Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
ACS Infect Dis ; 10(10): 3544-3552, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39313410

RESUMO

Lipophosphoglycan (LPG) is an important Leishmania virulence factor. It is the most abundant surface glycoconjugate in promastigotes, playing an important role in the interaction with phagocytic cells. While LPG is known to modulate the macrophage immune response during infection, the activation mechanisms triggered by this glycoconjugate have not been fully elucidated. This work investigated the role that LPGs purified from two strains of Leishmania major (FV1 and LV39) play in macrophage activation, considering the differences in their biochemical structures. Bone marrow-derived macrophages from BALB/c mice were stimulated with 10 µg/mL purified LPG from the LV39 and FV1 strains. We then measured the production of nitric oxide (NO) and cytokines, the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and the activation of MAPK pathways. LPG from the LV39 strain, which has longer poly-galactosylated side chains, induced a more pro-inflammatory profile than that from the FV1 strain. This included higher production of NO, TNF-α, and PGE2, and increased expression of COX-2 and iNOS. Additionally, the phosphorylation of ERK-1/2 and JNK was elevated in macrophages exposed to LPG from the LV39 strain. No difference in IL-10 production was observed in cells stimulated by both LPG. Thus, intraspecific structural differences in LPG contribute to distinct innate immune responses in macrophages.


Assuntos
Glicoesfingolipídeos , Leishmania major , Ativação de Macrófagos , Macrófagos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Animais , Leishmania major/imunologia , Glicoesfingolipídeos/química , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Citocinas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Feminino
2.
Nat Commun ; 15(1): 5627, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965283

RESUMO

Glycosphingolipids (GSLs) are essential components of cell membranes, particularly enriched in the nervous system. Altered molecular distributions of GSLs are increasingly associated with human diseases, emphasizing the significance of lipidomic profiling. Traditional GSL analysis methods are hampered by matrix effect from phospholipids and the difficulty in distinguishing structural isomers. Herein, we introduce a highly sensitive workflow that harnesses magnetic TiO2 nanoparticle-based selective enrichment, charge-tagging Paternò-Büchi reaction, and liquid chromatography-tandem mass spectrometry. This approach enables mapping over 300 distinct GSLs in brain tissues by defining sugar types, long chain bases, N-acyl chains, and the locations of desaturation and hydroxylation. Relative quantitation of GSLs across multiple structural levels provides evidence of dysregulated gene and protein expressions of FA2H and CerS2 in human glioma tissue. Based on the structural features of GSLs, our method accurately differentiates human glioma with/without isocitrate dehydrogenase genetic mutation, and normal brain tissue.


Assuntos
Encéfalo , Glioma , Glicoesfingolipídeos , Humanos , Glicoesfingolipídeos/metabolismo , Glicoesfingolipídeos/química , Glioma/metabolismo , Glioma/genética , Glioma/patologia , Encéfalo/metabolismo , Lipidômica/métodos , Espectrometria de Massas em Tandem/métodos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Cromatografia Líquida/métodos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Animais , Camundongos
3.
Anal Chem ; 96(16): 6311-6320, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38594017

RESUMO

Schistosomiasis is a neglected tropical disease caused by worm parasites of the genus Schistosoma. Upon infection, parasite eggs can lodge inside of host organs like the liver. This leads to granuloma formation, which is the main cause of the pathology of schistosomiasis. To better understand the different levels of host-pathogen interaction and pathology, our study focused on the characterization of glycosphingolipids (GSLs). For this purpose, GSLs in livers of infected and noninfected hamsters were studied by combining high-spatial-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) with nanoscale hydrophilic interaction liquid chromatography tandem mass spectrometry (nano-HILIC MS/MS). Nano-HILIC MS/MS revealed 60 GSL species with a distinct saccharide and ceramide composition. AP-SMALDI MSI measurements were conducted in positive- and negative-ion mode for the visualization of neutral and acidic GSLs. Based on nano-HILIC MS/MS results, we discovered no downregulated but 50 significantly upregulated GSLs in liver samples of infected hamsters. AP-SMALDI MSI showed that 44 of these GSL species were associated with the granulomas in the liver tissue. Our findings suggest an important role of GSLs during granuloma formation.


Assuntos
Glicoesfingolipídeos , Fígado , Schistosoma mansoni , Esquistossomose mansoni , Animais , Glicoesfingolipídeos/metabolismo , Glicoesfingolipídeos/química , Fígado/metabolismo , Fígado/parasitologia , Cricetinae , Esquistossomose mansoni/parasitologia , Esquistossomose mansoni/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Mesocricetus , Cromatografia Líquida , Masculino
4.
J Biol Chem ; 299(3): 102923, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36681125

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most common causes of cancer-related deaths worldwide, accounting for 90% of primary pancreatic tumors with an average 5-year survival rate of less than 10%. PDAC exhibits aggressive biology, which, together with late detection, results in most PDAC patients presenting with unresectable, locally advanced, or metastatic disease. In-depth lipid profiling and screening of potential biomarkers currently appear to be a promising approach for early detection of PDAC or other cancers. Here, we isolated and characterized complex glycosphingolipids (GSL) from normal and tumor pancreatic tissues of patients with PDAC using a combination of TLC, chemical staining, carbohydrate-recognized ligand-binding assay, and LC/ESI-MS2. The major neutral GSL identified were GSL with the terminal blood groups A, B, H, Lea, Leb, Lex, Ley, P1, and PX2 determinants together with globo- (Gb3 and Gb4) and neolacto-series GSL (nLc4 and nLc6). We also revealed that the neutral GSL profiles and their relative amounts differ between normal and tumor tissues. Additionally, the normal and tumor pancreatic tissues differ in type 1/2 core chains. Sulfatides and GM3 gangliosides were the predominant acidic GSL along with the minor sialyl-nLc4/nLc6 and sialyl-Lea/Lex. The comprehensive analysis of GSL in human PDAC tissues extends the GSL coverage and provides an important platform for further studies of GSL alterations; therefore, it could contribute to the development of new biomarkers and therapeutic approaches.


Assuntos
Glicoesfingolipídeos , Neoplasias Pancreáticas , Humanos , Cromatografia Líquida , Cromatografia em Camada Fina , Gangliosídeos/química , Glicoesfingolipídeos/análise , Glicoesfingolipídeos/química , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/fisiopatologia , Sulfoglicoesfingolipídeos/química , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/fisiopatologia , Espectrometria de Massas em Tandem , Biomarcadores Tumorais/metabolismo
5.
Mol Cell Proteomics ; 21(6): 100239, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35489554

RESUMO

Colorectal cancer (CRC)-associated changes of protein glycosylation have been widely studied. In contrast, the expression of glycosphingolipid (GSL) patterns in CRC has, hitherto, remained largely unexplored. Even though GSLs are major carriers of cell surface carbohydrates, they are understudied due to their complexity and analytical challenges. In this study, we provide an in-depth analysis of GSL glycans of 22 CRC cell lines using porous graphitized carbon nano-liquid chromatography coupled with electrospray ionization-mass spectrometry. Our data revealed that the GSL expression varies among different cell line classifications, with undifferentiated cell lines showing high expression of blood group A, B, and H antigens while for colon-like cell lines the most prominent GSL glycans contained (sialyl)-LewisA/X and LewisB/Y antigens. Moreover, the GSL expression correlated with relevant glycosyltransferases that are involved in their biosynthesis as well as with transcription factors (TFs) implicated in colon differentiation. Additionally, correlations between certain glycosyltransferases and TFs at mRNA expression level were found, such as FUT3, which correlated with CDX1, ETS2, HNF1A, HNF4A, MECOM, and MYB. These TFs are upregulated in colon-like cell lines pointing to their potential role in regulating fucosylation during colon differentiation. In conclusion, our study reveals novel layers of potential GSL glycans regulation relevant for future research in colon differentiation and CRC.


Assuntos
Neoplasias Colorretais , Glicoesfingolipídeos , Diferenciação Celular , Linhagem Celular , Neoplasias Colorretais/genética , Glicoesfingolipídeos/análise , Glicoesfingolipídeos/química , Glicoesfingolipídeos/metabolismo , Glicosiltransferases/genética , Humanos , Fenótipo , Polissacarídeos/metabolismo
6.
J Proteome Res ; 21(4): 1029-1040, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35168327

RESUMO

Aberrant expression of certain glycosphingolipids (GSLs) is associated with the differentiation of acute myeloid leukemia (AML) cells. However, the expression patterns of GSLs in AML are still poorly explored because of their complexity, the presence of multiple isomeric structures, and tedious analytical procedures. In this study, we performed an in-depth GSL glycan analysis of 19 AML cell lines using porous graphitized carbon liquid chromatography-mass spectrometry revealing strikingly different GSL glycan profiles between the various AML cell lines. The cell lines of the M6 subtype showed a high expression of gangliosides with α2,3-sialylation and Neu5Gc, while the M2 and M5 subtypes were characterized by high expression of (neo)lacto-series glycans and Lewis A/X antigens. Integrated analysis of glycomics and available transcriptomics data revealed the association of GSL glycan abundances with the transcriptomics expression of certain glycosyltransferases (GTs) and transcription factors (TFs). In addition, correlations were found between specific GTs and TFs. Our data reveal TFs GATA2, GATA1, and RUNX1 as candidate inducers of the expression of gangliosides and sialylation via regulation of the GTs ST3GAL2 and ST8SIA1. In conclusion, we show that GSL glycan expression levels are associated with hematopoietic AML classifications and TF and GT gene expression. Further research is needed to dissect the regulation of GSL expression and its role in hematopoiesis and associated malignancies.


Assuntos
Glicoesfingolipídeos , Leucemia Mieloide Aguda , Diferenciação Celular , Linhagem Celular , Glicômica/métodos , Glicoesfingolipídeos/química , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Polissacarídeos/metabolismo
7.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445349

RESUMO

Adrenoleukodystrophy (X-ALD) is an X-linked genetic disorder caused by mutation of the ATP-binding cassette subfamily D member 1 gene, which encodes the peroxisomal membrane protein, adrenoleukodystrophy protein (ALDP). ALDP is associated with the transport of very-long-chain fatty acids (VLCFAs; carbon chain length ≥ 24) into peroxisomes. Defective ALDP leads to the accumulation of saturated VLCFAs in plasma and tissues, which results in damage to myelin and the adrenal glands. Here, we profiled the glycosphingolipid (GSL) species in fibroblasts from X-ALD patients. Quantitative analysis was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry with a chiral column in multiple reaction monitoring (MRM) mode. MRM transitions were designed to scan for precursor ions of long-chain bases to detect GSLs, neutral loss of hexose to detect hexosylceramide (HexCer), and precursor ions of phosphorylcholine to detect sphingomyelin (SM). Our results reveal that levels of C25 and C26-containing HexCer, Hex2Cer, NeuAc-Hex2Cer, NeuAc-HexNAc-Hex2Cer, Hex3Cer, HexNAc-Hex3Cer, and SM were elevated in fibroblasts from X-ALD patients. In conclusion, we precisely quantified SM and various GSLs in fibroblasts from X-ALD patients and determined structural information of the elevated VLCFA-containing GSLs.


Assuntos
Adrenoleucodistrofia/metabolismo , Fibroblastos/metabolismo , Glicoesfingolipídeos/metabolismo , Adrenoleucodistrofia/patologia , Biópsia , Estudos de Casos e Controles , Células Cultivadas , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Fibroblastos/patologia , Glicoesfingolipídeos/química , Humanos , Masculino , Pele/metabolismo , Pele/patologia
8.
Nat Protoc ; 16(7): 3470-3491, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099941

RESUMO

Glycosphingolipids (GSLs) are ubiquitous glycoconjugates present on the cell membrane; they play significant roles in many bioprocesses such as cell adhesion, embryonic development, signal transduction and carcinogenesis. Analyzing such amphiphilic molecules is a major challenge in the field of glycosphingolipidomics. We provide a step-by-step protocol that uses a lectin microarray to analyze GSL glycans from cultured cells. The procedure describes (i) extraction of GSLs from cell pellets, (ii) N-monodeacylation using sphingolipid ceramide N-deacylase digestion to form lyso-GSLs, (iii) fluorescence labeling at the newly exposed amine group, (iv) preparation of a lectin microarray, (v) GSL-glycan analysis by a lectin microarray, (vi) complementary mass spectrometry analysis and (vii) data acquisition and analysis. This method is high-throughput, low cost and easy to conduct, and it provides detailed information about glycan linkages. This protocol takes ~10 d.


Assuntos
Glicoesfingolipídeos/análise , Lectinas/química , Análise em Microsséries/métodos , Polissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Acilação , Linhagem Celular , Análise de Dados , Feminino , Glicoesfingolipídeos/química , Humanos , Masculino , Oxirredução , Polissacarídeos/química
9.
Molecules ; 26(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072622

RESUMO

Lipid membranes are common to all forms of life. While being stable barriers that delimitate the cell as the fundamental organismal unit, biological membranes are highly dynamic by allowing for lateral diffusion, transbilayer passage via selective channels, and in eukaryotic cells for endocytic uptake through the formation of membrane bound vesicular or tubular carriers. Two of the most abundant fundamental fabrics of membranes-lipids and complex sugars-are produced through elaborate chains of biosynthetic enzymes, which makes it difficult to study them by conventional reverse genetics. This review illustrates how organic synthesis provides access to uncharted areas of membrane glycobiology research and its application to biomedicine. For this Special Issue on Chemical Biology Research in France, focus will be placed on synthetic approaches (i) to study endocytic functions of glycosylated proteins and lipids according to the GlycoLipid-Lectin (GL-Lect) hypothesis, notably that of Shiga toxin; (ii) to mechanistically dissect its endocytosis and intracellular trafficking with small molecule; and (iii) to devise intracellular delivery strategies for immunotherapy and tumor targeting. It will be pointed out how the chemical biologist's view on lipids, sugars, and proteins synergizes with biophysics and modeling to "look" into the membrane for atomistic scale insights on molecular rearrangements that drive the biogenesis of endocytic carriers in processes of clathrin-independent endocytosis.


Assuntos
Endocitose , Glicolipídeos/química , Lectinas/química , Lipídeos/química , Animais , Transporte Biológico , Membrana Celular/metabolismo , Força Compressiva , França , Galectinas/química , Glicômica/tendências , Glicoesfingolipídeos/química , Glicosilação , Humanos , Imunoterapia/métodos , Modelos Biológicos , Neoplasias/terapia , Transporte Proteico , Toxina Shiga/química , Estresse Mecânico
10.
Biomolecules ; 11(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418847

RESUMO

Every living cell is covered with a dense and complex layer of glycans on the cell surface, which have important functions in the interaction between cells and their environment. Glycosphingolipids (GSLs) are glycans linked to lipid molecules that together with sphingolipids, sterols, and proteins form plasma membrane lipid rafts that contribute to membrane integrity and provide specific recognition sites. GSLs are subdivided into three major series (globo-, ganglio-, and neolacto-series) and are synthesized in a non-template driven process by enzymes localized in the ER and Golgi apparatus. Altered glycosylation of lipids are known to be involved in tumor development and metastasis. Metastasis is frequently linked with reversible epithelial-to-mesenchymal transition (EMT), a process involved in tumor progression, and the formation of new distant metastatic sites (mesenchymal-to-epithelial transition or MET). On a single cell basis, cancer cells lose their epithelial features to gain mesenchymal characteristics via mechanisms influenced by the composition of the GSLs on the cell surface. Here, we summarize the literature on GSLs in the context of reversible and cancer-associated EMT and discuss how the modification of GSLs at the cell surface may promote this process.


Assuntos
Transição Epitelial-Mesenquimal , Glicoesfingolipídeos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/química , Humanos , Modelos Biológicos , Transdução de Sinais
11.
Int J Mol Sci ; 21(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32839415

RESUMO

Methamphetamine (MA) is a highly addictive central nervous system stimulant. Drug addiction is not a static condition but rather a chronically relapsing disorder. Hair is a valuable and stable specimen for chronic toxicological monitoring as it retains toxicants and metabolites. The primary focus of this study was to discover the metabolic effects encompassing diverse pathological symptoms of MA addiction. Therefore, metabolic alterations were investigated in human hair following heavy MA abuse using both targeted and untargeted mass spectrometry and through integrated network analysis. The statistical analyses (t-test, variable importance on projection score, and receiver-operator characteristic curve) demonstrated that 32 metabolites (in targeted metabolomics) as well as 417 and 224 ion features (in positive and negative ionization modes of untargeted metabolomics, respectively) were critically dysregulated. The network analysis showed that the biosynthesis or metabolism of lipids, such as glycosphingolipids, sphingolipids, glycerophospholipids, and ether lipids, as well as the metabolism of amino acids (glycine, serine and threonine; cysteine and methionine) is affected by heavy MA abuse. These findings reveal crucial metabolic effects caused by MA addiction, with emphasis on the value of human hair as a diagnostic specimen for determining drug addiction, and will aid in identifying robust diagnostic markers and therapeutic targets.


Assuntos
Anfetamina/análise , Estimulantes do Sistema Nervoso Central/análise , Cabelo/química , Metanfetamina/análise , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Adulto , Aminoácidos/química , Aminoácidos/classificação , Aminoácidos/isolamento & purificação , Aminoácidos/metabolismo , Anfetamina/administração & dosagem , Anfetamina/metabolismo , Estudos de Casos e Controles , Estimulantes do Sistema Nervoso Central/administração & dosagem , Estimulantes do Sistema Nervoso Central/metabolismo , Glicerofosfolipídeos/química , Glicerofosfolipídeos/classificação , Glicerofosfolipídeos/isolamento & purificação , Glicerofosfolipídeos/metabolismo , Glicoesfingolipídeos/química , Glicoesfingolipídeos/classificação , Glicoesfingolipídeos/isolamento & purificação , Glicoesfingolipídeos/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Metabolômica/métodos , Metanfetamina/administração & dosagem , Metanfetamina/metabolismo , Pessoa de Meia-Idade , Análise de Componente Principal , Esfingolipídeos/química , Esfingolipídeos/classificação , Esfingolipídeos/isolamento & purificação , Esfingolipídeos/metabolismo , Detecção do Abuso de Substâncias/métodos , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Espectrometria de Massas em Tandem
12.
Biochem Soc Trans ; 48(2): 547-558, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32129823

RESUMO

A growing number of integral membrane proteins have been shown to tune their activity by selectively interacting with specific lipids. The ability to regulate biological functions via lipid interactions extends to the diverse group of proteins that associate only peripherally with the lipid bilayer. However, the structural basis of these interactions remains challenging to study due to their transient and promiscuous nature. Recently, native mass spectrometry has come into focus as a new tool to investigate lipid interactions in membrane proteins. Here, we outline how the native MS strategies developed for integral membrane proteins can be applied to generate insights into the structure and function of peripheral membrane proteins. Specifically, native MS studies of proteins in complex with detergent-solubilized lipids, bound to lipid nanodiscs, and released from native-like lipid vesicles all shed new light on the role of lipid interactions. The unique ability of native MS to capture and interrogate protein-protein, protein-ligand, and protein-lipid interactions opens exciting new avenues for the study of peripheral membrane protein biology.


Assuntos
Lipídeos/química , Espectrometria de Massas , Proteínas de Membrana/química , Antígenos CD1/química , Peptídeos Catiônicos Antimicrobianos/química , Sítios de Ligação , Detergentes/química , Detergentes/farmacologia , Glicoesfingolipídeos/química , Humanos , Bicamadas Lipídicas/química , Peptídeos/química , Mapeamento de Interação de Proteínas , Espectrometria de Massas por Ionização por Electrospray , Ubiquinona/química
13.
Nat Prod Res ; 34(14): 2095-2100, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30777444

RESUMO

In clinical, Psychotria serpens L. was often substitute for Caulis trachelospermi to treat cancer in China. Meanwhile, EtOAc and n-BuOH fractions of MeOH extract of P. serpens L. show power activity against H460, HepG2, Hela, and PC9/GR cell lines, and no toxic effects against normal 16HBE cell lines. In our ongoing search for bioactive novel compounds from Chinese material medica, one new type of glycosylsphingolipids Psychotramide (1a-1c) were isolated from P. serpens L., and their structures were identified through spectroscopic techniques including NMR (1D and 2D) and MS (LC-MS, and GC-MS).


Assuntos
Glicoesfingolipídeos/isolamento & purificação , Psychotria/química , Linhagem Celular , China , Cromatografia Gasosa-Espectrometria de Massas , Glicoesfingolipídeos/química , Glicoesfingolipídeos/farmacologia , Humanos , Medicina Tradicional Chinesa , Estrutura Molecular , Análise Espectral
14.
Biochim Biophys Acta Mol Basis Dis ; 1865(10): 2726-2735, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31319156

RESUMO

Fabry disease (FD) is an X-linked lysosomal storage disorder caused by deficiency of α-galactosidase-A, which results in accumulation of the glycosphingolipid (GSL) globotriaosylceramide (Gb3). Gb3 and globotriaosylsphingosine (lyso-Gb3) levels in plasma and urine are used routinely for diagnosis and treatment monitoring. FD female patients are problematic to diagnose and to predict when to begin treatment. Further biomarkers are needed to detect pre-symptomatic females that will develop the chronic symptoms associated with FD. A LC-MS/MS glycosphingolipidomic assay was developed to measure lyso-Gb3 and GSLs from the lysosomal GSL degradation pathway, including globoside (Gb4), Gb3, ceramide dihexosides (CDH) and ceramide monohexosides (CMH). We analysed plasma and urine from a cohort of Fabry patients, grouped according to clinical symptoms and independent of treatment status (asymptomatic females n = 18, symptomatic females n = 18, males n = 27 and control urines n = 16 and control plasmas n = 58). Multivariate and subsequent univariate analysis showed urine GSLs which had highest significance in identifying asymptomatic females were total levels of CDH, in particular the long chain isoforms C22:1,C22:0,C22:1-OH,C22:0-OH,C24:2,C24:0,C24:2-OH,C24:1-OH,C24:0-OH,C26:0 which likely represent Galabiosylceramide (Ga2) and not lactosylceramide. These long chain Ga2 isoforms were found to be 5-fold elevated and more statistically significant (p < 0.0001) than plasma lyso-Gb3 (p < 0.01) in identifying asymptomatic Fabry female patients. Receiver operating characteristic curve analysis gave an area under the curve of 0.82 (p = 0.001) for lyso-Gb3 and 0.88 (p = 0.0006) for long-chain CDH isoforms indicating the long chain CDH isoforms were as, if not more, a better biomarker for the identification of female FD patients.


Assuntos
Biomarcadores/sangue , Biomarcadores/urina , Doença de Fabry/diagnóstico , Glicoesfingolipídeos/sangue , Glicoesfingolipídeos/urina , Adulto , Idoso , Antígenos CD/química , Cerebrosídeos/sangue , Cromatografia Líquida , Doença de Fabry/sangue , Doença de Fabry/urina , Feminino , Gangliosídeos/química , Glicoesfingolipídeos/química , Humanos , Lactosilceramidas/química , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Isoformas de Proteínas , Suíça , Espectrometria de Massas em Tandem , Triexosilceramidas/metabolismo , Adulto Jovem
15.
Glycobiology ; 29(11): 789-802, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31361021

RESUMO

Uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infections (UTIs) in humans. P-fimbriae are key players for bacterial adherence to the uroepithelium through the Galα1-4Gal-binding PapG adhesin. The three identified classes I, II and III of PapG are supposed to adhere differently to host cell glycosphingolipids (GSLs) of the uroepithelial tract harboring a distal or internal Galα1-4Gal sequence. In this study, GSL binding characteristics were obtained in a nonradioactive adhesion assay using biotinylated E. coli UTI and urine isolates combined with enzyme-linked NeutrAvidin for detection. Initial experiments with reference globotriaosylceramide (Gb3Cer, Galα1-4Galß1-4Glcß1-1Cer), globotetraosylceramide (Gb4Cer, GalNAcß1-3Galα1-4Galß1-4Glcß1-1Cer) and Forssman GSL (GalNAcα1-3GalNAcß1-3Galα1-4Galß1-4Glcß1-1Cer) revealed balanced adhesion toward the three GSLs for PapG I-mediated attachment. In contrast, E. coli carrying PapG II or PapG III increasingly adhered to growing oligosaccharide chain lengths of Gb3Cer, Gb4Cer and Forssman GSL. Binding studies with GSLs from human A498 kidney and human T24 bladder epithelial cells, both being negative for the Forssman GSL, revealed the less abundant Gb4Cer vs. Gb3Cer as the prevalent receptor in A498 cells of E. coli expressing PapG II or PapG III. On the other hand, T24 cells exhibited a higher relative content of Gb4Cer vs. Gb3Cer alongside dominant binding of PapG II- or PapG III-harboring E. coli toward Gb4Cer and vastly lowered attachment to minor Gb3Cer. Further studies on PapG-mediated interaction with cell surface-exposed GSLs will improve our knowledge on the molecular mechanisms of P-fimbriae-mediated adhesion and may contribute to the development of antiadhesion therapeutics to combat UTIs.


Assuntos
Adesinas de Escherichia coli/metabolismo , Células Epiteliais/metabolismo , Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Glicoesfingolipídeos/metabolismo , Rim/metabolismo , Bexiga Urinária/metabolismo , Adesinas de Escherichia coli/química , Sítios de Ligação , Células Cultivadas , Células Epiteliais/química , Escherichia coli/química , Proteínas de Fímbrias/química , Glicoesfingolipídeos/química , Humanos , Rim/microbiologia , Bexiga Urinária/microbiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-31355149

RESUMO

Lipophosphoglycan (LPG) is the major Leishmania surface glycoconjugate having importance during the host-parasite interface. Leishmania (Viannia) braziliensis displays a spectrum of clinical forms including: typical cutaneous leishmaniasis (TL), mucocutaneous (ML), and atypical lesions (AL). Those variations in the immunopathology may be a result of intraspecies polymorphisms in the parasite's virulence factors. In this context, we evaluated the role of LPG of strains originated from patients with different clinical manifestations and the sandfly vector. Six isolates of L. braziliensis were used: M2903, RR051 and RR418 (TL), RR410 (AL), M15991 (ML), and M8401 (vector). LPGs were extracted and purified by hydrophobic interaction. Peritoneal macrophages from C57BL/6 and respective knock-outs (TLR2-/- and TLR-4-/-) were primed with IFN-γ and exposed to different LPGs for nitric oxide (NO) and cytokine production (IL-1ß, IL-6, IL-12, and TNF-α). LPGs differentially activated the production of NO and cytokines via TLR4. In order to ascertain if such functional variations were related to intraspecies polymorphisms in the LPG, the purified glycoconjugates were subjected to western blot with specific LPG antibodies (CA7AE and LT22). Based on antibody reactivity preliminary variations in the repeat units were detected. To confirm these findings, LPGs were depolymerized for purification of repeat units. After thin layer chromatography, intraspecies polymorphisms were confirmed especially in the type and/size of sugars branching-off the repeat units motif. In conclusion, different isolates of L. braziliensis from different clinical forms and hosts possess polymorphisms in their LPGs that functionally affected macrophage responses.


Assuntos
Glicoesfingolipídeos/química , Glicoesfingolipídeos/imunologia , Leishmania braziliensis/genética , Leishmania braziliensis/metabolismo , Leishmaniose Cutânea/imunologia , Ativação de Macrófagos , Receptor 4 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Técnicas de Inativação de Genes , Glicoesfingolipídeos/isolamento & purificação , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Macrófagos/imunologia , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico , Psychodidae/parasitologia , Receptor 4 Toll-Like/genética , Fatores de Virulência
17.
Anal Chem ; 91(14): 9078-9085, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31179689

RESUMO

Glycan head-groups attached to glycosphingolipids (GSLs) found in the cell membrane bilayer can alter in response to external stimuli and disease, making them potential markers and/or targets for cellular disease states. To identify such markers, comprehensive analyses of glycan structures must be undertaken. Conventional analyses of fluorescently labeled glycans using hydrophilic interaction high-performance liquid chromatography (HILIC) coupled with mass spectrometry (MS) provides relative quantitation and has the ability to perform automated glycan assignments using glucose unit (GU) and mass matching. The use of ion mobility (IM) as an additional level of separation can aid the characterization of closely related or isomeric structures through the generation of glycan collision cross section (CCS) identifiers. Here, we present a workflow for the analysis of procainamide-labeled GSL glycans using HILIC-IM-MS and a new, automated glycan identification strategy whereby multiple glycan attributes are combined to increase accuracy in automated structural assignments. For glycan matching and identification, an experimental reference database of GSL glycans containing GU, mass, and CCS values for each glycan was created. To assess the accuracy of glycan assignments, a distance-based confidence metric was used. The assignment accuracy was significantly better compared to conventional HILIC-MS approaches (using mass and GU only). This workflow was applied to the study of two Triple Negative Breast Cancer (TNBC) cell lines and revealed potential GSL glycosylation signatures characteristic of different TNBC subtypes.


Assuntos
Glicoesfingolipídeos/química , Polissacarídeos/análise , Proteínas de Bactérias/química , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Glicosídeo Hidrolases/química , Humanos , Espectrometria de Massas/métodos , Rhodococcus/enzimologia , Neoplasias de Mama Triplo Negativas/classificação
18.
Anal Chim Acta ; 1048: 105-114, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30598139

RESUMO

Sensitive glycomics analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is of great importance but significantly hampered by their low ionization efficiency and labile sialic acid moieties. Chemical derivatization offers a viable way to improve both the ionization efficiency and analytical sensitivity of the glycans in MS analysis by altering their hydrophobicity or charge property. Here we employed Girard's reagent T (GT) for on-target derivatization (GTOD) of reducing glycan under mild acid condition to form stable hydrazones at room temperature, allowing rapid and sensitive identification of neutral and sialylated glycans in positive-ion mode as only permanently positive charged molecular ions without multiple ion adducts by MALDI-TOF-MS. The MS signal intensities of lactose, sialylated N-glycans derived from bovine fetuin and neutral N-glycans derived from RNaseB and ovalbumin were boosted by 7.44, 9.13, 12.96 and 13.47 folds on average (n = 3), respectively. More importantly, after GTOD strategy, unwanted desialylation of sialylated glycans during MS was suppressed. The detection limit of the assay is desirable since the nanogram of N-glycans derived from 0.16 µg ovalbumin could be detected. The assay demonstrated good stability (RSD≤2.95%, within 10 days), reliable reproducibility (RSD = 2.96%, n = 7) and a desirable linear dynamic range from 78 nmol/mL to 10 µmol/mL. The strategy has been successfully applied to MS analysis of reducing glycans from human milks, neutral and sialylated O-, N-glycans from glycoproteins, and reducing glycans derived from glycosphingolipids, presenting neater [M]+ signals which allow detection of more low-abundance glycans and assignation of Neu5Ac vs. Neu5Gc or fucose vs. hexose in glycans due to the absence of the ambiguous interpretation from multiple peaks (ion adducts [M+Na]+ and [M+K]+). Moreover, the GTOD assay prevents desialylation during MALDI-TOF-MS profiling and enables distinct linkage-specific characterization of terminal sialic acids of N-glycans derived from human serum protein when combines with an esterification.


Assuntos
Betaína/análogos & derivados , Glicômica/métodos , Oligossacarídeos/química , Polissacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Betaína/química , Proteínas Sanguíneas/química , Feminino , Glicoproteínas/química , Glicoesfingolipídeos/química , Humanos , Proteínas do Leite/química , Leite Humano/química , Reprodutibilidade dos Testes , Ácidos Siálicos/química
19.
Chem Biodivers ; 16(1): e1800401, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30417533

RESUMO

In our research on biologically active compounds from Vietnamese marine invertebrates, rare melibiose-containing glycosphingolipids were found in a sample of a sponge-coral association (Desmapsamma anchorata/Carijoa riisei). Melibiosylceramides were analyzed as constituents of some multi-component RP-HPLC fractions, and the structures of 14 new (1b, 3b, 4a-4c, 6a-6c, 8b, 9a, 9b, 10b, 11a, 11b) and five known (2b, 5a-5c, 7b) natural compounds were elucidated using NMR, mass spectrometry, optical rotation, and chemical transformations. These α-d-Galp-(1→6)-ß-d-Glcp-(1 ↔ 1)-ceramides (presumably sponge-derived compounds) were shown to contain phytosphingosine-type n-t17:0 (1), (6E)-n-t17:1 (2), i-t17:0 (3), n-t18:0 (4), (6E)-n-t18:1 (5), i-t18:0 (6), (6E)-i-t18:1 (7), i-t19:0 (8), (6E)-i-t19:1 (9), ai-t19:0 (10), and (6E)-ai-t19:1 (11) backbones N-acylated with saturated straight-chain (2R)-2-hydroxy C21 (a), C22 (b), and C23 (c) acids. Characteristic trends in the fragmentations of the terminal parts of tetraacetylated normal-chain and iso- and anteiso-branched sphingoid bases were observed using GC/MS. The total sum of melibiosylceramides and compound 5b caused a reduction in colony formation of human melanoma cells.


Assuntos
Antozoários/química , Produtos Biológicos/química , Glicoesfingolipídeos/análise , Melibiose/análise , Poríferos/química , Animais , Produtos Biológicos/isolamento & purificação , Biomarcadores/análise , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cerebrosídeos/química , Cerebrosídeos/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres , Ácidos Graxos não Esterificados/química , Cromatografia Gasosa-Espectrometria de Massas , Glicoesfingolipídeos/química , Glicoesfingolipídeos/farmacologia , Humanos , Melibiose/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Açúcares/análise
20.
Glycobiology ; 28(6): 382-391, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29548035

RESUMO

Blood group B glycosphingolipids (B-GSLs) are substrates of the lysosomal alpha-galactosidase A (AGAL). Similar to its major substrate-globotriaosylceramide (Gb3Cer)-B-GSLs are not degraded and accumulate in the cells of patients affected by an inherited defect of AGAL activity (Fabry disease-FD).The pancreas is a secretory organ known to have high biosynthesis of blood group GSLs. Herein, we provide a comprehensive overview of the biochemical and structural abnormalities in pancreatic tissue from two male FD patients with blood group B. In both patients, we found major accumulation of a variety of complex B-GSLs carrying predominantly hexa- and hepta-saccharide structures. The subcellular pathology was dominated by deposits containing B-glycoconjugates and autofluorescent ceroid. The contribution of Gb3Cer to the storage was minor. This abnormal storage pattern was specific for the pancreatic acinar epithelial cells. Other pancreatic cell types including those of islets of Langerhans were affected much less or not at all.Altogether, we provide evidence for a key role of B-antigens in the biochemical and morphological pathology of the exocrine pancreas in FD patients with blood group B. We believe that our findings will trigger further studies aimed at assessing the potential pancreatic dysfunction in this disease.


Assuntos
Doença de Fabry/metabolismo , Glicoesfingolipídeos/metabolismo , Pâncreas/metabolismo , Sistema ABO de Grupos Sanguíneos/metabolismo , Células Acinares/metabolismo , Células Acinares/ultraestrutura , Estudos de Casos e Controles , Doença de Fabry/sangue , Doença de Fabry/patologia , Galactose/análise , Galactose/metabolismo , Glicoesfingolipídeos/química , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Masculino , Pessoa de Meia-Idade , Pâncreas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA