Glicoesfingolipídeos/química , Glicoesfingolipídeos/imunologia , Leishmania braziliensis/genética , Leishmania braziliensis/metabolismo , Leishmaniose Cutânea/imunologia , Ativação de Macrófagos , Receptor 4 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Técnicas de Inativação de Genes , Glicoesfingolipídeos/isolamento & purificação , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Macrófagos/imunologia , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico , Psychodidae/parasitologia , Receptor 4 Toll-Like/genética , Fatores de VirulênciaRESUMO
Glycosphingolipids (GSLs) exhibit a variety of functions in cellular differentiation and interaction. Also, they are known to play a role as receptors in pathogen invasion. A less well-explored feature is the role of GSLs in immune cell function which is the subject of this review article. Here we summarize knowledge on GSL expression patterns in different immune cells. We review the changes in GSL expression during immune cell development and differentiation, maturation, and activation. Furthermore, we review how immune cell GSLs impact membrane organization, molecular signaling, and trans-interactions in cellular cross-talk. Another aspect covered is the role of GSLs as targets of antibody-based immunity in cancer. We expect that recent advances in analytical and genome editing technologies will help in the coming years to further our knowledge on the role of GSLs as modulators of immune cell function.
Assuntos
Glicoesfingolipídeos/imunologia , Glicoesfingolipídeos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Linfócitos/metabolismo , Células Mieloides/metabolismo , Animais , Anticorpos/uso terapêutico , Estruturas da Membrana Celular/metabolismo , Citocinas/metabolismo , Glicoesfingolipídeos/antagonistas & inibidores , Glicoesfingolipídeos/classificação , Humanos , Infecções/imunologia , Camundongos , Terapia de Alvo Molecular , Neoplasias/imunologia , Transdução de SinaisRESUMO
Lipophosphoglycan (LPG) is a key virulence factor expressed on the surfaces of Leishmania promastigotes. Although LPG is known to activate macrophages, the underlying mechanisms resulting in the production of prostaglandin E2 (PGE2) via signaling pathways remain unknown. Here, the inflammatory response arising from stimulation by Leishmania infantum LPG and/or its lipid and glycan motifs was evaluated with regard to PGE2 induction. Intact LPG, but not its glycan and lipid moieties, induced a range of proinflammatory responses, including PGE2 and nitric oxide (NO) release, increased lipid droplet formation, and iNOS and COX2 expression. LPG also induced ERK-1/2 and JNK phosphorylation in macrophages, in addition to the release of PGE2, MCP-1, IL-6, TNF-α and IL-12p70, but not IL-10. Pharmacological inhibition of ERK1/2 and PKC affected PGE2 and cytokine production. Moreover, treatment with rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ), also modulated the release of PGE2 and other proinflammatory mediators. Finally, we determined that LPG-induced PPAR-γ signaling occurred via TLR1/2. Taken together, these results reinforce the role played by L. infantum-derived LPG in the proinflammatory response seen in Leishmania infection.
Assuntos
Glicoesfingolipídeos/imunologia , Leishmania infantum/fisiologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , PPAR gama/metabolismo , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Células Cultivadas , Dinoprostona/metabolismo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , Fatores de VirulênciaRESUMO
Glycosphingolipids (GSLs) are composed of complex glycans linked to sphingosines and various fatty acid chains. Antibodies against several GSLs designated as stage-specific embryonic antigens (SSEAs), have been widely used to characterize differentiation of embryonic stem (ES) cells. In view of the cross-reactivities of these antibodies with multiple glycans, a few laboratories have employed advanced mass spectrometry (MS) technologies to define the dynamic changes of surface GSLs upon ES differentiation. However, the amphiphilic nature and heterogeneity of GSLs make them difficult to decipher. In our studies, systematic survey of GSL expression profiles in human ES cells and differentiated derivatives was conducted, primarily with matrix-assisted laser desorption/ionization MS (MALDI-MS) and MS/MS analyses. In addition to the well-known ES-specific markers, SSEA-3 and SSEA-4, several previously undisclosed globo- and lacto-series GSLs, including Gb4Cer, Lc4Cer, fucosyl Lc4Cer, Globo H, and disialyl Gb5Cer were identified in the undifferentiated human ES and induced pluripotent stem cells. Furthermore, during differentiation to embryoid body outgrowth, the core structures of GSLs switched from globo- and lacto- to ganglio-series. Lineage-specific differentiation was also marked by alterations of specific GSLs. During differentiation into neural progenitors, core structures shifted to primarily ganglio-series dominated by GD3. GSL patterns shifted to prominent expression of Gb4Cer with little SSEA-3 and- 4 or GD3 during endodermal differentiation. Several issues relevant to MS analysis and novel GSLs in ES cells were discussed. Finally, unique GSL signatures in ES and cancer cells are exploited in glycan-targeted anti-cancer immunotherapy and their mechanistic investigations were discussed using anti-GD2 mAb and Globo H as examples.
Assuntos
Biomarcadores Tumorais/metabolismo , Células-Tronco Embrionárias/metabolismo , Glicoesfingolipídeos/metabolismo , Neoplasias/metabolismo , Glicoesfingolipídeos/imunologia , Humanos , Imunoterapia/métodos , Neoplasias/diagnóstico , Neoplasias/terapiaRESUMO
The human acute monocytic leukemia cell line THP-1 is widely used as an in vitro phagocytic cell model because it exhibits several immune properties similar to native monocyte-derived macrophages. In this study, we investigated the alteration of N- and O-linked glycans as well as glycosphingolipids, during THP-1 differentiation, combining mass spectrometry, flow cytometry, and quantitative real-time PCR. Mass spectrometry revealed that macrophage differentiation led to a marked upregulation of expression of GM3 ganglioside as well as an increase in complex-type structures, particularly triantennary glycans, occurring at the expense of high-mannose N-glycans. Moreover, we observed a slight decrease in the proportion of multifucosylated N-glycans and α2,6-sialylation. The uncovered changes in glycosylation correlated with variations of gene expression of relevant glycosyltransferases and glycosidases including sialyltransferases, ß-N-acetylglucosaminyltransferases, fucosyltransferases, and neuraminidase. Furthermore, using flow cytometry and antibodies directed against glycan structures, we confirmed that the alteration of glycosylation occurs at the cell surface of THP-1 macrophage-like cells. Altogether, we established that macrophagic maturation of THP-1 induces dramatic modifications of the surface glycosylation pattern that may result in differential interaction of monocytic and macrophagic THP-1 with immune or bacterial lectins.
Assuntos
Diferenciação Celular/imunologia , Glicoesfingolipídeos/química , Macrófagos/química , Monócitos/química , Polissacarídeos/química , Configuração de Carboidratos , Sequência de Carboidratos , Linhagem Celular , Fucosiltransferases/genética , Fucosiltransferases/imunologia , Gangliosídeo G(M3)/química , Gangliosídeo G(M3)/imunologia , Regulação da Expressão Gênica , Glicoesfingolipídeos/imunologia , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/imunologia , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Manose/química , Manose/imunologia , Monócitos/citologia , Monócitos/imunologia , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/imunologia , Neuraminidase/genética , Neuraminidase/imunologia , Polissacarídeos/imunologia , Ácidos Siálicos/química , Ácidos Siálicos/imunologia , Sialiltransferases/genética , Sialiltransferases/imunologiaRESUMO
Synthesis of a biotinylated analog of the carbohydrate portion of a glycosphingolipid from the parasite Echinococcus multilocularis has been achieved. We synthesized ß-D-Galp-(1â6)-ß-D-Galp-(1â6)-[α-L-Fucp-(1â3)]-ß-D-Galp-(1âR: biotin probe) (1) and compared the antigenicity by an enzyme linked immunosorbent assay (ELISA) with biotinylated trisaccharide α-D-Galp-(1â4)-ß-D-Galp-(1â3)-α-D-Galp-(1âR: biotin probe) (F), which has been shown to have significant antigenicity. Both of the oligosaccharides reacted with sera of alveolar echinococcosis (AE) patients, but showed different reactivity. Among the 60 sera of AE patients, more sera reacted with the linear sequence Galα1â4Galß1â3GalNAcα1âR of oligosaccharide (F) than for branched compound 1. Some sera showed high specificity to one of the compound, indicating that the antibodies in the sera of AE patients differ in their specificity to recognize carbohydrate sequences of glycosphingolipids. Our results demonstrate that both of the biotinylated oligosaccharides 1 and F have good serodiagnostic potential and are complementary to detect infections caused by the parasite Echinococcus multilocularis.
Assuntos
Biotina/química , Equinococose Hepática/sangue , Equinococose Hepática/imunologia , Echinococcus multilocularis/química , Glicoesfingolipídeos/síntese química , Glicoesfingolipídeos/imunologia , Oligossacarídeos/síntese química , Oligossacarídeos/imunologia , Animais , Anticorpos/sangue , Anticorpos/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Equinococose , Echinococcus multilocularis/imunologia , Glicoesfingolipídeos/química , Humanos , Conformação Molecular , Oligossacarídeos/químicaRESUMO
Some gangliosides, sialic acid-containing glycosphingolipids, have been considered as tumor-associated antigens. GD1α or a GD1α synthase gene ST6GalNAc5 was reported to be involved in the metastasis of murine lymphomas or human breast cancers, respectively. But expression patterns of 0-series gangliosides GD1α and its precursor GM1b in human cancers have not yet been investigated mainly due to lack of specific antibodies. We established specific monoclonal antibodies (mAbs) reactive with GD1α or GM1b using gangliosides from brain tissues of GM3 synthase (St3gal5)-deficient mice as immunogens. We used GM2/GD2 synthase (B4galnt1)-deficient mice to immunize by liposomes embedded with GD1α or acidic glycolipid fractions from brain of St3gal5-deficient mice. Specificities of established mAbs as analyzed by enzyme-linked immunosorbent assay and thin-layer chromatography-immunostaining were very high among various gangliosides. Increased expression of GD1α and reduced GM1b in the St6galnac5 cDNA-transfected RAW117 cell line also substantiated the specificities of two mAbs. Then, we analyzed expression of GD1α and GM1b, and of relevant glycosyltransferase genes in various human cancer cell lines using generated anti-GD1α mAb 122 or anti-GM1b mAb MR155A-7. A few human cancer cell lines showed significant expression of these gangliosides with reasonable expression of relevant glycosyltransferase genes.
Assuntos
Gangliosídeo G(M1)/análogos & derivados , N-Acetilgalactosaminiltransferases/genética , Sialiltransferases/genética , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Gangliosídeo G(M1)/biossíntese , Gangliosídeo G(M1)/genética , Gangliosídeo G(M1)/metabolismo , Gangliosídeos/genética , Gangliosídeos/metabolismo , Regulação Enzimológica da Expressão Gênica , Glicoesfingolipídeos/genética , Glicoesfingolipídeos/imunologia , Glicoesfingolipídeos/metabolismo , Humanos , Camundongos , Camundongos Knockout , N-Acetilgalactosaminiltransferases/metabolismo , Metástase Neoplásica , Sialiltransferases/metabolismoRESUMO
Dendritic cells (DCs) and Langerhans cells (LC) are professional antigen presenting cells (APCs) that initiate humoral and cellular immune responses. Targeted delivery of antigen towards DC- or LC-specific receptors enhances vaccine efficacy. In this study, we compared the efficiency of glycan-based antigen targeting to both the human DC-specific C-type lectin receptor (CLR) DC-SIGN and the LC-specific CLR langerin. Since DC-SIGN and langerin are able to recognize the difucosylated oligosaccharide Lewis Y (Le(Y)), we prepared neoglycoconjugates bearing this glycan epitope to allow targeting of both lectins. Le(Y)-modified liposomes, with an approximate diameter of 200nm, were significantly endocytosed by DC-SIGN(+) DCs and mediated efficient antigen presentation to CD4(+) and CD8(+) T cells. Surprisingly, although langerin bound to Le(Y)-modified liposomes, LCs exposed to Le(Y)-modified liposomes could not endocytose liposomes nor mediate antigen presentation to T cells. However, LCs mediated an enhanced cross-presentation when antigen was delivered through langerin using Le(Y)-modified synthetic long peptides. In contrast, Le(Y)-modified synthetic long peptides were recognized by DC-SIGN, but did not trigger antigen internalization nor antigen cross-presentation. These data demonstrate that langerin and DC-SIGN have different size requirements for antigen uptake. Although using glycans remains an interesting option in the design of anti-cancer vaccines targeting multiple CLRs, aspects such as molecule size and conformation need to be taken in consideration.
Assuntos
Antígenos CD/imunologia , Antígenos/imunologia , Moléculas de Adesão Celular/imunologia , Apresentação Cruzada , Glicoconjugados/imunologia , Lectinas Tipo C/imunologia , Lipossomos/imunologia , Lectinas de Ligação a Manose/imunologia , Polissacarídeos/imunologia , Receptores de Superfície Celular/imunologia , Sequência de Aminoácidos , Apresentação de Antígeno , Antígenos/química , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Sequência de Carboidratos , Células Dendríticas/imunologia , Sistemas de Liberação de Medicamentos , Glicoconjugados/química , Glicoesfingolipídeos/química , Glicoesfingolipídeos/imunologia , Humanos , Células de Langerhans/imunologia , Lipossomos/química , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Polissacarídeos/químicaRESUMO
In this work, some aspects of the glycobiology of Leishmania shawi were examined, as it is a causative agent of cutaneous leishmaniasis in the New World. Additionally, the interaction of L. shawi's main glycoconjugates [lipophosphoglycan (LPG) and glycoinositolphospholipids (GIPLs)] with macrophages was evaluated in vitro. L. shawi LPG was devoid of side-chains in its repeat units, whereas monosaccharide analysis showed that GIPLs were suggestive of mannose-rich (type I or hybrid). In order to evaluate the biological roles of those molecules, BALB/c resident peritoneal macrophages were incubated with these glycoconjugates for 24h, and the levels of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-12p70 and IL-10, were determined. In general, the GIPLs exhibited a greater proinflammatory role than the LPGs did. However, for the first time, the GIPLs from this species were able to trigger the production of IL-10, an anti-inflammatory cytokine. In conclusion, L. shawi glycoconjugates were able to interact with the innate immune compartment. These data reinforce the role of parasite glycoconjugates during parasite and host cell interactions.
Assuntos
Glicoconjugados/imunologia , Glicoesfingolipídeos/imunologia , Leishmania/química , Leishmania/imunologia , Macrófagos Peritoneais/imunologia , Fosfatidilinositóis/imunologia , Animais , Glicoesfingolipídeos/química , Interações Hospedeiro-Parasita , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Fosfatidilinositóis/química , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: "Weak P" is a rare red blood cell (RBC) phenotype, characterized by a global decrease in P(k) and P antigens. We now describe a second weak P individual who also typed LKE-negative (LKE-N) and possessed a clinically significant anti-LKE. STUDY DESIGN AND METHODS: Patient RBCs and plasma were examined by standard serology and flow cytometry. Glycosphingolipids (GSLs) from patient, P(k) , and LKE-strong (LKE-S) RBCs were isolated and analyzed by high-performance thin-layer chromatography (HPTLC). To confirm antibody specificity, patient serum and 30 human polyclonal controls, including alloanti-P and anti-PP1 P(k) , were tested against a panel of GSLs by HPTLC immunostaining. RESULTS: The patient typed P1 +, P+, and LKE-N and possessed a "P-like" panagglutinin. In a two-stage indirect antiglobulin test, the patient's plasma caused hemolysis of LKE-S cells but not p, P(k) , or LKE-N cells. Clinically, transfusion of P+ RBCs compatible by a prewarmed technique had shortened RBC survival with laboratory evidence of hemolysis. Analysis of the patient's isolated RBC GSLs showed a 30% relative decrease in Gb3 (P(k) ) and Gb4 (P) and a 90% decrease in monosialogalactosylgloboside (MSGG, LKE), accompanied by increased lactosylceramide (CDH), paragloboside, and GM3. On HPTLC immunostaining, the patient's plasma strongly bound MSSG with weak binding to galactosylgloboside (Gb5). Binding to MSGG, Gb5, and Gb4 was also observed with some examples of alloanti-P from P(k) individuals, but not anti-PP1 P(k) , autoanti-P, or normal controls. CONCLUSIONS: We describe the first example of a clinically significant anti-LKE in the setting of a rare weak P background. Human alloanti-LKE and some alloanti-P recognized Gb5 and MSGG.
Assuntos
Anemia Hemolítica Autoimune/sangue , Globosídeos/imunologia , Glicoesfingolipídeos/imunologia , Isoanticorpos/imunologia , Sistema do Grupo Sanguíneo P/imunologia , Antígenos Embrionários Estágio-Específicos/imunologia , Anemia Hemolítica Autoimune/diagnóstico , Anemia Hemolítica Autoimune/genética , Anemia Hemolítica Autoimune/imunologia , Especificidade de Anticorpos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Tipagem e Reações Cruzadas Sanguíneas/métodos , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Teste de Coombs , Transfusão de Eritrócitos , Evolução Fatal , Humanos , Linfoma Difuso de Grandes Células B/complicações , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Fenótipo , Antígenos Embrionários Estágio-Específicos/química , Reação Transfusional/etiologiaRESUMO
BACKGROUND: The level of plasma-derived naturally circulating anti-glycan antibodies (AGA) to P1 trisaccharide has previously been shown to significantly discriminate between ovarian cancer patients and healthy women. Here we aim to identify the Ig class that causes this discrimination, to identify on cancer cells the corresponding P1 antigen recognised by circulating anti-P1 antibodies and to shed light into the possible function of this glycosphingolipid. METHODS: An independent Australian cohort was assessed for the presence of anti-P1 IgG and IgM class antibodies using suspension array. Monoclonal and human derived anti-glycan antibodies were verified using three independent glycan-based immunoassays and flow cytometry-based inhibition assay. The P1 antigen was detected by LC-MS/MS and flow cytometry. FACS-sorted cell lines were studied on the cellular migration by colorimetric assay and real-time measurement using xCELLigence system. RESULTS: Here we show in a second independent cohort (n=155) that the discrimination of cancer patients is mediated by the IgM class of anti-P1 antibodies (P=0.0002). The presence of corresponding antigen P1 and structurally related epitopes in fresh tissue specimens and cultured cancer cells is demonstrated. We further link the antibody and antigen (P1) by showing that human naturally circulating and affinity-purified anti-P1 IgM isolated from patients ascites can bind to naturally expressed P1 on the cell surface of ovarian cancer cells. Cell-sorted IGROV1 was used to obtain two study subpopulations (P1-high, 66.1%; and P1-low, 33.3%) and observed that cells expressing high P1-levels migrate significantly faster than those with low P1-levels. CONCLUSIONS: This is the first report showing that P1 antigen, known to be expressed on erythrocytes only, is also present on ovarian cancer cells. This suggests that P1 is a novel tumour-associated carbohydrate antigen recognised by the immune system in patients and may have a role in cell migration. The clinical value of our data may be both diagnostic and prognostic; patients with low anti-P1 IgM antibodies present with a more aggressive phenotype and earlier relapse.
Assuntos
Antígenos de Neoplasias/imunologia , Glicoesfingolipídeos/imunologia , Metástase Neoplásica/imunologia , Neoplasias Ovarianas/imunologia , Anticorpos Antineoplásicos/imunologia , Anticorpos Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Cromatografia de Afinidade , Feminino , Citometria de Fluxo , Humanos , Neoplasias Ovarianas/patologiaRESUMO
Distinct glycolipid profiles are described in microorganisms, which have been shown to modulate the innate immune system. We tested the hypothesis that glycosphingolipids from Paracoccidioides brasiliensis have immunomodulatory properties on monocytes and dendritic cells of two groups of healthy individuals, one cured of paracoccidioidomycosis in the past (CUR-I) and the other nonexposed to P. brasiliensis (HNE-I). Two classes of glycosphingolipids purified from yeast cells were evaluated: a neutral glycosphingolipid, monohexosylceramide (CMH), and acidic glycosylinositolphosphorylceramides (GIPCs). Both glycosphingolipids affected the functioning of innate immunity cells, interfering with the antigen presenting process: P. brasiliensis yeast cells phagocytosis, IL-10 secretion, and costimulatory molecules and recognition receptors expression by monocytes were altered, while dendritic cell antigen presentation to autologous T cells was markedly down-modulated as shown by reduced T-cell proliferative responses. The mechanisms by which CMH and GIPCs exert their effects differ since the target cells did not always respond similarly to the challenge with the glycosphingolipids. Moreover, CUR-I and HNE-I presented different responses to the glycosphingolipids. Differences not only in the glycosphingolipid structure (such as the polar head group or the ceramide moiety), but also in the innate immunity properties of CUR-I and HNE-I, may underlie these differences and contribute to individual's susceptibility or resistance to develop paracoccidioidomycosis.
Assuntos
Glicoesfingolipídeos/imunologia , Imunidade Inata , Paracoccidioides/imunologia , Paracoccidioidomicose/imunologia , Adulto , Idoso , Apresentação de Antígeno/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Voluntários Saudáveis , Humanos , Fatores Imunológicos/imunologia , Interleucina-10/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Fagocitose/efeitos dos fármacos , Receptores Imunológicos/metabolismoRESUMO
Aspergillus fumigatus is a fungus that is associated with a severe form of asthma, although the precise immunological basis for this disease is unclear. A new study in mice shows that natural killer T (NKT) cells are crucial for progression of A. fumigatusinduced asthma and also identifies a glycolipid antigen from this fungus that seems to drive this NKT cellmediated inflammatory response (pages 12971304).