Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
PLoS One ; 16(11): e0259353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34731223

RESUMO

Low plasma levels of Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) are associated with decreased low-density lipoprotein (LDL) cholesterol and a reduced risk of cardiovascular disease. PCSK9 binds to the epidermal growth factor-like repeat A (EGFA) domain of LDL receptors (LDLR), very low-density lipoprotein receptors (VLDLR), apolipoprotein E receptor 2 (ApoER2), and lipoprotein receptor-related protein 1 (LRP1) and accelerates their degradation, thus acting as a key regulator of lipid metabolism. Antibody and RNAi-based PCSK9 inhibitor treatments lower cholesterol and prevent cardiovascular incidents in patients, but their high-cost hampers market penetration. We sought to develop a safe, long-term and one-time solution to treat hyperlipidemia. We created a cDNA encoding a chimeric protein in which the extracellular N- terminus of red blood cells (RBCs) specific glycophorin A was fused to the LDLR EGFA domain and introduced this gene into mouse bone marrow hematopoietic stem and progenitor cells (HSPCs). Following transplantation into irradiated mice, the animals produced RBCs with the EGFA domain (EGFA-GPA RBCs) displayed on their surface. These animals showed significantly reduced plasma PCSK9 (66.5% decrease) and reduced LDL levels (40% decrease) for as long as 12 months post-transplantation. Furthermore, the EGFA- GPA mice remained lean for life and maintained normal body weight under a high-fat diet. Hematopoietic stem cell gene therapy can generate red blood cells expressing an EGFA-glycophorin A chimeric protein as a practical and long-term strategy for treating chronic hyperlipidemia and obesity.


Assuntos
LDL-Colesterol/sangue , Regulação para Baixo , Glicoforinas/genética , Hiperlipidemias/prevenção & controle , Pró-Proteína Convertase 9/sangue , Receptores de LDL/genética , Animais , Peso Corporal , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Eritrócitos/metabolismo , Feminino , Engenharia Genética , Glicoforinas/química , Células HEK293 , Humanos , Hiperlipidemias/induzido quimicamente , Hiperlipidemias/metabolismo , Camundongos , Gravidez , Receptores de LDL/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transplante de Células-Tronco , Transdução Genética
2.
Life Sci ; 281: 119746, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34181965

RESUMO

AIMS: Gulf War illness (GWI) is thought to be associated with exposures experienced by soldiers deployed in the 1991 Gulf War. A major question is how these exposures continue to influence the health of these individuals three decades later. One potentially permanent effect of such exposures is the induction of genetic mutations. We investigated whether veterans with GWI exhibited persistently elevated levels of somatic mutation. MATERIALS AND METHODS: We applied the blood-based glycophorin A (GPA) somatic mutation assay to a cohort of veterans diagnosed with GWI and a set of both concurrent and historic age-matched controls. This assay quantifies red blood cells with a phenotype consistent with loss of one allele at the genetic determinant for the MN blood group, the GPA gene. KEY FINDINGS: As a population, those affected with GWI exhibited an uninduced mutation frequency at the GPA locus that was effectively twice that observed in controls, a result that was statistically significant. This result was influenced by an increase in the incidence of individuals with aberrantly high mutation frequencies, seemingly higher than would be expected by dose extrapolation and consistent with the induction of localized genomic instability in the hematopoietic bone marrow stem cells. When these "outliers" were removed from consideration, the remaining affected population retained a significantly higher mean allele loss mutation frequency, suggesting that both dose-dependent bone marrow genotoxicity and induction of genomic instability are contributing to the elevation in mutation frequency in these affected veterans. SIGNIFICANCE: This study provides evidence that manifestation of GWI is associated with increased cumulative exposure to agents capable of inducing persistent mutations in bone marrow stem cells. Whether these mutations are involved in the clinical aspects of the condition or are simply biomarkers of overall exposure has yet to be determined. The increased incidence of genomic instability suggests that this persistent mutation can have important delayed effects on cellular integrity.


Assuntos
Instabilidade Genômica , Mutação , Síndrome do Golfo Pérsico/genética , Veteranos , Estudos de Casos e Controles , Glicoforinas/genética , Humanos , Masculino
3.
Mutat Res Rev Mutat Res ; 786: 108341, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33339577

RESUMO

An underappreciated aspect of human mutagenicity biomonitoring is tissue specificity reflected in different assays, especially those that measure events that can only occur in developing bone marrow (BM) cells. Reviewed here are 9 currently-employed human mutagenicity biomonitoring assays. Several assays measure chromosome-level events in circulating T-lymphocytes (T-cells), i.e., traditional analyses of aberrations, translocation studies involving chromosome painting and fluorescence in situ hybridization (FISH) and determinations of micronuclei (MN). Other T-cell assays measure gene mutations. i.e., hypoxanthine-guanine phosphoriboslytransferase (HPRT) and phosphoribosylinositol glycan class A (PIGA). In addition to the T-cell assays, also reviewed are those assays that measure events in peripheral blood cells that necessarily arose in BM cells, i.e., MN in reticulocytes; glycophorin A (GPA) gene mutations in red blood cells (RBCs), and PIGA gene mutations in RBC or granulocytes. This review considers only cell culture- or cytometry-based assays to describe endpoints measured, methods, optimal sampling times, and sample summaries of typical quantitative and qualitative results. However, to achieve its intended focus on the target cells where events occur, kinetics of the cells of peripheral blood that derive at some point from precursor cells are reviewed to identify body sites and tissues where the genotoxic events originate. Kinetics indicate that in normal adults, measured events in T-cells afford global assessments of in vivo mutagenicity but are not specific for BM effects. Therefore, an agent's capacity for inducing mutations in BM cells cannot be reliably inferred from T-cell assays as the magnitude of effect in BM, if any, is unknown. By contrast, chromosome or gene level mutations measured in RBCs/reticulocytes or granulocytes must originate in BM cells, i.e. in RBC or granulocyte precursors, thereby making them specific indicators for effects in BM. Assays of mutations arising directly in BM cells may quantitatively reflect the mutagenicity of potential leukemogenic agents.


Assuntos
Glicoforinas/genética , Testes de Mutagenicidade/métodos , Adulto , Medula Óssea , Aberrações Cromossômicas , Eritrócitos , Humanos , Hibridização in Situ Fluorescente , Mutação , Reticulócitos
4.
Thorax ; 75(9): 725-734, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32606071

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is associated with childhood asthma. Nevertheless, not all children exposed to RSV develop asthma symptoms, possibly because genes modulate the effects of RSV on asthma exacerbations. OBJECTIVE: The purpose of this study was to identify genes that modulate the effect of RSV latent infection on asthma exacerbations. METHODS: We performed a meta-analysis to investigate differentially expressed genes (DEGs) of RSV infection from Gene Expression Omnibus datasets. Expression quantitative trait loci (eQTL) methods were applied to select single nucleotide polymorphisms (SNPs) that were associated with DEGs. Gene-based analysis was used to identify SNPs that were significantly associated with asthma exacerbations in the Taiwanese Consortium of Childhood Asthma Study (TCCAS), and validation was attempted in an independent cohort, the Childhood Asthma Management Program (CAMP). Gene-RSV interaction analyses were performed to investigate the association between the interaction of SNPs and RSV latent infection on asthma exacerbations. RESULTS: A total of 352 significant DEGs were found by meta-analysis of RSV-related genes. We used 38 123 SNPs related to DEGs to investigate the genetic main effects on asthma exacerbations. We found that eight RSV-related genes (GADD45A, GYPB, MS4A3, NFE2, RNASE3, EPB41L3, CEACAM6 and CEACAM3) were significantly associated with asthma exacerbations in TCCAS and also validated in CAMP. In TCCAS, rs7251960 (CEACAM3) significantly modulated the effect of RSV latent infection on asthma exacerbations (false-discovery rate <0.05). The rs7251960 variant was associated with CEACAM3 mRNA expression in lung tissue (p for trend=1.2×10-7). CEACAM3 mRNA was reduced in nasal mucosa from subjects with asthma exacerbations in two independent datasets. CONCLUSIONS: rs7251960 is an eQTL for CEACAM3, and CEACAM3 mRNA expression is reduced in subjects experiencing asthma exacerbations. CEACAM3 may be a modulator of RSV latent infection on asthma exacerbations.


Assuntos
Asma/genética , Asma/virologia , Antígeno Carcinoembrionário/genética , RNA Mensageiro/metabolismo , Infecções por Vírus Respiratório Sincicial/complicações , Adolescente , Antígenos CD/genética , Asma/fisiopatologia , Moléculas de Adesão Celular/genética , Proteínas de Ciclo Celular/genética , Criança , Progressão da Doença , Proteína Catiônica de Eosinófilo/genética , Feminino , Proteínas Ligadas por GPI/genética , Perfilação da Expressão Gênica , Genótipo , Glicoforinas/genética , Humanos , Imunoglobulina M/sangue , Infecção Latente/complicações , Infecção Latente/imunologia , Pulmão/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Subunidade p45 do Fator de Transcrição NF-E2/genética , Polimorfismo de Nucleotídeo Único , Mucosa Respiratória/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Exacerbação dos Sintomas
5.
Vox Sang ; 115(7): 579-585, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32314425

RESUMO

BACKGROUND AND OBJECTIVES: MNS is a highly polymorphic blood group comprising 49 antigens recognized by International Society of Blood Transfusion, some of which may have been generated by genomic recombination among the closely linked genes GYPA, GYPB and GYPE. The GYPE gene has an almost identical sequence to GYPA*01 allele in exon 2 (99% homology), which accounts for M antigen. We investigated an unusual glycophorin molecule with protease-resistant M antigen. METHODS: Blood samples were screened by an automated blood typing system (PK7300) using bromelain-treated red blood cells (RBCs) and murine monoclonal anti-M. The M-positive RBC samples were analysed by immunoblotting using anti-M as the primary antibody. GYPA, GYPB and GYPE genes were analysed by polymerase chain reaction (PCR), cloning and sequencing using reticulocyte mRNA and genomic DNA. RESULTS: Serological tests and immunoblotting revealed that 103 of the 193 009 individuals (0·0534%) expressed protease-resistant M-active glycophorin having a molecular weight of 20 kDa. All the 103 individuals were S+ s- or S- s+. When reticulocyte mRNA from the individuals with M-active glycophorin (20 kDa) was examined by PCR and cloning followed by sequencing, a novel GYPE-B hybrid transcript was identified. Long-range PCR and sequencing using genomic DNA revealed that the individuals had a GYPB-E(2-4)-B hybrid gene. This hybrid gene was predicted to encode a 59-amino-acid mature glycoprotein that expresses no S or s antigens CONCLUSIONS: The prevalence of the M-active glycophorin (20 kDa) in the Japanese population is 0·0534%. This glycophorin is predicted to be a 59 amino acids polypeptide encoded by the novel GYPB-E(2-4)-B hybrid gene.


Assuntos
Alelos , Glicoforinas/genética , Células Cultivadas , Glicoforinas/química , Glicoforinas/metabolismo , Humanos , Peptídeo Hidrolases/metabolismo , Polimorfismo Genético , Domínios Proteicos , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Parasit Vectors ; 12(1): 317, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234897

RESUMO

Glycophorins are heavily glycosylated sialoglycoproteins of human and animal erythrocytes. In humans, there are four glycophorins: A, B, C and D. Glycophorins play an important role in the invasion of red blood cells (RBCs) by malaria parasites, which involves several ligands binding to RBC receptors. Four Plasmodium falciparum merozoite EBL ligands have been identified: erythrocyte-binding antigen-175 (EBA-175), erythrocyte-binding antigen-181 (EBA-181), erythrocyte-binding ligand-1 (EBL-1) and erythrocyte-binding antigen-140 (EBA-140). It is generally accepted that glycophorin A (GPA) is the receptor for P. falciparum EBA-175 ligand. It has been shown that α(2,3) sialic acid residues of GPA O-glycans form conformation-dependent clusters on GPA polypeptide chain which facilitate binding. P. falciparum can also invade erythrocytes using glycophorin B (GPB), which is structurally similar to GPA. It has been shown that P. falciparum EBL-1 ligand binds to GPB. Interestingly, a hybrid GPB-GPA molecule called Dantu is associated with a reduced risk of severe malaria and ameliorates malaria-related morbidity. Glycophorin C (GPC) is a receptor for P. falciparum EBA-140 ligand. Likewise, successful binding of EBA-140 depends on sialic acid residues of N- and O-linked oligosaccharides of GPC, which form a cluster or a conformational structure depending on the presence of peptide fragment encompassing amino acids (aa) 36-63. Evaluation of the homologous P. reichenowi EBA-140 unexpectedly revealed that the chimpanzee homolog of human glycophorin D (GPD) is probably the receptor for this ligand. In this review, we concentrate on the role of glycophorins as erythrocyte receptors for Plasmodium parasites. The presented data support the long-lasting idea of high evolutionary pressure exerted by Plasmodium on the human glycophorins, which emerge as important receptors for these parasites.


Assuntos
Proteínas de Transporte/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Glicoforinas/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Proteínas de Transporte/genética , Glicoforinas/genética , Humanos , Ligantes , Proteínas de Membrana , Merozoítos , Pan troglodytes , Ligação Proteica , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética
7.
Exp Hematol ; 62: 7-16.e1, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29524566

RESUMO

A reliable cell line capable of robust in vitro erythroid differentiation would be useful to investigate red blood cell (RBC) biology and genetic strategies for RBC diseases. K562 cells are widely utilized for erythroid differentiation; however, current differentiation methods are insufficient to analyze globin proteins. In this study, we sought to improve erythroid differentiation from K562 cells to enable protein-level globin analysis. K562 cells were exposed to a variety of reagents, including hemin, rapamycin, imatinib, and/or decitabine (known erythroid inducers), and cultured in a basic culture medium or erythropoietin-based differentiation medium. All single reagents induced observable erythroid differentiation with higher glycophorin A (GPA) expression but were insufficient to produce detectable globin proteins. We then evaluated various combinations of these reagents and developed a method incorporating imatinib preexposure and an erythropoietin-based differentiation culture containing both rapamycin and decitabine capable of efficient erythroid differentiation, high-level GPA expression (>90%), and high-level globin production at protein levels detectable by hemoglobin electrophoresis and high performance liquid chromatography. In addition, ß-globin gene transfer resulted in detectable adult hemoglobin. In summary, we developed an in vitro K562 erythroid differentiation model with high-level globin production. This model provides a practical evaluation tool for hemoglobin production in human erythroid cells.


Assuntos
Eritropoese/genética , Células K562/citologia , Globinas delta/biossíntese , Globinas épsilon/biossíntese , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/farmacologia , Decitabina/farmacologia , Sinergismo Farmacológico , Eritropoese/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Vetores Genéticos/farmacologia , Globinas/biossíntese , Globinas/genética , Glicoforinas/biossíntese , Glicoforinas/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Hemina/farmacologia , Humanos , Mesilato de Imatinib/farmacologia , Células K562/efeitos dos fármacos , Células K562/metabolismo , Lentivirus/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Sirolimo/farmacologia , Globinas delta/genética , Globinas épsilon/genética , Globinas zeta/biossíntese , Globinas zeta/genética
8.
Hum Genet ; 137(2): 151-160, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29362874

RESUMO

The human MN blood group antigens are isoforms of glycophorin A (GPA) encoded by the gene, GYPA, and are the most abundant erythrocyte sialoglycoproteins. The distribution of MN antigens has been widely studied in human populations yet the evolutionary and/or demographic factors affecting population variation remain elusive. While the primary function of GPA is yet to be discovered, it serves as the major binding site for the 175-kD erythrocyte-binding antigen (EB-175) of the malarial parasite, Plasmodium falciparum, a major selective pressure in recent human history. More specifically, exon two of GYPA encodes the receptor-binding ligand to which P. falciparum binds. Accordingly, there has been keen interest in understanding what impact, if any, natural selection has had on the distribution of variation in GYPA and exon two in particular. To this end, we resequenced GYPA in individuals sampled from both P. falciparum endemic (sub-Saharan Africa and South India) and non-endemic (Europe and East Asia) regions of the world. Observed patterns of variation suggest that GYPA has been subject to balancing selection in populations living in malaria endemic areas and in Europeans, but no such evidence was found in samples from East Asia, Oceania, and the Americas. These results are consistent with malaria acting as a selective pressure on GYPA, but also suggest that another selective force has resulted in a similar pattern of variation in Europeans. Accordingly, GYPA has perhaps a more complex evolutionary history, wherein on a global scale, spatially varying selective pressures have governed its natural history.


Assuntos
Antígenos de Protozoários/genética , Glicoforinas/genética , Malária Falciparum/genética , Proteínas de Protozoários/genética , Seleção Genética/genética , Antígenos de Neoplasias/genética , Sítios de Ligação , Antígenos de Grupos Sanguíneos/genética , Anidrase Carbônica IX/genética , Europa (Continente) , Éxons/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia , Ligantes , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Ligação Proteica/genética
9.
J Cell Mol Med ; 22(3): 1464-1474, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28994199

RESUMO

The MEK/ERK pathway is found to be important in regulating different biological processes such as proliferation, differentiation and survival in a wide variety of cells. However, its role in self-renewal of haematopoietic stem cells is controversial and remains to be clarified. The aim of this study was to understand the role of MEK/ERK pathway in ex vivo expansion of mononuclear cells (MNCs) and purified CD34+ cells, both derived from human umbilical cord blood (hUCB). Based on our results, culturing the cells in the presence of an inhibitor of MEK/ERK pathway-PD0325901 (PD)-significantly reduces the expansion of CD34+ and CD34+  CD38- cells, while there is no change in the expression of stemness-related genes (HOXB4, BMI1). Moreover, in vivo analysis demonstrates that PD reduces engraftment capacity of ex vivo expanded CD34+ cells. Notably, when ERK pathway is blocked in UCB-MNCs, spontaneous erythroid differentiation is promoted, found in concomitant with increasing number of burst-forming unit-erythroid colony (BFU-E) as well as enhancement of erythroid glycophorin-A marker. These results are in total conformity with up-regulation of some erythroid enhancer genes (TAL1, GATA2, LMO2) and down-regulation of some erythroid repressor genes (JUN, PU1) as well. Taken together, our results support the idea that MEK/ERK pathway has a critical role in achieving the correct balance between self-renewal and differentiation of UCB cells. Also, we suggest that inhibition of ERK signalling could likely be a new key for erythroid induction of UCB-haematopoietic progenitor cells.


Assuntos
Benzamidas/farmacologia , Difenilamina/análogos & derivados , Células Eritroides/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Animais Recém-Nascidos , Antígenos CD/genética , Antígenos CD/imunologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Difenilamina/farmacologia , Células Eritroides/citologia , Células Eritroides/imunologia , Feminino , Sangue Fetal/citologia , Sangue Fetal/imunologia , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/imunologia , Regulação da Expressão Gênica , Glicoforinas/genética , Glicoforinas/imunologia , Sobrevivência de Enxerto , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Imunofenotipagem , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/imunologia , Camundongos , Gravidez , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/imunologia , Transplante Heterólogo
10.
Nat Commun ; 8(1): 423, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871080

RESUMO

A short half-life in the circulation limits the application of therapeutics such as single-domain antibodies (VHHs). We utilize red blood cells to prolong the circulatory half-life of VHHs. Here we present VHHs against botulinum neurotoxin A (BoNT/A) on the surface of red blood cells by expressing chimeric proteins of VHHs with Glycophorin A or Kell. Mice whose red blood cells carry the chimeric proteins exhibit resistance to 10,000 times the lethal dose (LD50) of BoNT/A, and transfusion of these red blood cells into naive mice affords protection for up to 28 days. We further utilize an improved CD34+ culture system to engineer human red blood cells that express these chimeric proteins. Mice transfused with these red blood cells are resistant to highly lethal doses of BoNT/A. We demonstrate that engineered red blood cells expressing VHHs can provide prolonged prophylactic protection against bacterial toxins without inducing inhibitory immune responses and illustrates the potentially broad translatability of our strategy for therapeutic applications.The therapeutic use of single-chain antibodies (VHHs) is limited by their short half-life in the circulation. Here the authors engineer mouse and human red blood cells to express VHHs against botulinum neurotoxin A (BoNT/A) on their surface and show that an infusion of these cells into mice confers long lasting protection against a high dose of BoNT/A.


Assuntos
Toxinas Botulínicas Tipo A/toxicidade , Eritrócitos/metabolismo , Engenharia Genética , Anticorpos de Domínio Único/genética , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/metabolismo , Toxinas Botulínicas Tipo A/metabolismo , Botulismo/etiologia , Botulismo/terapia , Transfusão de Eritrócitos , Eritrócitos/virologia , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/transplante , Células Precursoras Eritroides/virologia , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glicoforinas/genética , Glicoforinas/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Retroviridae/genética , Retroviridae/metabolismo , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/metabolismo
11.
Vox Sang ; 112(7): 671-677, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28836328

RESUMO

BACKGROUND: The band 3 macrocomplex (also known as the ankyrin-associated complex) on the red cell membrane comprises two interacting subcomplexes: a band 3/glycophorin A subcomplex, and a Rh/RhAG subcomplex. Glycophorin B (GPB) is a component of the Rh/RhAG subcomplex that is also structurally associated with glycophorin A (GPA). Expression of glycophorin B-A-B hybrid GP.Mur enhances band 3 expression and is associated with lower levels of Rh-associated glycoprotein (RhAG) and Rh polypeptides. The goal of this study was to determine whether GP.Mur influenced erythroid Rh/RhAG expression at the transcript level. MATERIALS AND METHODS: GP.Mur was serologically determined in healthy participants from Taitung County, Taiwan. RNA was extracted from the reticulocyte-enriched fraction of peripheral blood, followed by reverse transcription and quantitative PCR for RhAG, RhD and RhCcEe. RESULTS: Quantification by real-time PCR revealed significantly fewer RhAG and RhCcEe transcripts in the reticulocytes from subjects with homozygous GYP*Mur. Independent from GYP.Mur, both RhAG and RhD transcript levels were threefold or higher than that of RhCcEe. Also, in GYP.Mur and the control samples alike, direct quantitative associations were observed between the transcript levels of RhAG and RhD, but not between that of RhAG and RhCcEe. CONCLUSION: Erythroid RhD and RhCcEe were differentially expressed at the transcript levels, which could be related to their different degrees of interaction or sensitivity to RhAG. Further, the reduction or absence of glycophorin B in GYP.Mur erythroid cells affected transcript expressions of RhAG and RhCcEe. Thus, GPB and GP.Mur differentially influenced Rh/RhAG expressions prior to protein translation.


Assuntos
Células Eritroides/metabolismo , Glicoforinas/genética , Sistema do Grupo Sanguíneo Rh-Hr/genética , Glicoforinas/sangue , Glicoforinas/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sistema do Grupo Sanguíneo Rh-Hr/sangue , Sistema do Grupo Sanguíneo Rh-Hr/metabolismo , Taiwan
12.
Cell Physiol Biochem ; 42(5): 1973-1984, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28793301

RESUMO

BACKGROUND/AIMS: Acute myeloid leukemia (AML) is a heterogeneous clonal disease and patients with AML who harbor an FMS-like tyrosine kinase 3 (FLT3) mutation present several dilemmas for the clinician. This study aims to identify novel targets for explaining the dilemmas. METHODS: We analyzed four microarray gene expression profiles to investigate changes in whole genome expression associated with FLT3-ITD mutation. RESULTS: We identified 22 differentially expressed genes which are commonly expressed among all four profiles. Kaplan-Meier analysis of the dataset GSE12417 revealed that low expression of AHSP, EPB42, GYPC and HEMGN predicted poor prognosis (AHSP: P=0.0317, HR=1.894; EPB42: P=0.0382, HR=1.859; GYPC: P=0.0015, HR=2.051; HEMGN: P=0.0418, HR=1.838 in GSE12417 test cohort; AHSP: P=0.0279, HR=1.548; EPB42: P=0.0398, HR=1.505; GYPC: P=0.0408, HR=1.501; HEMGN: P=0.0143, HR=1.630 in GSE12417 validation cohort). When patients were FLT3-ITD positive, the expression of FLT3 was significantly increased (all P<0.05 in four profiles), and correleation analysis of four profiles revealed that the expression of the four candidate genes negatively correlated with FLT3 expression. CONCLUSIONS: Our findings suggest that AHSP, EPB42, GYPC and HEMGN may be suitable biomarkers for diagnostic or therapeutic strategies for FLT3-ITD-positive AML patients.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Glicoforinas/metabolismo , Leucemia Mieloide Aguda/diagnóstico , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo , Biomarcadores/metabolismo , Proteínas Sanguíneas/genética , Proteínas do Citoesqueleto/genética , Regulação para Baixo , Glicoforinas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Proteínas de Membrana/genética , Chaperonas Moleculares/genética , Mutação , Proteínas Nucleares/genética , Prognóstico , Modelos de Riscos Proporcionais , Mapas de Interação de Proteínas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , Regulação para Cima , Tirosina Quinase 3 Semelhante a fms/genética
13.
Elife ; 52016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26824389

RESUMO

Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membrana Celular/química , Análise Mutacional de DNA , Glicoforinas/química , Glicoforinas/genética , Glicoforinas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação Puntual , Ligação Proteica , Receptor ErbB-2/química , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , beta-Lactamases/química , beta-Lactamases/genética , beta-Lactamases/metabolismo
14.
J Chem Theory Comput ; 11(5): 2278-91, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-26574426

RESUMO

Interactions between membrane proteins are of great biological significance and are consequently an important target for pharmacological intervention. Unfortunately, it is still difficult to obtain detailed views on such interactions, both experimentally, where the environment hampers atomic resolution investigation, and computationally, where the time and length scales are problematic. Coarse grain simulations have alleviated the later issue, but the slow movement through the bilayer, coupled to the long life times of nonoptimal dimers, still stands in the way of characterizing binding distributions. In this work, we present DAFT, a Docking Assay For Transmembrane components, developed to identify preferred binding orientations. The method builds on a program developed recently for generating custom membranes, called insane (INSert membrANE). The key feature of DAFT is the setup of starting structures, for which optimal periodic boundary conditions are devised. The purpose of DAFT is to perform a large number of simulations with different components, starting from unbiased noninteracting initial states, such that the simulations evolve collectively, in a manner reflecting the underlying energy landscape of interaction. The implementation and characteristic features of DAFT are explained, and the efficacy and relaxation properties of the method are explored for oligomerization of glycophorin A dimers, polyleucine dimers and trimers, MS1 trimers, and rhodopsin dimers. The results suggest that, for simple helices, such as GpA and polyleucine, in POPC/DOPC membranes series of 500 simulations of 500 ns each allow characterization of the helix dimer orientations and allow comparing associating and nonassociating components. However, the results also demonstrate that short simulations may suffer significantly from nonconvergence of the ensemble and that using too few simulations may obscure or distort features of the interaction distribution. For trimers, simulation times exceeding several microseconds appear needed, due to the increased complexity. Similarly, characterization of larger proteins, such as rhodopsin, takes longer time scales due to the slower diffusion and the increased complexity of binding interfaces. DAFT and its auxiliary programs have been made available from http://cgmartini.nl/ , together with a working example.


Assuntos
Proteínas de Membrana/química , Dimerização , Glicoforinas/química , Glicoforinas/genética , Glicoforinas/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Mutação , Peptídeos/química , Fosfatidilcolinas/química , Multimerização Proteica , Rodopsina/química , Rodopsina/metabolismo
15.
Biol Reprod ; 93(2): 37, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26108791

RESUMO

Repeated and dramatic pregnancy-induced uterine enlargement and remodeling throughout reproductive life suggests the existence of uterine smooth muscle stem/progenitor cells. The aim of this study was to isolate and characterize stem/progenitor-like cells from human myometrium through identification of specific surface markers. We here identify CD49f and CD34 as markers to permit selection of the stem/progenitor cell-like population from human myometrium and show that human CD45(-) CD31(-) glycophorin A(-) and CD49f(+) CD34(+) myometrial cells exhibit stem cell-like properties. These include side population phenotypes, an undifferentiated status, high colony-forming ability, multilineage differentiation into smooth muscle cells, osteoblasts, adipocytes, and chondrocytes, and in vivo myometrial tissue reconstitution following xenotransplantation. Furthermore, CD45(-) CD31(-) glycophorin A(-) and CD49f(+) CD34(+) myometrial cells proliferate under hypoxic conditions in vitro and, compared with the untreated nonpregnant myometrium, show greater expansion in the estrogen-treated nonpregnant myometrium and further in the pregnant myometrium in mice upon xenotransplantation. These results suggest that the newly identified myometrial stem/progenitor-like cells influenced by hypoxia and sex steroids may participate in pregnancy-induced uterine enlargement and remodeling, providing novel insights into human myometrial physiology.


Assuntos
Antígenos CD34/genética , Antígenos CD34/fisiologia , Integrina alfa6/genética , Integrina alfa6/fisiologia , Miométrio/metabolismo , Células-Tronco/fisiologia , Útero/fisiologia , Animais , Diferenciação Celular , Hipóxia Celular , Linhagem da Célula/genética , Feminino , Glicoforinas/biossíntese , Glicoforinas/genética , Células-Tronco Hematopoéticas , Humanos , Camundongos , Miométrio/citologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Gravidez
16.
Methods Mol Biol ; 1105: 223-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24623232

RESUMO

The glycophorin A assay concurrently detects and quantifies erythrocytes with allele-loss phenotypes at the autosomal locus responsible for the polymorphic MN blood group. It uses a pair of allele-specific monoclonal antibodies and flow cytometry to efficiently analyze a standard population of five million cells. Two distinct variant phenotypes are detected: simple allele loss and allele loss followed by reduplication of the remaining allele; both are consistent with the mechanisms underlying "loss of heterozygosity" at tumor-suppressor genes. The assay is an intermediate biomarker of biological effect in the somatic mutational model of human cancer and has been applied to populations with a known or suspected genotoxic exposure, to patients with hereditary syndromes causing predisposition to cancer (where the assay has been applied diagnostically), and to patients manifesting cancer as a disease endpoint.


Assuntos
Glicoforinas/genética , Alelos , Análise Mutacional de DNA , Eritrócitos/fisiologia , Citometria de Fluxo , Deleção de Genes , Humanos , Perda de Heterozigosidade , Fenótipo
17.
Blood ; 123(18): e100-9, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24652986

RESUMO

Rosetting phenomenon has been linked to malaria pathogenesis. Although rosetting occurs in all causes of human malaria, most data on this subject has been derived from Plasmodium falciparum. Here, we investigate the function and factors affecting rosette formation in Plasmodium vivax. To achieve this, we used a range of novel ex vivo protocols to study fresh and cryopreserved P vivax (n = 135) and P falciparum (n = 77) isolates from Thailand. Rosetting is more common in vivax than falciparum malaria, both in terms of incidence in patient samples and percentage of infected erythrocytes forming rosettes. Rosetting to P vivax asexual and sexual stages was evident 20 hours postreticulocyte invasion, reaching a plateau after 30 hours. Host ABO blood group, reticulocyte count, and parasitemia were not correlated with P vivax rosetting. Importantly, mature erythrocytes (normocytes), rather than reticulocytes, preferentially form rosetting complexes, indicating that this process is unlikely to directly facilitate merozoite invasion. Although antibodies against host erythrocyte receptors CD235a and CD35 had no effect, Ag-binding fragment against the BRIC 4 region of CD236R significantly inhibited rosette formation. Rosetting assays using CD236R knockdown normocytes derived from hematopoietic stem cells further supports the role of glycophorin C as a receptor in P vivax rosette formation.


Assuntos
Eritrócitos/metabolismo , Eritrócitos/parasitologia , Glicoforinas/metabolismo , Malária Vivax/metabolismo , Plasmodium vivax/imunologia , Formação de Roseta/métodos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Criopreservação/métodos , Eritrócitos/patologia , Técnicas de Silenciamento de Genes , Glicoforinas/genética , Glicoforinas/imunologia , Humanos , Malária Vivax/diagnóstico , Malária Vivax/parasitologia , Plasmodium vivax/isolamento & purificação , Receptores de Complemento 3b/antagonistas & inibidores , Fluxo de Trabalho
18.
Int J Mol Med ; 32(2): 331-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23722820

RESUMO

The aim of this study was to evaluate in detail the histopathological characteristics of endarterectomized carotid atherosclerotic lesions in symptomatic versus asymptomatic patients. Twenty carotid lesions, 10 from asymptomatic and 10 from symptomatic patients who underwent carotid endarterectomy were classified according to histomorphological features. Samples were analyzed for intraplaque localization and for the expression of proteins associated with inflammation, such as CD68, interleukin (IL)-1ß, tumor necrosis factor-α (TNF-α), pentraxin-3 (PTX-3), nuclear factor-κB (NF-κB), C-reactive protein (CRP) and transforming growth factor-ß (TGF-ß), as well as for proteins associated with vascular remodelling, such as matrix-metalloproteinase-9 (MMP-9), glycophorin A (GYPA), osteoprotegerin (OPG), vascular cell adhesion molecule-1 (VCAM-1), endothelin-1 (ET-1), vascular endothelial growth factor (VEGF) and vascular smooth muscle cell actin (VSMA). Corresponding expression scores were compared between the symptomatic and asymptomatic patients and evaluated statistically. The expression of all 14 evaluated markers was significantly elevated in the border zone adjacent to the mixed plaque compared with the unaffected control area of the same sample (p<0,016). The expression scores of GYPA and OPG were significantly higher in the border zones around the calcified (GYPA, p=0.035; OPG, p=0.043) and mixed (GYPA, p<0.001; OPG, p=0.007) plaque zones of symptomatic patients compared to asymptomatic patients. No difference in expression scores was observed for any of the analyzed inflammatory marker proteins between the border zones of symptomatic and asymptomatic patients. In conclusion, the increased expression of GYPA, indicating intraplaque hemorrhage, and OPG, indicating the transdifferentiation of vascular cells, in carotid atherosclerotic lesions may be associated with an increased risk of plaque instability.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Glicoforinas/metabolismo , Osteoprotegerina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doenças Assintomáticas , Feminino , Expressão Gênica , Glicoforinas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Osteoprotegerina/genética , Placa Aterosclerótica , Fatores de Risco
19.
Mutat Res ; 755(1): 49-54, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23680719

RESUMO

Information on individual variations in response to ionizing radiation is still quite limited. Previous studies of atomic-bomb survivors revealed that somatic mutations at the glycophorin A (GPA) gene locus in erythrocytes were significantly elevated with radiation exposure dose, and that the dose response was significantly higher in survivors with subsequent cancer development compared to those without cancer development. Noteworthy in these studies were great inter-individual differences in GPA mutant fraction even in persons with similar radiation doses. It is hypothesized that persistent GPA mutations in erythrocytes of atomic-bomb survivors are derived from those in long-lived hematopoietic stem cell (HSC) populations, and that individual genetic backgrounds, specifically related to DNA double-strand break repair, contribute to individual differences in HSC mutability following radiation exposure. Thus, we examined the relationship between radiation exposure, GPA mutant fraction in erythrocytes, and single nucleotide polymorphisms (SNPs) of the key gene involved in DNA double-strand break repair, p53 binding protein 1 (53BP1). 53BP1 SNPs and inferred haplotypes demonstrated a significant interaction with radiation dose, suggesting that radiation-dose response of GPA somatic mutation is partly dependent on 53BP1 genotype. It is also possible that 53BP1 plays a significant role in DNA double-strand break repair in HSCs following radiation exposure.


Assuntos
Reparo do DNA/genética , Eritrócitos/efeitos da radiação , Glicoforinas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Idoso , Medula Óssea , Estudos de Casos e Controles , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Eritrócitos/patologia , Feminino , Humanos , Masculino , Guerra Nuclear , Prognóstico , Radiação Ionizante , Sobreviventes , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
20.
J Biol Chem ; 288(23): 16839-16847, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23609441

RESUMO

Erythropoiesis results from a complex combination of the expression of several transcription factor genes and cytokine signaling. However, the overall view of erythroid differentiation remains unclear. First, we screened for erythroid differentiation-related genes by comparing the expression profiles of high differentiation-inducible and low differentiation-inducible murine erythroleukemia cells. We identified that overexpression of α-1,6-fucosyltransferase (Fut8) inhibits hemoglobin production. FUT8 catalyzes the transfer of a fucose residue to N-linked oligosaccharides on glycoproteins via an α-1,6 linkage, leading to core fucosylation in mammals. Expression of Fut8 was down-regulated during chemically induced differentiation of murine erythroleukemia cells. Additionally, expression of Fut8 was positively regulated by c-Myc and c-Myb, which are known as suppressors of erythroid differentiation. Second, we found that FUT8 is the only fucosyltransferase family member that inhibits hemoglobin production. Functional analysis of FUT8 revealed that the donor substrate-binding domain and a flexible loop play essential roles in inhibition of hemoglobin production. This result clearly demonstrates that core fucosylation inhibits hemoglobin production. Third, FUT8 also inhibited hemoglobin production of human erythroleukemia K562 cells. Finally, a short hairpin RNA study showed that FUT8 down-regulation induced hemoglobin production and increase of transferrin receptor/glycophorin A-positive cells in human erythroleukemia K562 cells. Our findings define FUT8 as a novel factor for hemoglobin production and demonstrate that core fucosylation plays an important role in erythroid differentiation.


Assuntos
Diferenciação Celular , Fucosiltransferases/metabolismo , Hemoglobinas/biossíntese , Leucemia Eritroblástica Aguda/enzimologia , Animais , Transporte Biológico Ativo/genética , Fucose/genética , Fucose/metabolismo , Fucosiltransferases/genética , Glicoforinas/genética , Glicoforinas/metabolismo , Hemoglobinas/genética , Humanos , Células K562 , Camundongos , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA