Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
BMC Microbiol ; 22(1): 43, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120442

RESUMO

BACKGROUND: Mannosylerythritol lipids (MELs) belong to the class of glycolipid biosurfactants and are produced by members of the Ustilago and Moesziomyces genera. Production of MELs is regulated by a biosynthetic gene cluster (MEL BGC). Extracellular lipase activity is also associated with MEL production. Most microbial glycolipid-producers are isolated from oil-contaminated environments. MEL-producing yeast that are capable of metabolizing crude oil are understudied, and there is very limited data on indigenous strains from tropical climates. Analysis of the MEL BGC and lipase genes in Trinidad M. antarcticus strains, using a gene-targeted approach, revealed a correlation between their intrinsic capability to degrade crude oil and their adaptation to survive in a chronically polluted terrestrial environment. RESULTS: M. antarcticus was isolated from naturally-occurring crude oil seeps and an asphaltic mud volcano in Trinidad; these are habitats that have not been previously reported for this species. Genus identification was confirmed by the large-subunit (LSU) and the small-subunit (SSU) sequence comparisons and species identification was confirmed by ITS sequence comparisons and phylogenetic inference. The essential genes (Emt1, Mac1, Mac2, Mmf1) of the MEL BGC were detected with gene-specific primers. Emt1p, Mac1p and Mmf1p sequence analyses confirmed that the Trinidad strains harboured novel synonymous amino acid (aa) substitutions and structural comparisons revealed different regions of disorder, specifically for the Emt1p sequence. Functionality of each protein sequence was confirmed through motif mining and mutation prediction. Phylogenetic relatedness was inferred for Emt1p, Mac1p and Mmf1p sequences. The Trinidad strains clustered with other M. antarcticus sequences, however, the representative Trinidad M. antarcticus sequences consistently formed a separate, highly supported branch for each protein. Similar phylogenetic placement was indicated for LipA and LipB nucleotide and protein sequences. The Trinidad strains also demonstrated lipolytic activity in culture, with an ability to utilize different carbon sources. Comparative evolution of MEL BGC and LipA gene suggested early and late duplication events, depending on the gene, followed by a number of speciation events within Ustilaginaceae. M. antarcticus and M. aphidis were separated from all other members of Ustilaginaceae and two gene homologues were detected, one for each species. CONCLUSIONS: Sequence analyses was based on a novel gene-targeted approach to analyze the essential genes of the MEL BGC and LipA and LipB genes of M. antarcticus strains from Trinidad. The findings indicated that these strains accumulated nucleotide mutations to a threshold level that did not affect the function of specific proteins encoded by the MEL BGC and LipA and LipB genes. The biosurfactant and lipase enzymes secreted by these Trinidad M. antarcticus strains facilitated their survival in oil-contaminated terrestrial environments. These findings suggest that the Trinidad strains should be explored as promising candidates for the commercial production of MEL biosurfactants and lipase enzymes.


Assuntos
Basidiomycota/genética , Variação Genética , Glicolipídeos/genética , Lipase/genética , Família Multigênica , Petróleo/microbiologia , Glicolipídeos/metabolismo , Lipase/classificação , Poluição por Petróleo , Filogenia , Microbiologia do Solo , Trinidad e Tobago
2.
Microb Cell Fact ; 20(1): 103, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016105

RESUMO

BACKGROUND: Pseudomonas aeruginosa, the rhamnolipids-producer, is one of dominant bacteria in oil reservoirs. Although P. aeruginosa strains are facultative bacteria, the anaerobic biosynthesis mechanism of rhamnolipids is unclear. Considering the oxygen scarcity within oil reservoirs, revealing the anaerobic biosynthesis mechanism of rhamnolipids are significant for improving the in-situ production of rhamnolipids in oil reservoirs to enhance oil recovery. RESULTS: Pseudomonas aeruginosa SG anaerobically produced rhamnolipids using glycerol rather than glucose as carbon sources. Two possible hypotheses on anaerobic biosynthesis of rhamnolipids were proposed, the new anaerobic biosynthetic pathway (hypothesis 1) and the highly anaerobic expression of key genes (hypothesis 2). Knockout strain SGΔrmlB failed to anaerobically produce rhamnolipids using glycerol. Comparative transcriptomics analysis results revealed that glucose inhibited the anaerobic expression of genes rmlBDAC, fabABG, rhlABRI, rhlC and lasI. Using glycerol as carbon source, the anaerobic expression of key genes in P. aeruginosa SG was significantly up-regulated. The anaerobic biosynthetic pathway of rhamnolipids in P. aeruginosa SG were confirmed, involving the gluconeogenesis from glycerol, the biosynthesis of dTDP-L-rhamnose and ß-hydroxy fatty acids, and the rhamnosyl transfer process. The engineered strain P. aeruginosa PrhlAB constructed in previous work enhanced 9.67% of oil recovery higher than the wild-type strain P. aeruginosa SG enhancing 8.33% of oil recovery. CONCLUSION: The highly anaerobic expression of key genes enables P. aeruginosa SG to anaerobically biosynthesize rhamnolipids. The genes, rmlBDAC, fabABG, rhlABRI, rhlC and lasI, are key genes for anaerobic biosynthesis of rhamnolipid by P. aeruginosa. Improving the anaerobic production of rhamnolipids better enhanced oil recovery in core flooding test. This study fills the gaps in the anaerobic biosynthesis mechanism of rhamnolipids. Results are significant for the metabolic engineering of P. aeruginosa to enhance anaerobic production of rhamnolipids.


Assuntos
Vias Biossintéticas , Glicerol/metabolismo , Glicolipídeos/biossíntese , Glicolipídeos/genética , Engenharia Metabólica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Anaerobiose , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Glucose/metabolismo , Microbiologia Industrial , Campos de Petróleo e Gás/microbiologia , Óperon , Análise de Sequência de RNA
3.
Sci Rep ; 11(1): 7623, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828164

RESUMO

MicroRNAs (miRNAs) are mRNA suppressors that regulate a variety of cellular and physiological processes, including cell proliferation, apoptosis, triglyceride synthesis, fat formation, and lipolysis, by post-transcriptional processing. In previous studies, we isolated and sequenced miRNAs from mammary epithelial cells from Chinese Holstein cows with high and low milk fat percentages. MiR-485 was one of the significantly differentially expressed miRNAs that were identified. In the present study, the relationship between the candidate target gene DTX4 and miR-485 was validated by bioinformatics and real-time fluorescent quantitative PCR (qRT-PCR) and Western blot (WB) analyses in bovine mammary epithelial cells (bMECs). The results indicated that miR-485 negatively regulated the mRNA expression of the target gene DTX4. Furthermore, an shRNA interference vector for the target gene DTX4 was constructed successfully, and it increased the triglyceride content and reduced the cholesterol content of transfected cells. These results suggest that miR-485 may affect the contents of triglycerides (TGs) and cholesterol (CHOL) by targeting the DTX4 gene. This study indicates that miR-485 has a role in regulating milk fat synthesis and that miR-485 targets the DTX4 gene to regulate lipid metabolism in bMECs. These findings contribute to the understanding of the functional significance of miR-485 in milk fat synthesis.


Assuntos
Glicolipídeos/biossíntese , Glicoproteínas/biossíntese , MicroRNAs/genética , Ubiquitina-Proteína Ligases/genética , Animais , Bovinos , China , Colesterol/metabolismo , Biologia Computacional , Células Epiteliais/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Glicolipídeos/genética , Glicoproteínas/genética , Lactação/genética , Gotículas Lipídicas , Metabolismo dos Lipídeos/genética , Glândulas Mamárias Animais/metabolismo , Leite/metabolismo , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo
4.
Clin Genet ; 99(6): 761-771, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33527381

RESUMO

The purpose of this study was to examine the applicability of the use of samples in dried blood spot (DBS) for the definitive diagnosis of Fabry disease (FD) in males and females and to compare the diagnostic role of α-galactosidase A activity (α-Gal A), levels of lyso-Gb3 and sequencing of the GLA gene in screening patients with suspected FD. Measurement of α-Gal A activity in suspected FD patients in DBS was made followed by lyso-Gb3 determination and GLA gene sequencing. Of the 2381 subjects analyzed, FD was confirmed in 24 patients. Thirteen different variants were considered like pathogenic, five of which had not been previously described (c.143A > G; c.455A > C; c.487G > T; c.554delA; c.1045_1046insA). None of the patients with normal enzyme activity had FD confirmation. The DBS measurement of α-Gal A was more sensitive than lyso-Gb3 levels in both men and women. Definitive diagnosis of FD from a single DBS is possible, allowing samples to be easily sent from anywhere to the reference laboratory.


Assuntos
Doença de Fabry/diagnóstico , Glicolipídeos/genética , Esfingolipídeos/genética , alfa-Galactosidase/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Teste em Amostras de Sangue Seco/métodos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mutação/genética , Adulto Jovem
5.
Clin Chim Acta ; 501: 27-32, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31770509

RESUMO

Fabry disease (FD [MIM:301500]) is an X-linked lysosomal storage disorder caused by mutations in the GLA gene. Deficient activity of its product, lysosomal enzyme α-galactosidase A (α-Gal A), leads to excessive accumulation of glycosphingolipids in cells of multiple organs. The establishing of the diagnosis is challenge in female patients because of milder clinical manifestation and normal α-Gal A activity. The globotriaosylsphingosine (lysoGb3) is described as a more sensitive diagnostic biomarker for females with pathogenic mutation in the GLA gene. Thus, the aim of this study is to improve the biochemical diagnostic efficiency for FD in females. Here we report the α-Gal A/lysoGb3 ratio as the novel biochemical criteria for diagnosis of female patients with FD, using dried blood spots (DBS) as test samples. It showed 100% sensitivity in distinguishing our group of 35 female patients from control (n = 140). Whereas measurement of α-Gal A and lysoGb3 alone showed 8.6% and 74.4% respectively. A new approach of using the ratio of α-Gal A activity to lysoGb3 concentration in DBS may provide a more accurate screening tool for identification of FD females.


Assuntos
Teste em Amostras de Sangue Seco , Doença de Fabry/sangue , Glicolipídeos/sangue , Esfingolipídeos/sangue , alfa-Galactosidase/sangue , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Criança , Doença de Fabry/diagnóstico , Feminino , Genótipo , Glicolipídeos/genética , Humanos , Pessoa de Meia-Idade , Esfingolipídeos/genética , Adulto Jovem , alfa-Galactosidase/genética
6.
Food Funct ; 10(7): 4256-4268, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31259333

RESUMO

The composition and functions of milk fat globule membrane (MFGM) proteins are important indicators of the nutritional quality of milk. However, these characteristics of MFGM proteins in donkey milk are unknown at different lactation periods. We characterized and identified MFGM proteins in donkey milk at two lactation periods using label-free proteomics. A total of 947 MFGM proteins were found. There were 902 and 913 MFGM proteins in donkey colostrum and mature milk, respectively. The differentially expressed MFGM proteins were classified into different Gene Ontology annotations. The biological process subgroups containing the most MFGM proteins mainly included cellular process, metabolic process, biological regulation, and regulation of biological processes. Donkey MFGM proteins participated in several Kyoto Encyclopedia of Gene and Genomes (KEGG) pathways at different lactation stages, such as endocytosis, thermogenesis, Alzheimer's disease, cancer, and human papillomavirus infection. The knowledge gained in this study may provide theoretical insights and guidance for the future development of novel infant formulae.


Assuntos
Colostro/química , Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Leite/química , Proteômica , Animais , Cromatografia Líquida , Equidae , Feminino , Ontologia Genética , Glicolipídeos/genética , Glicoproteínas/genética , Gotículas Lipídicas , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Gravidez , Domínios e Motivos de Interação entre Proteínas , Espectrometria de Massas em Tandem
7.
Genet Med ; 21(1): 44-52, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29543226

RESUMO

PURPOSE: Plasma globotriaosylsphingosine (lyso-Gb3) is a promising secondary screening biomarker for Fabry disease. Here, we examined its applicability as a primary screening biomarker for classic and late-onset Fabry disease in males and females. METHODS: Between 1 July 2014 and 31 December 2015, we screened 2,359 patients (1,324 males) referred from 168 Japanese specialty clinics (cardiology, nephrology, neurology, and pediatrics), based on clinical symptoms suggestive of Fabry disease. We used the plasma lyso-Gb3 concentration, α-galactosidase A (α-Gal A) activity, and analysis of the α-Gal A gene (GLA) for primary and secondary screens, respectively. RESULTS: Of 8 males with elevated lyso-Gb3 levels (≥2.0 ng ml-1) and low α-Gal A activity (≤4.0 nmol h-1 ml-1), 7 presented a GLA mutation (2 classic and 5 late-onset). Of 14 females with elevated lyso-Gb3, 7 displayed low α-Gal A activity (5 with GLA mutations; 4 classic and 1 late-onset) and 7 exhibited normal α-Gal A activity (1 with a classic GLA mutation and 3 with genetic variants of uncertain significance). CONCLUSION: Plasma lyso-Gb3 is a potential primary screening biomarker for classic and late-onset Fabry disease probands.


Assuntos
Biomarcadores/sangue , Doença de Fabry/sangue , Testes Genéticos , Glicolipídeos/sangue , Esfingolipídeos/sangue , Idoso , Doença de Fabry/genética , Doença de Fabry/patologia , Feminino , Galactosidases/sangue , Galactosidases/genética , Glicolipídeos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Seleção de Pacientes , Fatores de Risco , Esfingolipídeos/genética
8.
Intern Med ; 58(4): 603-607, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30333391

RESUMO

Anderson-Fabry disease (AFD) is a rare X-linked disorder caused by deficient activity of the lysosomal enzyme α-galactosidase A (α-GAL A). We herein report 10 cases of AFD in 5 families (3 men and 7 women) that were found to have a specific common mutation in R301Q [G-to-A transition in exon 6 (codon 301) resulting in the replacement of a glutamine with an arginine residue]. We evaluated their clinical characteristics, residual enzymatic activity, and plasma concentrations of globotriaosylsphingosine (Lyso-Gb3). Although all 10 cases had cardiac and renal manifestations in common, their clinical manifestations were markedly divergent despite the same genetic abnormality.


Assuntos
Doença de Fabry/genética , Doença de Fabry/fisiopatologia , Glicolipídeos/genética , Mutação , Esfingolipídeos/genética , alfa-Galactosidase/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Adulto Jovem
9.
Int J Mol Sci ; 19(12)2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30477121

RESUMO

Anderson-Fabry disease (FD) is a rare, progressive, multisystem storage disorder caused by the partial or total deficit of the lysosomal enzyme α-galactosidase A (α-Gal A). It is an X-linked, lysosomal enzymopathy due to mutations in the galactosidase alpha gene (GLA), encoding the α-Gal A. To date, more than 900 mutations in this gene have been described. In our laboratories, the study of genetic and enzymatic alterations related to FD was performed in about 17,000 subjects with a symptomatology referable to this disorder. The accumulation of globotriaosylsphingosine (LysoGb3) was determined in blood of positives. Exonic mutations in the GLA gene were detected in 471 patients (207 Probands and 264 relatives): 71.6% of mutations were associated with the classic phenotype, 19.8% were associated with the late-onset phenotype, and 8.6% of genetic variants were of unknown significance (GVUS). The accumulation of LysoGb3 was found in all male patients with a mutation responsible for classic or late-onset FD. LysoGb3 levels were consistent with the type of mutations and the symptomatology of patients. α-Gal A activity in these patients is absent or dramatically reduced. In recent years, confusion about the pathogenicity of some mutations led to an association between non-causative mutations and FD. Our study shows that the identification of FD patients is possible by associating clinical history, GLA gene analysis, α-Gal A assay, and blood accumulation of LysoGB3. In our experience, LysoGB3 can be considered a reliable marker, which is very useful to confirm the diagnosis of Fabry disease.


Assuntos
Doença de Fabry/genética , Glicolipídeos/genética , Mutação , Esfingolipídeos/genética , alfa-Galactosidase/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Substituição de Aminoácidos , Biomarcadores , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
10.
Biosci Rep ; 38(6)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30487163

RESUMO

Tuberculosis caused by Mycobacterium tuberculosis is currently one of the leading causes of death from an infectious agent. The main difficulties encountered in eradicating this bacteria are mainly related to (i) a very complex lipid composition of the bacillus cell wall, (ii) its ability to hide from the immune system inside the granulomas, and (iii) the increasing number of resistant strains. In this context, we were interested in the Rv0646c (lipGMTB ) gene located upstream to the mmaA cluster which is described as being crucial for the production of cell wall components and required for the bacilli adaptation and survival in mouse macrophages. Using biochemical experiments combined with the construction of deletion and overexpression mutant strains in Mycobacterium smegmatis, we found that LipGMTB is a cytoplasmic membrane-associated enzyme that displays both phospholipase and thioesterase activities. Overproduction of LipGMTB decreases the glycopeptidolipids (GPL) level concomitantly to an increase in phosphatidylinositol (PI) which is the precursor of the PI mannoside (PIM), an essential lipid component of the bacterial cell wall. Conversely, deletion of the lipGMS gene in M. smegmatis leads to an overproduction of GPL, and subsequently decreases the strain susceptibility to various antibiotics. All these findings demonstrate that LipG is involved in cell envelope biosynthesis/remodeling, and consequently this enzyme may thus play an important role in mycobacterial physiology.


Assuntos
Parede Celular/enzimologia , Glicopeptídeos/genética , Fosfolipases/genética , Tuberculose/microbiologia , Animais , Antibacterianos/farmacologia , Parede Celular/química , Glicolipídeos/química , Glicolipídeos/genética , Glicopeptídeos/química , Humanos , Macrófagos/enzimologia , Camundongos , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/patogenicidade , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosfolipases/química , Tuberculose/enzimologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-30041907

RESUMO

INTRODUCTION: The only known non-pharmacological means to alter long chain polyunsaturated fatty acid (LCPUFA) abundance in mammalian tissue is by altering substrate fatty acid ratios. Alternative mRNA splicing is increasingly recognized as a modulator of protein structure and function. Here we report identification of a novel alternative transcript (AT) of fatty acid desaturase 2 (FADS2) that inhibits production of omega-3 but not omega-6 LCPUFA, discovered during study of ATs in human milk fat globules (MFG). METHODS: Human breastmilk collected from a single donor was used to isolate MFG. An mRNA-sequencing library was constructed from the total RNA isolated from the MFG. The constructed library was sequenced using an Illumina HiSeq instrument operating in high output mode. Expression levels of evolutionary conserved FADSAT were measured using cDNA from MFG by semi-quantitative RT-PCR assay. RESULTS: RNA sequencing revealed >15,000 transcripts, including moderate expression of the FADS2 classical transcript (CS). A novel FADS2 alternative transcript (FADS2AT2) with 386 amino acids was discovered. When FADS2AT2 was transiently transfected into MCF7 cells stably expressing FADS2, delta-6 desaturation (D6D) of alpha-linolenic acid 18:3n-3 → 18:4n-3 was suppressed as were downstream products 20:4n-3 and 20:5n-3. In contrast, no significant effect on D6D of linoleic acid 18:2n-6 → 18:3n-6 or downstream products was observed. FADS2, FADS2AT1 and 5 out of 8 known FADS3AT were expressed in MFG. FADS1, FADS3AT3, and FADS3AT5 are undetectable. CONCLUSION: The novel, noncatalytic FADS2AT2 regulates FADS2CS-mediated Δ6-desaturation of omega-3 but not omega-6 PUFA biosynthesis. This spliced isoform mediated interaction is the first molecular mechanism by which desaturation of one PUFA family but not the other is modulated.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Leite Humano/enzimologia , Ácido alfa-Linolênico/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-6/genética , Ácidos Graxos Ômega-6/metabolismo , Glicolipídeos/genética , Glicoproteínas/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Gotículas Lipídicas , Células MCF-7 , Ácido alfa-Linolênico/genética
12.
Glycoconj J ; 35(3): 265-274, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29671116

RESUMO

N-linked glycosylation (NLG) is a co-translational modification that is essential for the folding, stability, and trafficking of transmembrane (TM) and secretory glycoproteins. Efficient NLG requires the stepwise synthesis and en bloc transfer of a 14-sugar carbohydrate known as a lipid-linked oligosaccharide (LLO). The genetics of LLO biosynthesis have been established in yeast and Chinese hamster systems, but human models of LLO biosynthesis are lacking. In this study we report that Kato III human gastric cancer cells represent a model of deficient LLO synthesis, possessing a homozygous deletion of the LLO biosynthesis factor, MPDU1. Kato III cells lacking MPDU1 have all the hallmarks of a glycosylation-deficient cell line, including altered sensitivity to lectins and the formation of truncated LLOs. Analysis of transcription using an expression microarray and protein levels using a proteome antibody array reveal changes in the expression of several membrane proteins, including the metalloprotease ADAM-15 and the cell adhesion molecule CEACAM1. Surprisingly, the restoration of MPDU1 expression in Kato III cells demonstrated a clear phenotype of increased cell-cell adhesion, a finding that was confirmed in vivo through analysis of tumor xenografts. These experiments also confirmed that protein levels of CEACAM-1, which functions in cell adhesion, is dependent on LLO biosynthesis in vivo. Kato III cells and the MPDU1-rescued Kato IIIM cells therefore provide a novel model to examine the consequences of defective LLO biosynthesis both in vitro and in vivo.


Assuntos
Antígenos CD/biossíntese , Moléculas de Adesão Celular/biossíntese , Regulação da Expressão Gênica , Glicolipídeos/biossíntese , Antígenos CD/genética , Adesão Celular/genética , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Glicolipídeos/genética , Glicosilação , Humanos
13.
Redox Biol ; 17: 180-191, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29702405

RESUMO

Breast cancer is one of the most lethal tumors in the world, among which 15% are triple-negative breast cancers (TNBCs) with higher metastasis and lower survival rate. Anoikis resistance is a key process during tumor metastasis, which is usually accompanied with metabolism reprogram. In this study, we established an anchorage independent growth model for MDA-MB-231 cells and investigated the changes in metabolism and redox homeostasis. Results showed that during detached-growth, MDA-MB-231 cells tend to generate ATP through fatty acid oxidation (FAO), instead of glycolysis. Amount of glucose was used for pentose phosphate pathway (PPP) to keep redox balance. Moreover, we discovered that a synthesized flavonoid derivative GL-V9, exhibited a potent inhibitory effect on the anchorage independent growth of TNBCs in vitro and anti-metastasis effect in vivo. In terms of the mechanism, GL-V9 could promote the expression and activity of AMPK, leading to the decrease of G6PD and the increase of p-ACC. Thus, the level of PPP was suppressed, whereas FAO was highly enhanced. The reprogram of glycolipid metabolism destroyed the redox balance ultimately and induced cell death. This paper indicated a novel regulating mechanism of redox homeostasis involving with glycolipid metabolism, and provided a potential candidate for the anti-metastatic therapy of TNBCs.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Neoplasias da Mama/genética , Glicolipídeos/genética , Estresse Oxidativo/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Flavonoides/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glucosefosfato Desidrogenase/genética , Glicólise/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/genética , Oxirredução , Via de Pentose Fosfato/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-29594066

RESUMO

Little is known about the disease-causing genetic determinants that are used by Mycobacterium abscessus, increasingly acknowledged as an important emerging pathogen, notably in cystic fibrosis. The presence or absence of surface exposed glycopeptidolipids (GPL) conditions the smooth (S) or rough (R) M. abscessus subsp. abscessus (M. abscessus) variants, respectively, which are characterized by distinct infective programs. However, only a handful of successful gene knock-out and conditional mutants have been reported in M. abscessus, testifying that genetic manipulation of this mycobacterium is difficult. To facilitate gene disruption and generation of conditional mutants in M. abscessus, we have designed a one-step single cross-over system that allows the rapid and simple generation of such mutants. Cloning of as small as 300 bp of the target gene allows for efficient homologous recombination to occur without additional exogenous recombination-promoting factors. The presence of tdTomato on the plasmids allows easily sifting out the large background of mutants spontaneously resistant to antibiotics. Using this strategy in the S genetic background and the target gene mmpL4a, necessary for GPL synthesis and transport, nearly 100% of red fluorescent clones exhibited a rough morphotype and lost GPL on the surface, suggesting that most red fluorescent colonies obtained after transformation incorporated the plasmid through homologous recombination into the chromosome. This system was further exploited to generate another strain with reduced GPL levels to explore how the presence of these cell wall-associated glycolipids influences M. abscessus hydrophobicity as well as virulence in the zebrafish model of infection. This mutant exhibited a more pronounced killing phenotype in zebrafish embryos compared to its S progenitor and this effect correlated with the production of abscesses in the central nervous system. Overall, these results suggest that the near-complete absence of GPL on the bacterial surface is a necessary condition for optimal pathogenesis of this mycobacterium. They also suggest that GPL content affects hydrophobicity of M. abscessus, potentially altering the aerosol transmission, which is of particular importance from an epidemiological and clinical perspective.


Assuntos
Glicolipídeos/genética , Glicopeptídeos/genética , Mutação , Mycobacterium abscessus/genética , Animais , Cromossomos Bacterianos , Modelos Animais de Doenças , Vetores Genéticos , Genoma Bacteriano/genética , Recombinação Homóloga , Interações Hidrofóbicas e Hidrofílicas , Infecções por Mycobacterium não Tuberculosas/microbiologia , Infecções por Mycobacterium não Tuberculosas/patologia , Mycobacterium abscessus/patogenicidade , Sistema Nervoso/microbiologia , Sistema Nervoso/patologia , Plasmídeos , Transformação Bacteriana/genética , Virulência/genética , Peixe-Zebra
15.
Sci Rep ; 7(1): 12615, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974743

RESUMO

Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that infects immunocompromised and cystic fibrosis patients. Treatment is difficult due to antibiotic resistance, and new antimicrobials are needed to treat infections. The alternative sigma factor 54 (σ54, RpoN), regulates many virulence-associated genes. Thus, we evaluated inhibition of virulence in P. aeruginosa by a designed peptide (RpoN molecular roadblock, RpoN*) which binds specifically to RpoN consensus promoters. We expected that RpoN* binding to its consensus promoter sites would repress gene expression and thus virulence by blocking RpoN and/or other transcription factors. RpoN* reduced transcription of approximately 700 genes as determined by microarray analysis, including genes related to virulence. RpoN* expression significantly reduced motility, protease secretion, pyocyanin and pyoverdine production, rhamnolipid production, and biofilm formation. Given the effectiveness of RpoN* in vitro, we explored its effects in a Caenorhabditis elegans-P. aeruginosa infection model. Expression of RpoN* protected C. elegans in a paralytic killing assay, whereas worms succumbed to paralysis and death in its absence. In a slow killing assay, which mimics establishment and proliferation of an infection, C. elegans survival was prolonged when RpoN* was expressed. Thus, blocking RpoN consensus promoter sites is an effective strategy for abrogation of P. aeruginosa virulence.


Assuntos
Peptídeos/genética , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/genética , RNA Polimerase Sigma 54/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica , Glicolipídeos/biossíntese , Glicolipídeos/genética , Humanos , Terapia de Alvo Molecular , Peptídeos/administração & dosagem , Ligação Proteica , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/patogenicidade , RNA Polimerase Sigma 54/administração & dosagem , RNA Polimerase Sigma 54/antagonistas & inibidores , Virulência/genética
16.
ISME J ; 11(7): 1578-1591, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28338676

RESUMO

Pseudomonas aeruginosa and Aspergillus fumigatus are the two microorganisms responsible for most of the chronic infections in cystic fibrosis patients. P. aeruginosa is known to produce quorum-sensing controlled rhamnolipids during chronic infections. Here we show that the dirhamnolipids secreted from P. aeruginosa (i) induce A. fumigatus to produce an extracellular matrix, rich in galactosaminogalactan, 1,8-dihydroxynaphthalene (DHN)- and pyo-melanin, surrounding their hyphae, which facilitates P. aeruginosa binding and (ii) inhibit A. fumigatus growth by blocking ß1,3 glucan synthase (GS) activity, thus altering the cell wall architecture. A. fumigatus in the presence of diRhls resulted in a growth phenotype similar to that upon its treatment with anjpegungal echinocandins, showing multibranched hyphae and thicker cell wall rich in chitin. The diRhl structure containing two rhamnose moieties attached to fatty acyl chain is essential for the interaction with ß1,3 GS; however, the site of action of diRhls on GS is different from that of echinocandins, and showed synergistic anjpegungal effect with azoles.


Assuntos
Aspergillus fumigatus/metabolismo , Glucosiltransferases/antagonistas & inibidores , Glicolipídeos/metabolismo , Glicolipídeos/farmacologia , Pseudomonas aeruginosa/metabolismo , Aspergillus fumigatus/citologia , Parede Celular , Quitina/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Glucosiltransferases/metabolismo , Glicolipídeos/genética , Hifas/metabolismo , Polissacarídeos , Pseudomonas aeruginosa/citologia , Percepção de Quorum/efeitos dos fármacos
17.
J Dairy Res ; 83(2): 202-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27032540

RESUMO

Owing to the difficulty in obtaining mammary gland tissue from lactating animals, it is difficult to test the expression levels of genes in mammary gland. The aim of the current study was to identify if milk fat globule (MFG) in buffalo milk was an alternative to mammary gland (MG) and milk somatic cell (MSC) for gene expression analysis. Six buffalos in late lactation were selected to collect MFG and MSC, and then MG was obtained by surgery. MFG was stained with acridine orange to successfully visualise RNA and several cytoplasmic crescents in MFG. The total RNA in MFG was successfully isolated and the integrity was assessed by agarose gel electrophoresis. We analysed the cellular components in MFG, MG and MSC through testing the expression of cell-specific genes by qRT-PCR. The results showed that adipocyte-specific gene (AdipoQ) and leucocyte-specific genes (CD43, CSF1 and IL1α) in MFG were not detected, whereas epithelial cell marker genes (Keratin 8 and Keratin 18) in MFG were higher than in MSC and lower than in MG, fibroblast marker gene (vimentin) in MFG was significantly lower than in MG and MSC, milk protein genes (LALBA, BLG and CSN2) and milk fat synthesis-related genes (ACC, BTN1A1, FABP3 and FAS) in MFG were higher than in MG and MSC. In conclusion, the total RNA in MFG mainly derives from mammary epithelial cells and can be used to study the functional gene expression of mammary epithelial cells.


Assuntos
Búfalos/genética , Células Epiteliais/química , Perfilação da Expressão Gênica/veterinária , Glicolipídeos/química , Glicoproteínas/química , Glândulas Mamárias Animais/citologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Células Epiteliais/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Glicolipídeos/genética , Glicoproteínas/genética , Queratina-18/genética , Queratina-8/genética , Lactação/genética , Gotículas Lipídicas , Proteínas do Leite/genética , RNA/análise , Reação em Cadeia da Polimerase em Tempo Real/veterinária
18.
Cell Chem Biol ; 23(2): 278-289, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-27028886

RESUMO

Mycobacteria synthesize a variety of structurally related glycolipids with major biological functions. Common themes have emerged for the biosynthesis of these glycolipids, including several families of proteins. Genes encoding these proteins are usually clustered on bacterial chromosomal islets dedicated to the synthesis of one glycolipid family. Here, we investigated the function of a cluster of five genes widely distributed across non-tuberculous mycobacteria. Using defined mutant analysis and in-depth structural characterization of glycolipids from wild-type or mutant strains of Mycobacterium smegmatis and Mycobacterium abscessus, we established that they are involved in the formation of trehalose polyphleates (TPP), a family of compounds originally described in Mycobacterium phlei. Comparative genomics and lipid analysis of strains distributed along the mycobacterial phylogenetic tree revealed that TPP is synthesized by a large number of non-tuberculous mycobacteria. This work unravels a novel glycolipid biosynthetic pathway in mycobacteria and extends the spectrum of bacteria that produce TPP.


Assuntos
Glicolipídeos/biossíntese , Mycobacterium/classificação , Mycobacterium/metabolismo , Filogenia , Trealose/análogos & derivados , Trealose/biossíntese , Glicolipídeos/química , Glicolipídeos/genética , Mycobacterium/química , Mycobacterium/genética , Trealose/química
19.
Dev Comp Immunol ; 59: 199-206, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26855012

RESUMO

The cell wall lipids phthiocerol dimycocerosates (PDIMs) and its structurally-related compound, phenolic glycolipids (PGLs) are major virulence factors of mycobacterium, as shown by the reduced growth of PDIMs/PGLs deficient mutants in various animal models. PDIMs/PGLs play active roles in modulating host immune responses. However, the cellular and molecular mechanisms of how PDIMs/PGLs deficient mutant was eliminated in vivo are still elusive. Our aim was to investigate what host immune responses have effect on mycobacterium elimination in vivo. Using microarray, we find PDIMs/PGLs modulate divergent host responses, including chemotaxis and focal adhesion's downstream pathway and apoptosis. We examine these two host responses by Diff-Quik stain, coupled with transmission electron microscopy and TUNEL stain respectively. The ultrastructure observation showed that eosinophils appeared in WT-infected zebrafish at day 1, however eosinophils arrived was delayed to day 7 in PDIMs/PGLs-deficient mutant-infected animals. More intriguingly, apoptosis was markedly increased in PDIMs/PGLs-mutant infected zebrafish at day 1 after infection, compared to WT-infected fishes at this time. However, apoptosis trend was fully reversed by day 7, with increased apoptosis were detected in WT-infected zebrafish compared with the PDIMs/PGLs-deficient mutant, especially more apoptosis within the granuloma. This study shows that the anti-apoptotic effects of PDIMs/PGLs and the recruitment of eosinophils in tissue during the early infection in zebrafish might promote bacterium growth in vivo.


Assuntos
Apoptose/imunologia , Eosinófilos/imunologia , Doenças dos Peixes/imunologia , Lipídeos/farmacologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium marinum/patogenicidade , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Parede Celular/metabolismo , Citocinas/imunologia , Doenças dos Peixes/microbiologia , Glicolipídeos/genética , Lipídeos/genética , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/imunologia , Fatores de Virulência/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/microbiologia
20.
APMIS ; 123(10): 895-902, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26303945

RESUMO

Recently, we introduced a novel Mycobacterium massiliense Type II genotype from Korean patients, in which all isolates showed only a rough (R) colony morphotype. In this study, we sought to compare clinical factors and virulence potentials of two genotypes of M. massiliense, Type I and Type II. Patients infected with Type II tend to be younger at infection than those infected with Type I (56.7 vs 62.3, p = 0.051). Type II was more significantly related to R colony type than Type I (34.1% vs 94.1%, p < 0.001). The Type II strain showed significantly more colony forming units (CFUs) and higher levels of TNF-α secretion in infection of human monocytes than the Type I strain. The challenge of extracted glycopeptidolipid (GPL) into human monocytes indicated that the loss of GPL from the cell wall of the Type II genotype led to a higher level of TNF-α secretion in a toll-like receptor 2(TLR2)-dependent manner. Taken together, our data suggest that the M. massiliense Type II genotype shows higher virulence than Type I, which may be due to the induction of TNF-α via the loss of GPL from the Type II cell wall.


Assuntos
Monócitos/imunologia , Infecções por Mycobacterium/microbiologia , Mycobacterium/patogenicidade , Receptor 2 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Parede Celular/metabolismo , Células Cultivadas , Contagem de Colônia Microbiana , Feminino , Glicolipídeos/genética , Glicolipídeos/imunologia , Humanos , Hipertensão/complicações , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Pessoa de Meia-Idade , Monócitos/microbiologia , Mycobacterium/classificação , Mycobacterium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA