Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Food Funct ; 12(20): 9808-9819, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34664576

RESUMO

Corni Fructus (CF) is a traditional medicine and beneficial food with multifaceted protective effects against diabetes and its complications. Since alpha-glucosidase inhibitors (GIs) are promising first-choice oral antihyperglycemic drugs for diabetes, we examined whether GIs from CF (GICF) are useful for diabetes treatment. Therefore, GICF was extracted by ultrasound-assisted enzymatic extraction (UAEE) that is optimized by a three-level, four-factor Box-Behnken design and determined by ultra-performance liquid chromatography. Compared to 36.31 mg g-1 without enzyme treatment, the GICF yield increased to 70.44 mg g-1via UAEE under optimum conditions (0.5% compound enzyme extracted in 23 min at 46 °C and pH 4.8). The activity (91.99%) of GICF was as predicted (93.28%). When GICF was used in an insulin-resistant HepG2 cell model, it significantly ameliorated the glucose metabolism in a dose-dependent manner. Our findings indicate that UAEE may be an innovative method for functional food extraction and a potential strategy for high-quality food ingredient (such as GI) production with high efficiency and productivity.


Assuntos
Cornus/química , Diabetes Mellitus/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Resistência à Insulina , Celulase/isolamento & purificação , Cromatografia Líquida/métodos , Diabetes Mellitus/metabolismo , Glicosídeo Hidrolases/isolamento & purificação , Células Hep G2 , Humanos , Hipoglicemiantes/farmacologia , Poligalacturonase/isolamento & purificação , Ultrassonografia/métodos
2.
Int J Biol Macromol ; 186: 909-918, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34274400

RESUMO

A purified exo-polygalacturonase of Neosartorya glabra (EplNg) was successfully characterized. EplNg native presented 68.2 kDa, with 32% carbohydrate content. The deglycosylated form showed 46.3 kDa and isoelectric point of 5.4. The identity of EplNg was confirmed as an exo-polygalacturonase class I (EC 3.2.1.67) using mass spectrometry and Western-Blotting. Capillary electrophoresis indicated that only galacturonic acid was released by the action of EplNg on sodium polypectate, confirming an exoenzyme character. The structural model confers that EplNg has a core formed by twisted parallel ß-sheets structure. Among twelve putative cysteines, ten were predicted to form disulfide bridges. The catalytic triad predicted is composed of Asp223, Asp245, and Asp246 aligned along with a distance in 4-5 Å, suggesting that EplNg probably does not perform the standard inverting catalytic mechanism described for the GH28 family. EplNg was active from 30 to 90 °C, with maximum activity at 65 °C, pH 5.0. The Km and Vmax determined using sodium polypectate were 6.9 mg·mL-1 and Vmax 690 µmol·min-1.mg-1, respectively. EplNg was active and stable over a wide range of pH values and temperatures, confirming the interesting properties EplNg and provide a basis for the development of the enzyme in different biotechnological processes.


Assuntos
Aspergillus/enzimologia , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Catálise , Estabilidade Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Ácidos Hexurônicos/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Pectinas/metabolismo , Conformação Proteica , Estabilidade Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Temperatura
3.
Mar Drugs ; 18(11)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213084

RESUMO

Fucoidans from brown macroalgae are sulfated fucose-rich polysaccharides, that have several beneficial biological activities, including anti-inflammatory and anti-tumor effects. Controlled enzymatic depolymerization of the fucoidan backbone can help produce homogeneous, defined fucoidan products for structure-function research and pharmaceutical uses. However, only a few endo-fucoidanases have been described. This article reports the genome-based discovery, recombinant expression in Escherichia coli, stabilization, and functional characterization of a new bacterial endo-α-(1,4)-fucoidanase, Fhf1, from Formosa haliotis. Fhf1 catalyzes the cleavage of α-(1,4)-glycosidic linkages in fucoidans built of alternating α-(1,3)-/α-(1,4)-linked l-fucopyranosyl sulfated at C2. The native Fhf1 is 1120 amino acids long and belongs to glycoside hydrolase (GH) family 107. Deletion of the signal peptide and a 470 amino acid long C-terminal stretch led to the recombinant expression of a robust, minimized enzyme, Fhf1Δ470 (71 kDa). Fhf1Δ470 has optimal activity at pH 8, 37-40 °C, can tolerate up to 500 mM NaCl, and requires the presence of divalent cations, either Ca2+, Mn2+, Zn2+ or Ni2+, for maximal activity. This new enzyme has the potential to serve the need for controlled enzymatic fucoidan depolymerization to produce bioactive sulfated fucoidan oligomers.


Assuntos
Proteínas de Bactérias/metabolismo , Flavobacteriaceae/enzimologia , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Estabilidade Enzimática , Flavobacteriaceae/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/isolamento & purificação , Concentração de Íons de Hidrogênio , Hidrólise , Cloreto de Sódio/química , Especificidade por Substrato , Temperatura
4.
Int J Biol Macromol ; 164: 3340-3348, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871119

RESUMO

The bioactive form of thermostable and alkali stable pectinase of Bacillus pumilus dcsr1 is a homodimer of the molecular mass of 60 kDa with a pI of 4.6. The enzyme is optimally active at 50 °C and pH 10.5, and its Michaelis constant (Km), maximum rate of reaction (Vmax), activation energy (Ea), and temperature quotient (Q10) values (for citrus pectin) are 0.29 mg mL-1, 116 µmole mg-1 min-1, 74.73 KJmol-1 and 1.57, respectively. The enzyme has a shelf life of one and a half years at room temperature as well as 4 °C. The activity of the enzyme is stimulated by Mn2+ and Ca2+ and inhibited by Hg+, Cd2+, Co2+, Zn2+, Fe2+, Pb2+, EDTA and urea to a varied extent. The conformational studies of the enzyme revealed a high ß-sheet content in the bioactive dimer, and high α-helix in the inactive monomer. The Circular Dichroism (CD) spectra of the dimer in the presence of inhibitors suggested a marked decrease in ß-sheet, and a significant increase in α-helix, suggesting a key role of ß-sheets in the enzyme catalysis. Based on the end product analysis, the enzyme is an exopolygalacturonase with a unique ability of transglycosylation. When ramie fibers were treated with the enzyme, removal of gummy material (pectin) was visible, confirming its applicability in the degumming process.


Assuntos
Bacillus pumilus/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Bacillus/enzimologia , Bacillus pumilus/metabolismo , Proteínas de Bactérias/química , Boehmeria/química , Boehmeria/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/isolamento & purificação , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Pectinas/química , Poligalacturonase/química , Polissacarídeo-Liases/química , Especificidade por Substrato , Temperatura
5.
Int J Biol Macromol ; 164: 3789-3799, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910957

RESUMO

The objectives of this study were to purify Aspergillus niger inulinase produced from sugar-beet molasses in the shaking incubator (100 mL) and stirred-tank bioreactors (5-L and 30-L) by using some downstream processes and to determine enzyme kinetics and characterization. The results showed that the best centrifuge-time combination was 16,873 ×g-5 min with the purification coefficient of 1.4. Besides, with the ultrafiltration process, the inulinase activities yielded using the shaking incubator, pH-controlled/uncontrolled small-scale bioreactors, and large-scale bioreactor were increased from 1101.3, 2079.2, 1561.3, and 787.5 U/mL to 12,065.2, 21,789.0, 11,296.9, and 2948.1 U/mL with purification coefficients of 5.33, 1.38, 1.46, and 1.67, respectively. Additionally, for the inulinase from shaking incubator and pH-uncontrolled bioreactor, the values of Km for inulin and sucrose were 17.8 and 49.4 mg/mL and 28.8 and 25.9 mg/mL, respectively. As the enzyme amount added to the substrate increased, the activity also increased. Mn2+ is the activator of the enzyme, and Cu2+ and Ag+ are inhibitors of the enzyme. The molecular weight of inulinase has been determined to be between 60 and 70 kDa. Consequently, this study ensures valuable and significant information about the purification and characterization of inulinase for industrial implementations.


Assuntos
Aspergillus niger/genética , Reatores Biológicos , Fermentação , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/isolamento & purificação , Melaço/microbiologia , Aspergillus niger/enzimologia , Centrifugação , Fracionamento Químico , Meios de Cultura , Ativação Enzimática , Cinética , Metais/química , Peso Molecular , Especificidade por Substrato , Ultrafiltração
6.
Appl Microbiol Biotechnol ; 104(7): 2815-2832, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32036436

RESUMO

Agar, a major component of the cell wall of red algae, is an interesting heteropolysaccharide containing an unusual sugar, 3,6-anhydro-L-galactose. It is widely used as a valuable material in various industrial and experimental applications due to its characteristic gelling and stabilizing properties. Agar-derived oligosaccharides or mono-sugars produced by various agarases have become a promising subject for research owing to their unique biological activities, including anti-obesity, anti-diabetic, immunomodulatory, anti-tumor, antioxidant, skin-whitening, skin-moisturizing, anti-fatigue, and anti-cariogenic activities. Agar is also considered as an alternative sustainable source of biomass for chemical feedstock and biofuel production to substitute for the fossil resource. In this review, we summarize various biochemically characterized agarases, which are useful for industrial applications, such as neoagarooligosaccharide or agarooligosaccharide production and saccharification of agar. Additionally, we succinctly discuss various recent studies that have been conducted to investigate the versatile biological activities of agar-derived saccharides and biofuel production from agar biomass. This review provides a basic framework for understanding the importance of agarases and agar-derived saccharides with broad applications in pharmaceutical, cosmetic, food, and bioenergy industries.


Assuntos
Ágar/metabolismo , Biomassa , Glicosídeo Hidrolases/metabolismo , Ágar/química , Biocombustíveis , Glicosídeo Hidrolases/isolamento & purificação , Hidrólise , Indústrias , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Rodófitas/química , Sefarose/química , Sefarose/metabolismo , Açúcares/química , Açúcares/metabolismo , Açúcares/farmacologia
7.
J Biol Chem ; 294(44): 16400-16415, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31530641

RESUMO

α-Linked GalNAc (α-GalNAc) is most notably found at the nonreducing terminus of the blood type-determining A-antigen and as the initial point of attachment to the peptide backbone in mucin-type O-glycans. However, despite their ubiquity in saccharolytic microbe-rich environments such as the human gut, relatively few α-N-acetylgalactosaminidases are known. Here, to discover and characterize novel microbial enzymes that hydrolyze α-GalNAc, we screened small-insert libraries containing metagenomic DNA from the human gut microbiome. Using a simple fluorogenic glycoside substrate, we identified and characterized a glycoside hydrolase 109 (GH109) that is active on blood type A-antigen, along with a new subfamily of glycoside hydrolase 31 (GH31) that specifically cleaves the initial α-GalNAc from mucin-type O-glycans. This represents a new activity in this GH family and a potentially useful new enzyme class for analysis or modification of O-glycans on protein or cell surfaces.


Assuntos
Glicosídeo Hidrolases/síntese química , alfa-N-Acetilgalactosaminidase/metabolismo , Microbioma Gastrointestinal/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Glicosídeos/metabolismo , Glicosilação , Hexosaminidases/metabolismo , Humanos , Mucinas/metabolismo , Peptídeos/metabolismo , Polissacarídeos/química , Proteínas/metabolismo , Especificidade por Substrato , alfa-N-Acetilgalactosaminidase/genética
8.
Int J Mol Sci ; 20(17)2019 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450640

RESUMO

Mucopolysaccharidosis IVA (MPS IVA) is caused by a deficiency of the lysosomal enzyme N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Conventional enzyme replacement therapy (ERT) is approved for MPS IVA. However, the fact that the infused enzyme cannot penetrate avascular lesions in cartilage leads to minimal impact on the bone lesion. Moreover, short half-life, high cost, instability, and narrow optimal pH range remain unmet challenges in ERT. Thermostable keratanase, endo-ß-N-acetylglucosaminidase, has a unique character of a wide optimal pH range of pH 5.0-7.0. We hypothesized that this endoglycosidase degrades keratan sulfate (KS) polymer in circulating blood and, therefore, ameliorates the accumulation of KS in multiple tissues. We propose a novel approach, Substrate Degradation Enzyme Therapy (SDET), to treat bone lesion of MPS IVA. We assessed the effect of thermostable keratanase on blood KS level and bone pathology using Galns knock-out MPS IVA mice. After a single administration of 2 U/kg (= 0.2 mg/kg) of the enzyme at 8 weeks of age via intravenous injection, the level of serum KS was significantly decreased to normal range level, and this suppression was maintained for at least 4 weeks. We administered 2 U/kg of the enzyme to MPS IVA mice every fourth week for 12 weeks (total of 3 times) at newborns or 8 weeks of age. After a third injection, serum mono-sulfated KS levels were kept low for 4 weeks, similar to that in control mice, and at 12 weeks, bone pathology was markedly improved when SDET started at newborns, compared with untreated MPS IVA mice. Overall, thermostable keratanase reduces the level of KS in blood and provides a positive impact on cartilage lesions, demonstrating that SDET is a novel therapeutic approach to MPS IVA.


Assuntos
Terapia de Reposição de Enzimas , Mucopolissacaridose IV/enzimologia , Mucopolissacaridose IV/terapia , Animais , Biomarcadores , Modelos Animais de Doenças , Estabilidade Enzimática , Glicosaminoglicanos/metabolismo , Glicosídeo Hidrolases/administração & dosagem , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Masculino , Camundongos , Camundongos Knockout , Mucopolissacaridose IV/etiologia , Mucopolissacaridose IV/metabolismo , Proteínas Recombinantes , Especificidade por Substrato , Temperatura , Resultado do Tratamento
9.
J Gen Appl Microbiol ; 65(1): 18-25, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30012935

RESUMO

Extracellular α-1,3-glucanase HF90 (AglST2), with a sodium dodecyl sulfate (SDS)-PAGE-estimated molecular mass of approximately 91 kDa, was homogenously purified from the culture filtrate of Streptomyces thermodiastaticus HF3-3. AglST2 showed a high homology with mycodextranase in an amino acid sequence and demonstrated specificity with an α-1,3-glycosidic linkage of homo α-1,3-glucan. It has been suggested that AglST2 may be a new type of α-1,3-glucanase. The optimum pH and temperature of AglST2 were pH 5.5 and 60°C, respectively. AglST2 action was significantly stimulated in the presence of 5-20% (w/v) NaCl, and 1 mM metal ions Mn2+ and Co2+. On the other hand, it was inhibited by 1 mM of Ag+, Cu2+, Fe2+ and Ni2+. Regarding the stability properties, AglST2 retained more than 80% of its maximum activity over a pH range of 5.0-7.0 at up to 60°C and in the presence of 0-20% (w/v) NaCl. Based on these results, the properties of AglST2 were comparable with those of AglST1, which had been previously purified and characterized from S. thermodiastaticus HF3-3 previously. The N-terminal amino acid sequence of AglST2 showed a good agreement with that of AglST1, suggesting that AglST1 was generated from AglST2 by proteolysis during cultivation. MALDI-TOF mass analysis suggested that AglST1 might be generated from AglST2 by the proteolytic removal of C-terminus polypeptide (approximately 20 kDa). Our investigation thus revealed the properties of AglST2, such as tolerance against high temperature, salts, and surfactants, which have promising industrial applications.


Assuntos
Glucanos/metabolismo , Glicosídeo Hidrolases/fisiologia , Streptomyces/enzimologia , Sequência de Aminoácidos , Estabilidade Enzimática , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Hidrólise , Microbiologia Industrial , Metais , Peso Molecular , Cloreto de Sódio , Especificidade por Substrato , Tensoativos
10.
J Sci Food Agric ; 99(2): 529-535, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29931755

RESUMO

BACKGROUND: Mushrooms have been widely considered as health foods as their extracts have anti-hypertensive and anti-tumor activities. After a thorough literature survey, we hypothesized that enzymes in mushroom extracts play an important role in synthesizing functional molecules. Therefore, in this study, proteins extracted from reishi mushroom (Ganoderma lucidum), which is used in oriental medicine, were identified by the proteomic approach, and appropriate extraction methods for improving angiotensin-converting enzyme (ACE) inhibitory activities were investigated. RESULTS: Various glycoside hydrolases (GHs), such as ß-N-acetylhexosaminidase (GH family 20), α-1,2-mannosidase (GH family 47), endo-ß-1,3-glucanase (GH family 128), and ß-1,3-glucanase (GH152), that degrade glycans in the fruiting body were identified. The residual glucanase activities generated ß-oligosaccharides. Additionally, the glutamic acid protease of the peptidase G1 family was determined as the major protein in the extract, and the residual peptidase activity of the extracts was found to improve ACE inhibitory activities. Finally, it was observed that extraction at 50 °C is suitable for yielding functional molecules with high ACE inhibitory activities. CONCLUSION: Water extraction is generally believed to extract only functional macromolecules that exist in mushroom fruiting bodies. This study proposed a new concept that describes how functional molecules are produced by enzymes, including proteases and GHs, during extraction. © 2018 Society of Chemical Industry.


Assuntos
Proteínas de Plantas/metabolismo , Reishi/química , Carpóforos/química , Carpóforos/enzimologia , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/isolamento & purificação , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteômica , Reishi/enzimologia
11.
Electron. j. biotechnol ; 36: 24-33, nov. 2018. graf, tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1048179

RESUMO

Background: α-L-Arabinofuranosidase (EC 3.2.1.55) catalyzes the hydrolysis of terminal α-L-1,2-, -1,3-, and -1,5- arabinofuranosyl residues in arabinose-containing polymers, and hence, it plays an important role in hemicellulose degradation. Herein, the bacterium Paenibacillus polymyxa, which secretes arabinofuranosidase with high activity, was selected for enzyme production, purification, and characterization. Results: Medium components and cultural conditions were optimized by the response surface method using shake flask cultures. Arabinofuranosidase production reached 25.2 U/mL under optimized conditions, which were pH 7.5, 28°C, and a basic medium supplemented with 1.5 g/L mannitol and 3.5 g/L soymeal. Furthermore, the arabinofuranosidase secreted by P. polymyxa, named as PpAFase-1, was partially purified from the supernatant using a DEAE Sepharose Fast Flow column and a hydroxyapatite column. The approximate molecular mass of the purified PpAFase-1 was determined as 56.8 kDa by SDS-PAGE. Protein identification by mass spectrometry analysis showed that the deduced amino acid sequence had significant similarity to the glycosyl hydrolase family 51. The deduced gene of 1515 bp was cloned and expressed in Escherichia coli BL21 (DE3) cells. Purified recombinant PpAFase-1 was active toward p-nitrophenyl-α-L-arabinofuranoside (pNPAraf). The Km and kcat values toward pNPAraf were 0.81 mM and 53.2 s−1 , respectively. When wheat arabinoxylan and oat spelt xylan were used as substrates, PpAFase-1 showed poor efficiency. However, a synergistic effect was observed when PpAFase-1 was combined with xylanase from Thermomyces lanuginosus. Conclusion: A novel GH51 enzyme PpAFase-1 was cloned from the genome of P. polymyxa and expressed in E. coli. This enzyme may be suitable for hemicellulose degradation on an industrial scale.


Assuntos
Paenibacillus polymyxa/enzimologia , Glicosídeo Hidrolases/metabolismo , Arabinose , Espectrometria de Massas , Celulose , Eletroforese em Gel de Poliacrilamida , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/biossíntese
12.
Methods Mol Biol ; 1813: 187-204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30097868

RESUMO

The ARH family of ADP-ribosyl-acceptor hydrolases is composed of three 39-kDa proteins (ARH1, 2, and 3), which hydrolyze specific ADP-ribosylated substrates. ARH1 hydrolyzes mono(ADP-ribosyl)ated arginine, which results from actions of cholera toxin and other nicotinamide adenine dinucleotide (NAD+):arginine ADP-ribosyl-transferases, while ARH3 hydrolyzes poly(ADP-ribose) and O-acetyl-ADP-ribose, resulting from the action of poly(ADP-ribose) polymerases and sirtuins, respectively. ARH2 has not been reported to have enzymatic activity, because of differences in the catalytic domain. Thus, the substrate specificities of ARH1 and ARH3 proteins result in unique cellular functions. In this chapter, we introduce several methods to monitor the activities of the ARH family members.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/isolamento & purificação , Glicosídeo Hidrolases/isolamento & purificação , Biologia Molecular/métodos , N-Glicosil Hidrolases/isolamento & purificação , Proteínas Adaptadoras de Transdução de Sinal/química , Arginina/química , Catálise , Toxina da Cólera/química , Glicosídeo Hidrolases/química , Humanos , Hidrólise , N-Glicosil Hidrolases/química , NAD/química , Poli Adenosina Difosfato Ribose/química , Poli(ADP-Ribose) Polimerases/química , Sirtuínas/química , Especificidade por Substrato
13.
Enzyme Microb Technol ; 115: 29-36, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29859600

RESUMO

We generated a bifunctional enzyme chimera containing the xylanase and lichenase coupled with SpyTag between them. Meanwhile, we generated another chimera containing SpyCatcher and elastin-like polypeptides (ELPs). As ELPs could bond to the xylanase-lichenase chimera through SpyTag/SpyCatcher spontaneous reaction in mild condition, which would lead to the formation of a 3-arm star multifunctional chimera. We purified the xylanase-lichenase by the non-chromatographic purification tag of ELPs. Interestingly, 57.5% of the xylanase and 47.2% of the lichenase in chimera self-assembled into insoluble active particles during the process of purification, which could serve as immobilized bifunctional enzymes. Notably, the immobilized chimera xylanase-lichenase showed a remarkable stability even after 10 reaction cycles, which retained around 56% (lichenase) and 44% (xylanase) of their initial activities, respectively. Moreover, the enhanced thermostability of the immobilized enzymes was also achieved. After incubating at 60 °C for 60 min, the residual activity of the immobilized lichenase was 35%, while the free one was only 24%. Unexpectedly, the free xylanase almost lost its activity when incubated at 55 °C for 60 min, whereas the immobilized xylanase retained 10% of its activity. However, the catalytic efficiency (kcat/Km) of the free xylanase was 1.7-fold higher than the immobilized one, while the free lichenase was 1.1-fold higher than the immobilized one. This is among the first known reports that two enzymes are purified and immobilized in one-step. This novel strategy is easy to scale up and may meet the demands of biofuel industry. It would have great potentials in other biotechnological fields, such as the multifunctional biomaterials systems.


Assuntos
Endo-1,4-beta-Xilanases/isolamento & purificação , Enzimas Imobilizadas/metabolismo , Glicosídeo Hidrolases/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Catálise , Elastina/química , Elastina/metabolismo , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Enzimas Imobilizadas/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Peptídeos/química , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
14.
Methods Mol Biol ; 1608: 395-413, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28695523

RESUMO

The purification of Poly(ADP-ribose) glycohydrolase (PARG) from overexpressing bacteria Escherichia coli is described here to a fast and reproducible one chromatographic step protocol. After cell lysis, GST-PARG-fusion proteins from the crude extract are affinity purified by a Glutathione 4B Sepharose chromatographic step. The PARG proteins are then freed from their GST-fusion by overnight enzymatic cleavage using the preScission protease. As described in the protocol, more than 500 µg of highly active human PARG can be obtained from 1.5 L of E. coli culture.


Assuntos
Glicosídeo Hidrolases/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Animais , Bioensaio/métodos , Escherichia coli/enzimologia , Glicosídeo Hidrolases/metabolismo , Humanos , Poli Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo
15.
Sci Rep ; 7(1): 4761, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684799

RESUMO

Pseudomonas aeruginosa is a ubiquitous environmental organism and an opportunistic pathogen that causes chronic lung infections in the airways of cystic fibrosis (CF) patients as well as other immune-compromised individuals. During infection, P. aeruginosa enters the terminal bronchioles and alveoli and comes into contact with alveolar lining fluid (ALF), which contains homeostatic and antimicrobial hydrolytic activities, termed hydrolases. These hydrolases comprise an array of lipases, glycosidases, and proteases and thus, they have the potential to modify lipids, carbohydrates and proteins on the surface of invading microbes. Here we show that hydrolase levels between human ALF from healthy and CF patients differ. CF-ALF influences the P. aeruginosa cell wall by reducing the content of one of its major polysaccharides, Psl. This CF-ALF induced Psl reduction does not alter initial bacterial attachment to surfaces but reduces biofilm formation. Importantly, exposure of P. aeruginosa to CF-ALF drives the activation of neutrophils and triggers their oxidative response; thus, defining human CF-ALF as a new innate defense mechanism to control P. aeruginosa infection, but at the same time potentially adding to the chronic inflammatory state of the lung in CF patients.


Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Parede Celular/efeitos dos fármacos , Fibrose Cística/imunologia , Infecções Oportunistas/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/efeitos dos fármacos , Adolescente , Adulto , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Líquido da Lavagem Broncoalveolar/química , Parede Celular/química , Criança , Fibrose Cística/microbiologia , Feminino , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/farmacologia , Humanos , Lipase/isolamento & purificação , Lipase/farmacologia , Masculino , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Infecções Oportunistas/microbiologia , Peptídeo Hidrolases/isolamento & purificação , Peptídeo Hidrolases/farmacologia , Polissacarídeos Bacterianos/química , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia
16.
An. acad. bras. ciênc ; 89(1): 57-63, Jan,-Mar. 2017. tab
Artigo em Inglês | LILACS | ID: biblio-886625

RESUMO

ABSTRACT The present study evaluated the purification of inulinase by changing the ionic strength of the medium by addition of NaCl and CaCl2 followed by precipitation with n-propyl alcohol or iso-propyl alcohol. The effects of the concentration of alcohols and the rate of addition of alcohols in the crude extract on the purification yield and purification factor were evaluated. Precipitation caused an activation of enzyme and allowed purification factors up to 2.4-fold for both alcohols. The purification factor was affected positively by the modification of the ionic strength of the medium to 0.5 mol.L-1 NaCl before precipitation with the alcohol (n-propyl or iso-propyl). A purification factor of 4.8-fold and an enzyme yield of 78.1 % could be achieved by the addition of 0.5 mol.L-1 of NaCl to the crude extract, followed by the precipitation with 50 % (v/v) of n-propyl alcohol, added at a flow rate of 19.9 mL/min.


Assuntos
Concentração Osmolar , Precipitação Química , Álcoois/química , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/química , Valores de Referência , Sais/química , Solventes/química , Kluyveromyces/isolamento & purificação , Kluyveromyces/química , Cloreto de Cálcio/química , Cloreto de Sódio/química , Reprodutibilidade dos Testes , Meios de Cultura/química
17.
Rev Argent Microbiol ; 48(4): 267-273, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27825736

RESUMO

Macrophomina phaseolina is a polyphagous phytopathogen, causing stalk rot on many commercially important species. Damages caused by this pathogen in soybean and maize crops in Argentina during drought and hot weather have increased due its ability to survive as sclerotia in soil and crop debris under non-till practices. In this work, we explored the in vitro production of plant cell wall-degrading enzymes [pectinases (polygalacturonase and polymethylgalacturonase); cellulases (endoglucanase); hemicellulases (endoxylanase) and the ligninolytic enzyme laccase] by several Argentinean isolates of M. phaseolina, and assessed the pathogenicity of these isolates as a preliminary step to establish the role of these enzymes in M. phaseolina-maize interaction. The isolates were grown in liquid synthetic medium supplemented with glucose, pectin, carboxymethylcellulose or xylan as carbon sources and/or enzyme inducers and glutamic acid as nitrogen source. Pectinases were the first cell wall-degrading enzymes detected and the activities obtained (polygalacturonase activity was between 0.4 and 1.3U/ml and polymethylgalacturonase between 0.15 and 1.3U/ml) were higher than those of cellulases and xylanases, which appeared later and in a lesser magnitude. This sequence would promote initial tissue maceration followed by cell wall degradation. Laccase was detected in all the isolates evaluated (activity was between 36U/l and 63U/l). The aggressiveness of the isolates was tested in maize, sunflower and watermelon seeds, being high on all the plants assayed. This study reports for the first time the potential of different isolates of M. phaseolina to produce plant cell wall-degrading enzymes in submerged fermentation.


Assuntos
Ascomicetos/enzimologia , Proteínas Fúngicas/metabolismo , Argentina , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/isolamento & purificação , Ascomicetos/patogenicidade , Carbono/metabolismo , Parede Celular/metabolismo , Celulase/isolamento & purificação , Celulase/metabolismo , Citrullus/microbiologia , Meios de Cultura , Endo-1,4-beta-Xilanases/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Fermentação , Proteínas Fúngicas/isolamento & purificação , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Helianthus/microbiologia , Microbiologia Industrial/métodos , Lacase/isolamento & purificação , Lacase/metabolismo , Nitrogênio/metabolismo , Poligalacturonase/isolamento & purificação , Poligalacturonase/metabolismo , Sementes/microbiologia , Zea mays/microbiologia
18.
Int J Mol Sci ; 17(8)2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27548158

RESUMO

A mangrove soil metagenomic library was constructed and a ß-agarase gene designated as AgaML was isolated by functional screening. The gene encoded for a 659-amino-acids polypeptide with an estimated molecular mass of 71.6 kDa. The deduced polypeptide sequences of AgaML showed the highest identity of 73% with the glycoside hydrolase family 16 ß-agarase from Microbulbifer agarilyticus in the GenBank database. AgaML was cloned and highly expressed in Escherichia coli BL21(DE3). The purified recombinant protein, AgaML, showed optimal activity at 50 °C and pH 7.0. The kinetic parameters of Km and Vmax values toward agarose were 4.6 mg·mL(-1) and 967.5 µM·min(-1)·mg(-1), respectively. AgaML hydrolyzed the ß-1,4-glycosidic linkages of agar to generate neoagarotetraose (NA4) and neoagarohexaose (NA6) as the main products. These characteristics suggest that AgaML has potential application in cosmetic, pharmaceuticals and food industries.


Assuntos
Glicosídeo Hidrolases/isolamento & purificação , Galactosídeos/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Metagenômica , Oligossacarídeos/metabolismo , Microbiologia do Solo , Temperatura
19.
Appl Biochem Biotechnol ; 179(3): 415-26, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26879978

RESUMO

Galactanases (endo-ß-1,4-galactanases-EC 3.2.1.89) catalyze the hydrolysis of ß-1,4 galactosidic bonds in arabinogalactan and galactan side chains found in type I rhamnogalacturan. The aim of this work was to understand the catalytic function, biophysical properties, and use of a recombinant GH53 endo-beta-1,4-galactanase for commercial cocktail supplementation. The nucleotide sequence of the endo-ß-1,4-galactanase from Bacillus licheniformis CBMAI 1609 (Bl1609Gal) was cloned and expressed in Escherichia coli, and the biochemical and biophysical properties of the enzyme were characterized. The optimum pH range and temperature of Bl1609Gal activity were 6.5-8 and 40 °C, respectively. Furthermore, Bl1609Gal showed remarkable pH stability, retaining more than 75 % activity even after 24 h of incubation at pH 4-10. The enzyme was thermostable, retaining nearly 100 % activity after 1-h incubation at pH 7.0 at 25-45 °C. The enzymatic efficiency (K cat /K m ) against potato galactan under optimum conditions was 241.2 s(-1) mg(-1) mL. Capillary zone electrophoresis demonstrated that the pattern of galactan hydrolysis by Bl1609Gal was consistent with that of endogalactanases. Supplementation of the commercial cocktail ACCELLERASE(®)1500 with recombinant Bl1609Gal increased hydrolysis of pretreated sugarcane bagasse by 25 %.


Assuntos
Bacillus licheniformis/enzimologia , Biomassa , Galactanos/química , Glicosídeo Hidrolases/isolamento & purificação , Bacillus licheniformis/genética , Clonagem Molecular , Escherichia coli/genética , Galactose/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Hidrólise , Saccharum/química , Especificidade por Substrato
20.
Ukr Biochem J ; 87(3): 23-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26502696

RESUMO

Yeast as well as micromycetes α-L-rhamnosidases, currently, are the most promising group of enzymes. Improving of the thermal stability of the enzyme preparation are especially important studies. Increase in stability and efficiency of substrate hydrolysis by α-L-rhamnosidase will improve the production technology of juices and wines. The aim of our study was to investigate the rate of naringin hydrolysis by α-L-rhamnosidase from Cryptococcus albidus, and also some aspects of the thermal denaturation and stabilization of this enzyme. We investigated two forms of α-L-rhamnosidase from C. albidus, which were obtained by cultivation of the producer on two carbon sources--naringin and rhamnose. A comparative study of properties and the process of thermal inactivation of α-L-rhamnosidases showed that the inducer of synthesis had no effect on the efficiency of naringin hydrolysis by the enzyme, but modified thermal stability of the protein molecule. Hydrophobic interactions and the cysteine residues are involved in maintaining of active conformation of the α-L-rhamnosidase molecule. Yeast α-L-rhamnosidase is also stabilized by 0.5% bovine serum albumin and 0.25% glutaraldehyde.


Assuntos
Cryptococcus/enzimologia , Proteínas Fúngicas/química , Glicosídeo Hidrolases/química , Técnicas Bacteriológicas/métodos , Soluções Tampão , Fenômenos Químicos , Cryptococcus/crescimento & desenvolvimento , Estabilidade Enzimática , Indústria Alimentícia , Proteínas Fúngicas/isolamento & purificação , Glicosídeo Hidrolases/isolamento & purificação , Concentração de Íons de Hidrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA