Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
J Exp Clin Cancer Res ; 42(1): 143, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280675

RESUMO

BACKGROUND: Hypoxia-induced glycogen turnover is implicated in cancer proliferation and therapy resistance. Triple-negative breast cancers (TNBCs), characterized by a hypoxic tumor microenvironment, respond poorly to therapy. We studied the expression of glycogen synthase 1 (GYS1), the key regulator of glycogenesis, and other glycogen-related enzymes in primary tumors of patients with breast cancer and evaluated the impact of GYS1 downregulation in preclinical models. METHODS: mRNA expression of GYS1 and other glycogen-related enzymes in primary breast tumors and the correlation with patient survival were studied in the METABRIC dataset (n = 1904). Immunohistochemical staining of GYS1 and glycogen was performed on a tissue microarray of primary breast cancers (n = 337). In four breast cancer cell lines and a mouse xenograft model of triple-negative breast cancer, GYS1 was downregulated using small-interfering or stably expressed short-hairpin RNAs to study the effect of downregulation on breast cancer cell proliferation, glycogen content and sensitivity to various metabolically targeted drugs. RESULTS: High GYS1 mRNA expression was associated with poor patient overall survival (HR 1.20, P = 0.009), especially in the TNBC subgroup (HR 1.52, P = 0.014). Immunohistochemical GYS1 expression in primary breast tumors was highest in TNBCs (median H-score 80, IQR 53-121) and other Ki67-high tumors (median H-score 85, IQR 57-124) (P < 0.0001). Knockdown of GYS1 impaired proliferation of breast cancer cells, depleted glycogen stores and delayed growth of MDA-MB-231 xenografts. Knockdown of GYS1 made breast cancer cells more vulnerable to inhibition of mitochondrial proteostasis. CONCLUSIONS: Our findings highlight GYS1 as potential therapeutic target in breast cancer, especially in TNBC and other highly proliferative subsets.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , RNA Interferente Pequeno , Glicogênio/metabolismo , RNA Mensageiro , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Nat Commun ; 13(1): 7038, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396934

RESUMO

Hepatic glycogen is the main source of blood glucose and controls the intervals between meals in mammals. Hepatic glycogen storage in mammalian pups is insufficient compared to their adult counterparts; however, the detailed molecular mechanism is poorly understood. Here, we show that, similar to glycogen storage pattern, N6-methyladenosine (m6A) modification in mRNAs gradually increases during the growth of mice in liver. Strikingly, in the hepatocyte-specific Mettl3 knockout mice, loss of m6A modification disrupts liver glycogen storage. On the mechanism, mRNA of Gys2, the liver-specific glycogen synthase, is a substrate of METTL3 and plays a critical role in m6A-mediated glycogenesis. Furthermore, IGF2BP2, a "reader" protein of m6A, stabilizes the mRNA of Gys2. More importantly, reconstitution of GYS2 almost rescues liver glycogenesis in Mettl3-cKO mice. Collectively, a METTL3-IGF2BP2-GYS2 axis, in which METTL3 and IGF2BP2 regulate glycogenesis as "writer" and "reader" proteins respectively, is essential on maintenance of liver glycogenesis in mammals.


Assuntos
Glicogênio Sintase , Glicogênio Hepático , Camundongos , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glicogênio Sintase/genética , Metiltransferases/metabolismo , Adenosina/metabolismo , Camundongos Knockout , Fígado/metabolismo , Mamíferos/genética
3.
Neuromuscul Disord ; 32(7): 582-589, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35641353

RESUMO

Muscle Glycogenosis type 0 (GSD0B) is an extremely rare disorder first recognized in 2007 in three siblings with childhood onset and severe cardiomyopathy. Since then, a few cases with severe cardiac involvement and premature death have been reported. We describe two unrelated cases presenting with an adult-onset myopathy with no heart involvement. Clinical features were quite similar in both patients, mainly characterized by early fatigability, myalgia and muscle weakness. Muscle biopsy revealed marked glycogen depletion in nearly all myofibers. Biochemical assay demonstrated a marked reduction of Glycogen Synthase (GS) activity. Sequence analysis of GYS1 revealed two new variants: a homozygous G to C substitution in the splice donor consensus site (c.678+1G>C) in patient1 and a homozygous missense variant c.630G>C in exon 3 (p. Asp145His) in patient 2. This study describes a new phenotype of muscle GSD0B presenting with adult onset, proximal myopathy, no cardiac abnormalities and a quite benign disease course. This report highlights the importance of a systematic diagnostic approach that includes muscle morphology and enzymatic assay to facilitate the identification of adult patients with GSD0B.


Assuntos
Cardiomiopatias , Doença de Depósito de Glicogênio , Doenças Musculares , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Cardiomiopatias/patologia , Criança , Doença de Depósito de Glicogênio/diagnóstico , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/patologia , Glicogênio Sintase/deficiência , Glicogênio Sintase/genética , Humanos , Músculo Esquelético/patologia , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/patologia , Fenótipo
4.
Neurotherapeutics ; 19(3): 982-993, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347645

RESUMO

Adult polyglucosan body disease (APBD) and Lafora disease (LD) are autosomal recessive glycogen storage neurological disorders. APBD is caused by mutations in the glycogen branching enzyme (GBE1) gene and is characterized by progressive upper and lower motor neuron dysfunction and premature death. LD is a fatal progressive myoclonus epilepsy caused by loss of function mutations in the EPM2A or EPM2B gene. These clinically distinct neurogenetic diseases share a common pathology. This consists of time-dependent formation, precipitation, and accumulation of an abnormal form of glycogen (polyglucosan) into gradually enlarging inclusions, polyglucosan bodies (PBs) in ever-increasing numbers of neurons and astrocytes. The growth and spread of PBs are followed by astrogliosis, microgliosis, and neurodegeneration. The key defect in polyglucosans is that their glucan branches are longer than those of normal glycogen, which prevents them from remaining in solution. Since the lengths of glycogen branches are determined by the enzyme glycogen synthase, we hypothesized that downregulating this enzyme could prevent or hinder the generation of the pathogenic PBs. Here, we pursued an adeno-associated virus vector (AAV) mediated RNA-interference (RNAi) strategy. This approach resulted in approximately 15% reduction of glycogen synthase mRNA and an approximately 40% reduction of PBs across the brain in the APBD and both LD mouse models. This was accompanied by improvements in early neuroinflammatory markers of disease. This work represents proof of principle toward developing a single lifetime dose therapy for two fatal neurological diseases: APBD and LD. The approach is likely applicable to other severe and common diseases of glycogen storage.


Assuntos
Doença de Lafora , MicroRNAs , Animais , Modelos Animais de Doenças , Glucanos , Glicogênio , Doença de Depósito de Glicogênio , Glicogênio Sintase/genética , Doença de Lafora/genética , Doença de Lafora/patologia , Doença de Lafora/terapia , Camundongos , Doenças do Sistema Nervoso , Doenças Neuroinflamatórias
5.
Bioengineered ; 12(2): 12167-12178, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34783271

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver tumor with increasing incidence worldwide. Metabolic reprogramming caused by metabolic related gene disorders is a prominent hallmark of tumors, among which Glycogen Synthase 2 (GYS2) is the key gene responsible for regulating cellular energy metabolism, and its expression disorders are closely related to various tumors and glycometabolic diseases. However, we still know nothing about its role in ICC. This study is intended to reveal the functional role of GYS2 in the ICC progress and explore the underlying mechanism. Based on the integrated pan-cancer analysis of GYS2 in the GEPIA database, the expression of GYS2 in paired ICC and adjacent non tumor tissues was detected by qPCR. It was found that the expression of GYS2 was significantly down-regulated in ICC. Further analysis showed that its low expression was not only associated with the degree of pathological differentiation, tumor size, microvascular invasion and lymph node metastasis, but also an independent risk factor for unfavorable prognosis. Functional studies have shown that GYS2 overexpression can significantly impair the proliferation, replication, cloning, migration and invasion of cholangiocarcinoma cells, while the silencing GYS2 dramatically promotes the development of the aforementioned phenotypes, the underlying mechanism may be that GYS2 activates the P53 pathway. In conclusions,low GYS2 expression in ICC predicted unfavorable patient outcomes; GYS2 overexpression could significantly impair the proliferation, migration and invasion of cholangiocarcinoma cells via activating the P53 pathway and GYS2 was expected to become a potential therapeutic target for such patients.


Assuntos
Neoplasias dos Ductos Biliares/diagnóstico , Neoplasias dos Ductos Biliares/enzimologia , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/enzimologia , Glicogênio Sintase/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
6.
Nat Metab ; 3(3): 327-336, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33758423

RESUMO

Glycogen accumulation is a highly consistent, distinguishable characteristic of clear cell renal cell carcinoma (ccRCC)1. While elevated glycogen pools might be advantageous for ccRCC cells in nutrient-deprived microenvironments to sustain tumour viability, data supporting a biological role for glycogen in ccRCC are lacking. Here, we demonstrate that glycogen metabolism is not required for ccRCC proliferation in vitro nor xenograft tumour growth in vivo. Disruption of glycogen synthesis by CRISPR-mediated knockout of glycogen synthase 1 (GYS1) has no effect on proliferation in multiple cell lines, regardless of glucose concentrations or oxygen levels. Similarly, prevention of glycogen breakdown by deletion or pharmacological inhibition of glycogen phosphorylase B (PYGB) and L (PYGL) has no impact on cell viability under any condition tested. Lastly, in vivo xenograft experiments using the ccRCC cell line, UMRC2, reveal no substantial changes in tumour size or volume when glycogen metabolism is altered, largely mimicking the phenotype of our in vitro observations. Our findings suggest that glycogen build-up in established ccRCC tumour cells is likely to be a secondary, and apparently dispensable, consequence of constitutively active hypoxia-inducible factor 1-alpha (HIF-1α) signalling.


Assuntos
Carcinoma de Células Renais/metabolismo , Glicogênio/metabolismo , Neoplasias Renais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Microambiente Tumoral
7.
Exp Clin Transplant ; 18(1): 71-82, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31724923

RESUMO

OBJECTIVES: In this study, we aimed to investigate the pathologic and ultrastructural changes in transplanted mouse livers after different durations of cold storage by testing indicators of liver function and energy metabolism. We aimed to describe the effects of cold storage on liver function and the mechanisms of cold storage damage. MATERIALS AND METHODS: We randomly placed 8-weekold male C57BL/6 mice into the following 4 groups to establish a cold-preserved mouse model of liver transplant: a normal control group and 3 cold storage groups, in which livers were stored for 4, 12, and 24 hours. Hepatic morphology, ultrastructural changes, and glycogenolysis were observed by hematoxylin and eosin staining, periodic acid-Schiff staining, and transmission electron microscopy. After different durations of cold storage, livers were reperfused with 4°C University of Wisconsin solution to obtain perfusion fluid, and alanine and aspartate aminotransferase levels were measured. Glycogen synthase, hypoxia-inducible factor-1α, Krüppel-like factor 2, and endothelial nitric oxide synthase mRNA expression levels in liver tissues were detected by real-time polymerase chain reaction, and aquaporin 8 protein expression levels in liver tissues were detected by Western blot. RESULTS: Hematoxylin and eosin staining and electron microscopy ofliver showed signs ofinjury after 12 hours of cold storage, which included mainly cytoplasmic edema characterized by loose liver cell arrangement, increased hepatic sinus fissure, mitochondrial swelling, and nuclear pyknosis. Periodic acid-Schiff staining showed that glycogen content was significantly reduced, with glycogen synthase levels also reduced. Alanine aminotransferase and aspartate aminotransferase levels gradually increasedwith cold storage. Glycogen synthase, Krüppel-like factor 2, endothelial nitric oxide synthase, and aquaporin 8 expression levels also gradually increased in liver tissue. These levels gradually decreased, but hypoxia-inducible factor-1α increased. CONCLUSIONS: Mouse livers showed progressive damage to structure and function during cold storage, with mitochondrial damage perhaps showing the earliest damage.


Assuntos
Isquemia Fria/efeitos adversos , Metabolismo Energético , Hepatectomia/efeitos adversos , Transplante de Fígado/efeitos adversos , Fígado/metabolismo , Fígado/ultraestrutura , Preservação de Órgãos/efeitos adversos , Adenosina/farmacologia , Alopurinol/farmacologia , Animais , Aquaporinas/metabolismo , Glutationa/farmacologia , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Insulina/farmacologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fígado/efeitos dos fármacos , Fígado/cirurgia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/ultraestrutura , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Soluções para Preservação de Órgãos/farmacologia , Rafinose/farmacologia , Fatores de Tempo
8.
Mol Med Rep ; 19(6): 5105-5114, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31059076

RESUMO

Portal hypertension is the primary cause of complications in patients with chronic liver diseases, and markedly impacts metabolism within the nervous system. Until recently, the role of portal hypertension in hepatocellular metabolism was unclear. The present study demonstrated that an increase in extracellular pressure significantly decreased hepatocellular glycogen concentrations in HepG2 and HL­7702 cells. In addition, it reduced glycogen synthase activity, by inhibiting the phosphorylation of glycogen synthase 1. RNA­seq analysis revealed that mechanical pressure suppressed glycogen synthesis by activating the p53/phosphatase and tensin homolog pathway, further suppressing glycogen synthase activity. The present study revealed an association between mechanical pressure and hepatocellular glycogen metabolism, and identified the regulatory mechanism of glycogen synthesis under pressure.


Assuntos
Glicogênio/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fosforilação , Pressão , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
9.
Food Funct ; 10(5): 2828-2838, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31049543

RESUMO

This study aimed at investigating the structure, hypoglycemic activity and the underlying mechanism of a homogeneous polysaccharide (PSP-2) purified from Sargassum pallidum. Structural characterization revealed that PSP-2 with a molecular weight of 144.8 kDa was composed of fucose (21.6%), arabinose (2.5%), galactose (22.4%), glucose (2.2%), xylose (18.8%), mannose (1.2%), glucuronic acid (7.7%) and galacturonic acid (23.6%). The backbone chain of PSP-2 was composed of →1)-ß-d-Xylp-(3→, →1,3)-ß-l-Fucp-(4→, →1)-α-d-Galp-(6→, and →1)-α-d-GlcpNAc-(2→, and the side chains were composed of →1,3,6)-α-d-Galp-(2→, →3)-ß-l-Fucp-(1,4→, ß-d-GalpNAc-(1→, and α-d-Manp-(1→. In vitro hypoglycemic assays indicated that PSP-2 could significantly enhance glucose consumption, glycogen synthesis, and pyruvate kinase (PK) and hexokinase (HK) activities of insulin-resistant HepG2 cells. Furthermore, the underlying mechanistic studies revealed that PSP-2 could ameliorate insulin resistance by up-regulating the expression levels of insulin receptor substrate-1 (IRS-1), glycogen synthase (GS), phosphoinositide-3-kinase (PI3K) and glucose transporter-4 (GLUT4). These results suggested that PSP-2 may be a potential candidate for the prevention and treatment of Type 2 diabetes mellitus.


Assuntos
Hipoglicemiantes/química , Extratos Vegetais/química , Polissacarídeos/química , Sargassum/química , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Células Hep G2 , Humanos , Hipoglicemiantes/farmacologia , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Peso Molecular , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia
10.
Ann N Y Acad Sci ; 1425(1): 70-81, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29873092

RESUMO

The operations involved in preimplantation genetic testing (PGT) occur during the key stages of gametogenesis and early embryonic development, and the health of progeny following PGT (PGT-born) is worthy of attention. In order to fully assess the potential risk of abnormal glucose metabolism in adult PGT-born offspring and to evaluate possible mechanisms, we compared a mouse model of PGT (in vitro cultured embryos with biopsy, hereafter "PTG-born mice"), an in vitro embryo manipulation mouse model (in vitro cultured embryos without biopsy), and normal mice. PGT-born mice displayed increased fasting glucose, and decreased glycogen synthesis and glucose oxidative utilization in the liver. Moreover, PGT-born mice also displayed reduced expression of insulin receptor, AKT, and insulin-stimulated Akt phosphorylation (pAkt) in the liver. These results suggest a potential risk of insulin resistance in adult PGT-born mice. By analyzing the DNA methylation profiles of 7.5 days postconception (dpc) embryos, we identified differentially methylated genes associated with liver development between PGT-born and control groups; some of these genes are associated with glucose homeostasis and insulin response. These results suggest that abnormal methylation in embryos that develop after PGT may be a potential mechanism occurring during embryonic development that can influence the risk of liver-derived insulin resistance in adulthood.


Assuntos
Metilação de DNA , Desenvolvimento Embrionário/genética , Testes Genéticos/métodos , Resistência à Insulina/genética , Fígado/metabolismo , Diagnóstico Pré-Implantação/métodos , Animais , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Glucose/metabolismo , Glicogênio/biossíntese , Glicogênio/sangue , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Humanos , Camundongos Endogâmicos ICR , Gravidez , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Fatores de Risco
11.
J Clin Endocrinol Metab ; 103(8): 2843-2850, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29726999

RESUMO

Context: Glycogen synthesis is a critical metabolic function of the endometrium to prepare for successful implantation and sustain embryo development. Yet, regulation of endometrial carbohydrate metabolism is poorly characterized. Whereas glycogen synthesis is attributed to progesterone, we previously found that the metabolic B isoform of the insulin receptor is maximally expressed in secretory-phase endometrium, indicating a potential role of insulin in glucose metabolism. Objective: We sought to determine whether insulin or progesterone regulates glycogen synthesis in human endometrium. Design, Participants, Outcome Measurements: Endometrial epithelial cells were isolated from 28 healthy women and treated with insulin, medroxyprogesterone (MPA), or vehicle. Intracellular glycogen and the activation of key enzymes were quantified. Results: In epithelia, insulin induced a 4.4-fold increase in glycogen, whereas MPA did not alter glycogen content. Insulin inactivated glycogen synthase (GS) kinase 3α/ß (GSK3α/ß), relieving inhibition of GS. In a regulatory mechanism, distinct from liver and muscle, insulin also increased GS by 3.7-fold through increased GS 2 (GYS2) gene expression. Conclusions: We demonstrate that insulin, not progesterone, directly regulates glycogen synthesis through canonical acute inactivation of GSK3α/ß and noncanonical stimulation of GYS2 transcription. Persistently elevated GS enables endometrium to synthesize glycogen constitutively, independent of short-term nutrient flux, during implantation and early pregnancy. This suggests that insulin plays a key, physiological role in endometrial glucose metabolism and underlines the need to delineate the effect of maternal obesity and hyperinsulinemia on fertility and fetal development.


Assuntos
Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Glicogênio Sintase/genética , Glicogênio/biossíntese , Insulina/farmacologia , Adulto , Células Cultivadas , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glicogênio Sintase/metabolismo , Glicogenólise/efeitos dos fármacos , Humanos , Hiperinsulinismo/metabolismo , Medroxiprogesterona/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo
12.
Mol Ther ; 26(7): 1771-1782, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784585

RESUMO

Glycogen storage diseases (GSDs) of the liver are devastating disorders presenting with fasting hypoglycemia as well as hepatic glycogen and lipid accumulation, which could lead to long-term liver damage. Diet control is frequently utilized to manage the potentially dangerous hypoglycemia, but there is currently no effective pharmacological treatment for preventing hepatomegaly and concurrent liver metabolic abnormalities, which could lead to fibrosis, cirrhosis, and hepatocellular adenoma or carcinoma. In this study, we demonstrate that inhibition of glycogen synthesis using an RNAi approach to silence hepatic Gys2 expression effectively prevents glycogen synthesis, glycogen accumulation, hepatomegaly, fibrosis, and nodule development in a mouse model of GSD III. Mechanistically, reduction of accumulated abnormally structured glycogen prevents proliferation of hepatocytes and activation of myofibroblasts as well as infiltration of mononuclear cells. Additionally, we show that silencing Gys2 expression reduces hepatic steatosis in a mouse model of GSD type Ia, where we hypothesize that the reduction of glycogen also reduces the production of excess glucose-6-phosphate and its subsequent diversion to lipid synthesis. Our results support therapeutic silencing of GYS2 expression to prevent glycogen and lipid accumulation, which mediate initial signals that subsequently trigger cascades of long-term liver injury in GSDs.


Assuntos
Doença de Depósito de Glicogênio Tipo III/genética , Glicogênio Sintase/genética , Glicogênio/genética , Cirrose Hepática/genética , Cirrose Hepática/patologia , Fígado/patologia , Interferência de RNA/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Fibroblastos/patologia , Glucose-6-Fosfato/genética , Doença de Depósito de Glicogênio Tipo III/patologia , Hepatócitos/patologia , Hepatomegalia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Am J Vet Res ; 78(11): 1305-1312, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29076373

RESUMO

OBJECTIVE To characterize clinical findings for polysaccharide storage myopathy (PSSM) in warmblood horses with type 1 PSSM (PSSM1; caused by mutation of the glycogen synthase 1 gene) and type 2 PSSM (PSSM2; unknown etiology). SAMPLE Database with 3,615 clinical muscle biopsy submissions. PROCEDURES Reported clinical signs and serum creatine kinase (CK) and aspartate aminotransferase (AST) activities were retrospectively analyzed for horses with PSSM1 (16 warmblood and 430 nonwarmblood), horses with PSSM2 (188 warmblood and 646 nonwarmblood), and warmblood horses without PSSM (278). Lameness examinations were reviewed for 9 warmblood horses with PSSM2. Muscle glycogen concentrations were evaluated for horses with PSSM1 (14 warmblood and 6 nonwarmblood), warmblood horses with PSSM2 (13), and horses without PSSM (10 warmblood and 6 nonwarmblood). RESULTS Rhabdomyolysis was more common for horses with PSSM1 (12/16 [75%] warmblood and 223/303 [74%] nonwarmblood) and nonwarmblood horses with PSSM2 (221/436 [51%]) than for warmblood horses with PSSM2 (39/147 [27%]). Gait abnormality was more common in warmblood horses with PSSM2 (97/147 [66%]) than in warmblood horses with PSSM1 (1/16 [7%]), nonwarmblood horses with PSSM2 (176/436 [40%]), and warmblood horses without PSSM (106/200 [53%]). Activities of CK and AST were similar in warmblood horses with and without PSSM2. Muscle glycogen concentrations in warmblood and nonwarmblood horses with PSSM1 were significantly higher than concentrations in warmblood horses with PSSM2. CONCLUSIONS AND CLINICIAL RELEVANCE Rhabdomyolysis and elevated muscle glycogen concentration were detected in horses with PSSM1 regardless of breed. Most warmblood horses with PSSM2 had stiffness and gait abnormalities with CK and AST activities and muscle glycogen concentrations within reference limits.


Assuntos
Doença de Depósito de Glicogênio Tipo II/veterinária , Doença de Depósito de Glicogênio Tipo I/veterinária , Doenças dos Cavalos/fisiopatologia , Doenças Musculares/veterinária , Animais , Biópsia/veterinária , Feminino , Glicogênio , Doença de Depósito de Glicogênio Tipo I/fisiopatologia , Doença de Depósito de Glicogênio Tipo II/fisiopatologia , Glicogênio Sintase/genética , Doenças dos Cavalos/metabolismo , Doenças dos Cavalos/patologia , Cavalos , Masculino , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Mutação , Polissacarídeos , Estudos Retrospectivos , Rabdomiólise/patologia , Rabdomiólise/veterinária
14.
Nat Commun ; 8: 15868, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28627510

RESUMO

A high-sugar diet has been associated with reduced lifespan in organisms ranging from worms to mammals. However, the mechanisms underlying the harmful effects of glucose are poorly understood. Here we establish a causative relationship between endogenous glucose storage in the form of glycogen, resistance to oxidative stress and organismal aging in Caenorhabditis elegans. We find that glycogen accumulated on high dietary glucose limits C. elegans longevity. Glucose released from glycogen and used for NADPH/glutathione reduction renders nematodes and human hepatocytes more resistant against oxidative stress. Exposure to low levels of oxidants or genetic inhibition of glycogen synthase depletes glycogen stores and extends the lifespan of animals fed a high glucose diet in an AMPK-dependent manner. Moreover, glycogen interferes with low insulin signalling and accelerates aging of long-lived daf-2 worms fed a high glucose diet. Considering its extensive evolutionary conservation, our results suggest that glycogen metabolism might also have a role in mammalian aging.


Assuntos
Caenorhabditis elegans/fisiologia , Glucose/metabolismo , Glicogênio/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Animais Geneticamente Modificados , Antioxidantes/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diamida/farmacologia , Glucose/farmacologia , Glutationa/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Células Hep G2 , Humanos , Longevidade/fisiologia , NADP/metabolismo , Oxidantes/farmacologia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
15.
Cell Death Dis ; 8(4): e2729, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28383558

RESUMO

Cystatin SN (CST1), a known inhibitor of cathepsin B (CatB), has important roles in tumor development. Paradoxically, CatB is a member of the cysteine cathepsin family that acts in cellular processes, such as tumor development and invasion. However, the relationship between CST1 and CatB, and their roles in tumor development are poorly understood. In this study, we observed that the knockdown of CST1 induced the activity of senescence-associated ß-galactosidase, a marker of cellular senescence, and expression of senescence-associated secretory phenotype genes, including interleukin-6 and chemokine (C-C motif) ligand 20, in MDA-MB-231 and SW480 cancer cells. Furthermore, CST1 knockdown decreased extracellular CatB activity, and direct CatB inhibition, using specific inhibitors or shCatB, induced cellular senescence. Reconstitution of CST1 restored CatB activity and inhibited cellular senescence in CST1 knockdown cells. CST1 knockdown or CatB inhibition increased glycogen synthase (GS) kinase 3ß phosphorylation at serine 9, resulting in the activation of GS and the induction of glycogen accumulation associated with cellular senescence. Importantly, CST1 knockdown suppressed cancer cell proliferation, soft agar colony growth and tumor growth in a xenograft model. These results indicate that CST1-mediated extracellular CatB activity enhances tumor development by preventing cellular senescence. Our findings suggest that antagonists of CST1 or inhibitors of CatB are potential anticancer agents.


Assuntos
Catepsina B/metabolismo , Proliferação de Células , Glicogênio Sintase/metabolismo , Glicogênio/biossíntese , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Cistatinas Salivares/metabolismo , Animais , Catepsina B/genética , Senescência Celular/genética , Técnicas de Silenciamento de Genes , Glicogênio/genética , Glicogênio Sintase/genética , Células HEK293 , Xenoenxertos , Humanos , Células MCF-7 , Camundongos , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Neoplasias/genética , Cistatinas Salivares/genética
16.
Biochemistry ; 56(1): 179-188, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-27935293

RESUMO

Glycogen synthase (GS) is the rate limiting enzyme in the synthesis of glycogen. Eukaryotic GS is negatively regulated by covalent phosphorylation and allosterically activated by glucose-6-phosphate (G-6-P). To gain structural insights into the inhibited state of the enzyme, we solved the crystal structure of yGsy2-R589A/R592A to a resolution of 3.3 Å. The double mutant has an activity ratio similar to the phosphorylated enzyme and also retains the ability to be activated by G-6-P. When compared to the 2.88 Å structure of the wild-type G-6-P activated enzyme, the crystal structure of the low-activity mutant showed that the N-terminal domain of the inhibited state is tightly held against the dimer-related interface thereby hindering acceptor access to the catalytic cleft. On the basis of these two structural observations, we developed a reversible redox regulatory feature in yeast GS by substituting cysteine residues for two highly conserved arginine residues. When oxidized, the cysteine mutant enzyme exhibits activity levels similar to the phosphorylated enzyme but cannot be activated by G-6-P. Upon reduction, the cysteine mutant enzyme regains normal activity levels and regulatory response to G-6-P activation.


Assuntos
Glicogênio Sintase/genética , Mutação , Saccharomyces cerevisiae/genética , Cristalização , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato/farmacologia , Glicogênio/metabolismo , Glicogênio Sintase/química , Glicogênio Sintase/metabolismo , Cinética , Modelos Moleculares , Oxirredução , Fosforilação , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Uridina Difosfato Glucose/metabolismo
17.
Anim Sci J ; 88(1): 45-54, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27170562

RESUMO

Glycogen synthesis by mink uterine glandular and luminal epithelia (GE and LE) is stimulated by estradiol (E2 ) during estrus. Subsequently, the glycogen deposits are mobilized to near completion to meet the energy requirements of pre-embryonic development and implantation by as yet undetermined mechanisms. We hypothesized that progesterone (P4 ) was responsible for catabolism of uterine glycogen reserves as one of its actions to ensure reproductive success. Mink were treated with E2 , P4 or vehicle (controls) for 3 days and uteri collected 24 h (E2 , P4 and vehicle) and 96 h (E2 ) later. To evaluate E2 priming, mink were treated with E2 for 3 days, then P4 for an additional 3 days (E2 →P4 ) and uteri collected 24 h later. Percent glycogen content of uterine epithelia was greater at E2 + 96 h (GE = 5.71 ± 0.55; LE = 11.54 ± 2.32) than E2 +24 h (GE = 3.63 ± 0.71; LE = 2.82 ± 1.03), and both were higher than controls (GE = 0.27 ± 0.15; LE = 0.54 ± 0.30; P < 0.05). Treatment as E2 →P4 reduced glycogen content (GE = 0.61 ± 0.16; LE = 0.51 ± 0.13), to levels not different from controls, while concomitantly increasing catabolic enzyme (glycogen phosphorylase m and glucose-6-phosphatase) gene expression and amount of phospho-glycogen synthase protein (inactive) in uterine homogenates. Interestingly, E2 →P4 increased glycogen synthase 1 messenger RNA (mRNA) and hexokinase 1mRNA and protein. Our findings suggest to us that while E2 promotes glycogen accumulation by the mink uterus during estrus and pregnancy, it is P4 that induces uterine glycogen catabolism, releasing the glucose that is essential to support pre-embryonic survival and implantation.


Assuntos
Metabolismo Energético , Estradiol/farmacologia , Estradiol/fisiologia , Estro/metabolismo , Glicogênio/biossíntese , Glicogênio/metabolismo , Vison/metabolismo , Progesterona/farmacologia , Progesterona/fisiologia , Útero/metabolismo , Animais , Desenvolvimento Embrionário , Feminino , Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Glicogênio Fosforilase/genética , Glicogênio Fosforilase/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Estimulação Química , Útero/fisiologia
18.
Mol Cell Biochem ; 424(1-2): 203-208, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27785702

RESUMO

Glycogen synthase kinase 3ß (GSK3ß) is a ubiquitous serine/threonine kinase and has important roles in glycogen metabolism biosynthesis. Studies have revealed that GSK3ß can directly regulate the glycogen synthase activity, yet little is known about the regulation of GSK3ß on GYS1 gene transcription. Here, we show that overexpression of GSK3ß decreased the mRNA expression level of GYS1. Then we cloned approximately 1.5 kb of pig GYS1 gene promoter region, generated sequential deletion constructs, and evaluated their activity. A gradual increase of the promoter activity was seen with increasing length of the promoter sequence, reaching its highest activity to the sequence corresponding to nt -350 to +224, and then decreased. However, the activities of constructed promoter fragments show different responses to GSK3ß co-transfection. By analyzing a series of GYS1 promoter reporter constructs, we have defined two crucial regions (-1488 to -539, -350 to -147) that are responsible for GSK3ß-induced transcriptional repression. Furthermore, the ChIP results revealed that only the first and second NF-κB sites of GYS1 promoter could bind to p65, and overexpression of GSK3ß induced a significant decrease in p65 binding to the second NF-κB binding site, suggesting that GSK3ß may regulate expression of GYS1 gene through binding to the second rather than the first NF-κB site. These data suggest that the NF-κB plays important roles in the transcriptional activity of pig GYS1 gene regulated by GSK3ß.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase/biossíntese , Elementos de Resposta/fisiologia , Fator de Transcrição RelA/metabolismo , Transcrição Gênica/fisiologia , Animais , Linhagem Celular , Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta/genética , Suínos , Fator de Transcrição RelA/genética
19.
Diabetologia ; 59(12): 2702-2710, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27600278

RESUMO

AIMS/HYPOTHESIS: In the postprandial state, the liver regulates glucose homeostasis by glucose uptake and conversion to glycogen and lipids. Glucose and insulin signalling finely regulate glycogen synthesis through several mechanisms. Glucose uptake in hepatocytes is favoured by the insulin receptor isoform A (IRA), rather than isoform B (IRB). Thus, we hypothesised that, in hepatocytes, IRA would increase glycogen synthesis by promoting glucose uptake and glycogen storage. METHODS: We addressed the role of insulin receptor isoforms on glycogen metabolism in vitro in immortalised neonatal hepatocytes. In vivo, IRA or IRB were specifically expressed in the liver using adeno-associated virus vectors in inducible liver insulin receptor knockout (iLIRKO) mice, a model of type 2 diabetes. The role of IR isoforms in glycogen synthesis and storage in iLIRKO was subsequently investigated. RESULTS: In immortalised hepatocytes, IRA, but not IRB expression induced an increase in insulin signalling that was associated with elevated glycogen synthesis, glycogen synthase activity and glycogen storage. Similarly, elevated IRA, but not IRB expression in the livers of iLIRKO mice induced an increase in glycogen content. CONCLUSIONS/INTERPRETATION: We provide new insight into the role of IRA in the regulation of glycogen metabolism in cultured hepatocytes and in the livers of a mouse model of type 2 diabetes. Our data strongly suggest that IRA is more efficient than IRB at promoting glycogen synthesis and storage. Therefore, we suggest that IRA expression in the liver could provide an interesting therapeutic approach for the regulation of hepatic glucose content and glycogen storage.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glicogênio Fosforilase/metabolismo , Glicogênio Sintase/metabolismo , Glicogênio/metabolismo , Glicogênio Hepático/metabolismo , Fígado/metabolismo , Isoformas de Proteínas/metabolismo , Receptor de Insulina/metabolismo , Animais , Western Blotting , Linhagem Celular , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Glicogênio Fosforilase/genética , Glicogênio Sintase/genética , Glicogenólise , Hepatócitos , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Receptor de Insulina/genética
20.
Cell Death Dis ; 7: e2213, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27148686

RESUMO

Given the involvement of telomerase activation and dysregulated metabolism in glioma progression, the connection between these two critical players was investigated. Pharmacological inhibition of human Telomerase reverse transcriptase (hTERT) by Costunolide induced glioma cell apoptosis in a reactive oxygen species (ROS)-dependent manner. Costunolide induced an ROS-dependent increase in p53 abrogated telomerase activity. Costunolide decreased Nrf2 level; and ectopic Nrf2 expression decreased Costunolide-induced ROS generation. While TERT knock-down abrogated Nrf2 levels, overexpression of Nrf2 increased TERT expression. Inhibition of hTERT either by Costunolide, or by siRNA or dominant-negative hTERT (DN-hTERT) abrogated (i) expression of Glucose-6-phosphate dehydrogenase (G6PD) and Transketolase (TKT) - two major nodes in the pentose phosphate (PPP) pathway; and (ii) phosphorylation of glycogen synthase (GS). hTERT knock-down decreased TKT activity and increased glycogen accumulation. Interestingly, siRNA-mediated knock-down of TKT elevated glycogen accumulation. Coherent with the in vitro findings, Costunolide reduced tumor burden in heterotypic xenograft glioma mouse model. Costunolide-treated tumors exhibited diminished TKT activity, heightened glycogen accumulation, and increased senescence. Importantly, glioblastoma multiforme (GBM) patient tumors bearing TERT promoter mutations (C228T and C250T) known to be associated with increased telomerase activity; exhibited elevated Nrf2 and TKT expression and decreased glycogen accumulation. Taken together, our findings highlight the previously unknown (i) role of telomerase in the regulation of PPP and glycogen accumulation and (ii) the involvement of Nrf2-TERT loop in maintaining oxidative defense responses in glioma cells.


Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Fator 2 Relacionado a NF-E2/genética , Via de Pentose Fosfato/genética , Telomerase/genética , Animais , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Glicogênio/biossíntese , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Humanos , Camundongos , Camundongos Nus , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/farmacologia , Transdução de Sinais , Telomerase/metabolismo , Transcetolase/antagonistas & inibidores , Transcetolase/genética , Transcetolase/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA