Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.917
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Am Soc Clin Oncol Educ Book ; 44(3): e431450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723228

RESUMO

Low-grade gliomas present a formidable challenge in neuro-oncology because of the challenges imposed by the blood-brain barrier, predilection for the young adult population, and propensity for recurrence. In the past two decades, the systematic examination of genomic alterations in adults and children with primary brain tumors has uncovered profound new insights into the pathogenesis of these tumors, resulting in more accurate tumor classification and prognostication. It also identified several common recurrent genomic alterations that now define specific brain tumor subtypes and have provided a new opportunity for molecularly targeted therapeutic intervention. Adult-type diffuse low-grade gliomas are frequently associated with mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2), resulting in production of 2-hydroxyglutarate, an oncometabolite important for tumorigenesis. Recent studies of IDH inhibitors have yielded promising results in patients at early stages of disease with prolonged progression-free survival (PFS) and delayed time to radiation and chemotherapy. Pediatric-type gliomas have high rates of alterations in BRAF, including BRAF V600E point mutations or BRAF-KIAA1549 rearrangements. BRAF inhibitors, often combined with MEK inhibitors, have resulted in radiographic response and improved PFS in these patients. This article reviews emerging approaches to the treatment of low-grade gliomas, including a discussion of targeted therapies and how they integrate with the current treatment modalities of surgical resection, chemotherapy, and radiation.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Gradação de Tumores , Humanos , Glioma/genética , Glioma/terapia , Glioma/tratamento farmacológico , Glioma/patologia , Isocitrato Desidrogenase/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Gerenciamento Clínico , Mutação , Terapia de Alvo Molecular
2.
Nat Rev Dis Primers ; 10(1): 33, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724526

RESUMO

Gliomas are primary brain tumours that are thought to develop from neural stem or progenitor cells that carry tumour-initiating genetic alterations. Based on microscopic appearance and molecular characteristics, they are classified according to the WHO classification of central nervous system (CNS) tumours and graded into CNS WHO grades 1-4 from a low to high grade of malignancy. Diffusely infiltrating gliomas in adults comprise three tumour types with distinct natural course of disease, response to treatment and outcome: isocitrate dehydrogenase (IDH)-mutant and 1p/19q-codeleted oligodendrogliomas with the best prognosis; IDH-mutant astrocytomas with intermediate outcome; and IDH-wild-type glioblastomas with poor prognosis. Pilocytic astrocytoma is the most common glioma in children and is characterized by circumscribed growth, frequent BRAF alterations and favourable prognosis. Diffuse gliomas in children are divided into clinically indolent low-grade tumours and high-grade tumours with aggressive behaviour, with histone 3 K27-altered diffuse midline glioma being the leading cause of glioma-related death in children. Ependymal tumours are subdivided into biologically and prognostically distinct types on the basis of histology, molecular biomarkers and location. Although surgery, radiotherapy and alkylating agent chemotherapy are the mainstay of glioma treatment, individually tailored strategies based on tumour-intrinsic dominant signalling pathways have improved outcome in subsets of patients.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/fisiopatologia , Glioma/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/fisiopatologia , Prognóstico , Criança , Isocitrato Desidrogenase/genética , Mutação
3.
J Hematol Oncol ; 17(1): 31, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720342

RESUMO

Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.


Assuntos
Neoplasias Encefálicas , Células Supressoras Mieloides , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Células Supressoras Mieloides/imunologia , Glioma/imunologia , Glioma/terapia , Glioma/patologia , Glioblastoma/imunologia , Glioblastoma/terapia , Glioblastoma/patologia , Animais , Imunoterapia/métodos , Linfócitos T Reguladores/imunologia
4.
Adv Tech Stand Neurosurg ; 49: 231-254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38700687

RESUMO

Brain tumors are the second most common malignancy in childhood. Around 15-20% of pediatric brain tumors occur in the brainstem. The most common type of brainstem tumor are diffuse tumors in the ventral pons, whereas focal tumors tend to arise from the midbrain, medulla, and dorsal pons. Glioma is the most common pathological entity. Contemporary management consists of surgery, radiotherapy, chemotherapy, and other adjuvant treatment. Surgical options range from biopsy to radical excision. Biopsy can be performed for diagnostic and prognostic purposes, or in the setting of clinical trials, mainly for diffuse intrinsic pontine gliomas. For focal tumors, surgeons need to carefully balance clinical outcomes against possible neurological sequelae in order to achieve maximal safe resection. Radiotherapy is essential for control of high-grade tumors and may be applied to residual or recurrent low-grade tumors. Proton therapy may provide similar efficacy and less neurotoxicity in comparison to conventional photon therapy. Oncological treatment continues to evolve from conventional chemotherapy to targeted therapy, immunotherapy, and other novel treatment methods and holds great potential as adjuvant therapy for pediatric brainstem tumors.


Assuntos
Neoplasias do Tronco Encefálico , Humanos , Neoplasias do Tronco Encefálico/terapia , Neoplasias do Tronco Encefálico/patologia , Criança , Glioma/terapia , Glioma/patologia , Procedimentos Neurocirúrgicos/métodos , Terapia Combinada
5.
Health Expect ; 27(3): e14073, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733245

RESUMO

BACKGROUND: Supported self-management can improve clinical and psychosocial outcomes in people with cancer; the considerations required to implement self-management support (SMS) for people living with a lower-grade glioma (LGG)-who often have complex support needs-are not known. We aimed to identify and understand these implementation considerations through the lens of normalisation process theory (NPT), from the perspectives of healthcare professionals (HCP) and people with LGG. METHODS: We conducted semistructured interviews with HCPs who support adults with brain tumours (n = 25; 12 different healthcare professions), and people with LGG who had completed primary treatment (n = 28; male n = 16, mean age 54.6 years, mean time since diagnosis 8.7 years), from across the United Kingdom. Interviews were transcribed and inductive open coding conducted, before deductively mapping to constructs of NPT. We first mapped HCP data, then integrated data from people with LGG to explore alignment in experiences and perspectives. RESULTS: We generated supporting evidence for all four NPT constructs and related subconstructs, namely: 'Coherence', 'Cognitive participation', 'Collective action' and 'Reflexive monitoring'. Data from HCPs and people with LGG clearly demonstrated that effective SMS constitutes a collective activity. Key implementation considerations included: ensuring awareness of, and access to, support; building strong HCP-support recipient relationships; and careful inclusion of close family and friends. We identified pertinent challenges, such as identifying support needs (influenced by the extent to which those with LGG engage in help-seeking), resistance to support (e.g., technology literacy), training for HCPs and HCP cooperation. CONCLUSIONS: This study demonstrates the collective nature of, and provides insight into the individual roles within, supported self-management. We outline considerations to operationalise, sustain and appraise the implementation of SMS for people with LGG. PATIENT OR PUBLIC CONTRIBUTION: People with brain tumours, and informal caregivers, were involved in the development of information materials and topic guides to ensure accessibility and pertinence. They also had opportunities to comment on interview findings.


Assuntos
Neoplasias Encefálicas , Glioma , Entrevistas como Assunto , Autogestão , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Glioma/terapia , Glioma/psicologia , Reino Unido , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/psicologia , Adulto , Pesquisa Qualitativa , Pessoal de Saúde/psicologia , Apoio Social , Idoso
6.
Cell ; 187(10): 2521-2535.e21, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38697107

RESUMO

Cancer immunotherapy remains limited by poor antigenicity and a regulatory tumor microenvironment (TME). Here, we create "onion-like" multi-lamellar RNA lipid particle aggregates (LPAs) to substantially enhance the payload packaging and immunogenicity of tumor mRNA antigens. Unlike current mRNA vaccine designs that rely on payload packaging into nanoparticle cores for Toll-like receptor engagement in immune cells, systemically administered RNA-LPAs activate RIG-I in stromal cells, eliciting massive cytokine/chemokine response and dendritic cell/lymphocyte trafficking that provokes cancer immunogenicity and mediates rejection of both early- and late-stage murine tumor models. In client-owned canines with terminal gliomas, RNA-LPAs improved survivorship and reprogrammed the TME, which became "hot" within days of a single infusion. In a first-in-human trial, RNA-LPAs elicited rapid cytokine/chemokine release, immune activation/trafficking, tissue-confirmed pseudoprogression, and glioma-specific immune responses in glioblastoma patients. These data support RNA-LPAs as a new technology that simultaneously reprograms the TME while eliciting rapid and enduring cancer immunotherapy.


Assuntos
Imunoterapia , Microambiente Tumoral , Animais , Imunoterapia/métodos , Camundongos , Cães , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citocinas/metabolismo , Glioblastoma/terapia , Glioblastoma/imunologia , Camundongos Endogâmicos C57BL , Feminino , Glioma/terapia , Glioma/imunologia , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA/metabolismo , RNA/uso terapêutico , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia
7.
Neurosurg Rev ; 47(1): 212, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727935

RESUMO

We aimed to evaluate the relationship between imaging features, therapeutic responses (comparative cross-product and volumetric measurements), and overall survival (OS) in pediatric diffuse intrinsic pontine glioma (DIPG). A total of 134 patients (≤ 18 years) diagnosed with DIPG were included. Univariate and multivariate analyses were performed to evaluate correlations of clinical and imaging features and therapeutic responses with OS. The correlation between cross-product (CP) and volume thresholds in partial response (PR) was evaluated by linear regression. The log-rank test was used to compare OS patients with discordant therapeutic response classifications and those with concordant classifications. In univariate analysis, characteristics related to worse OS included lower Karnofsky, larger extrapontine extension, ring-enhancement, necrosis, non-PR, and increased ring enhancement post-radiotherapy. In the multivariate analysis, Karnofsky, necrosis, extrapontine extension, and therapeutic response can predict OS. A 25% CP reduction (PR) correlated with a 32% volume reduction (R2 = 0.888). Eight patients had discordant therapeutic response classifications according to CP (25%) and volume (32%). This eight patients' median survival time was 13.0 months, significantly higher than that in the non-PR group (8.9 months), in which responses were consistently classified as non-PR based on CP (25%) and volume (32%). We identified correlations between imaging features, therapeutic responses, and OS; this information is crucial for future clinical trials. Tumor volume may represent the DIPG growth pattern more accurately than CP measurement and can be used to evaluate therapeutic response.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Humanos , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Neoplasias do Tronco Encefálico/terapia , Neoplasias do Tronco Encefálico/mortalidade , Neoplasias do Tronco Encefálico/patologia , Masculino , Criança , Feminino , Adolescente , Glioma Pontino Intrínseco Difuso/terapia , Pré-Escolar , Resultado do Tratamento , Imageamento por Ressonância Magnética , Lactente , Estudos Retrospectivos , Glioma/terapia , Glioma/patologia , Glioma/diagnóstico por imagem , Glioma/mortalidade
8.
Medicine (Baltimore) ; 103(18): e37910, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701282

RESUMO

To illustrate the clinical characteristics and prognostic factors of adult patients pathologically confirmed with brainstem gliomas (BSGs). Clinical data of 40 adult patients pathologically diagnosed with BSGs admitted to Beijing Shijitan Hospital from 2009 to 2022 were recorded and retrospectively analyzed. The primary parameters included relevant symptoms, duration of symptoms, Karnofsky performance status (KPS), tumor location, type of surgical resection, diagnosis, treatment, and survival. Univariate and multivariate analyses were evaluated by Cox regression models. The gliomas were located in the midbrain of 9 patients, in the pons of 14 cases, in the medulla of 5 cases, in the midbrain and pons of 6 cases and invading the medulla and pons of 6 cases, respectively. The proportion of patients with low-grade BSGs was 42.5%. Relevant symptoms consisted of visual disturbance, facial paralysis, dizziness, extremity weakness, ataxia, paresthesia, headache, bucking, dysphagia, dysacousia, nausea, dysphasia, dysosmia, hypomnesia and nystagmus. 23 (57.5%) patients accepted stereotactic biopsy, 17 (42.5%) patients underwent surgical resection. 39 patients received radiotherapy and 34 cases were treated with temozolomide. The median overall survival (OS) of all patients was 26.2 months and 21.5 months for the median progression-free survival (PFS). Both duration of symptoms (P = .007) and tumor grading (P = .002) were the influencing factors for OS, and tumor grading was significantly associated with PFS (P = .001). Duration of symptoms for more than 2 months and low-grade are favorable prognostic factors for adult patients with BSGs.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Humanos , Masculino , Feminino , Estudos Retrospectivos , Adulto , Neoplasias do Tronco Encefálico/terapia , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/diagnóstico , Neoplasias do Tronco Encefálico/mortalidade , Pessoa de Meia-Idade , Glioma/patologia , Glioma/terapia , Glioma/mortalidade , Glioma/diagnóstico , Prognóstico , Adulto Jovem , Avaliação de Estado de Karnofsky , Idoso
9.
Nat Commun ; 15(1): 3882, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719809

RESUMO

In this randomized phase II clinical trial, we evaluated the effectiveness of adding the TLR agonists, poly-ICLC or resiquimod, to autologous tumor lysate-pulsed dendritic cell (ATL-DC) vaccination in patients with newly-diagnosed or recurrent WHO Grade III-IV malignant gliomas. The primary endpoints were to assess the most effective combination of vaccine and adjuvant in order to enhance the immune potency, along with safety. The combination of ATL-DC vaccination and TLR agonist was safe and found to enhance systemic immune responses, as indicated by increased interferon gene expression and changes in immune cell activation. Specifically, PD-1 expression increases on CD4+ T-cells, while CD38 and CD39 expression are reduced on CD8+ T cells, alongside an increase in monocytes. Poly-ICLC treatment amplifies the induction of interferon-induced genes in monocytes and T lymphocytes. Patients that exhibit higher interferon response gene expression demonstrate prolonged survival and delayed disease progression. These findings suggest that combining ATL-DC with poly-ICLC can induce a polarized interferon response in circulating monocytes and CD8+ T cells, which may represent an important blood biomarker for immunotherapy in this patient population.Trial Registration: ClinicalTrials.gov Identifier: NCT01204684.


Assuntos
Linfócitos T CD8-Positivos , Vacinas Anticâncer , Carboximetilcelulose Sódica/análogos & derivados , Células Dendríticas , Glioma , Interferons , Poli I-C , Polilisina/análogos & derivados , Humanos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Glioma/imunologia , Glioma/terapia , Feminino , Masculino , Pessoa de Meia-Idade , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Poli I-C/administração & dosagem , Poli I-C/farmacologia , Adulto , Receptores Toll-Like/agonistas , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Idoso , Vacinação , Monócitos/imunologia , Monócitos/efeitos dos fármacos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Imunoterapia/métodos , Agonistas do Receptor Semelhante a Toll
10.
Acta Neuropathol Commun ; 12(1): 71, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38706008

RESUMO

Diffuse Intrinsic Pontine Glioma (DIPG) is a highly aggressive and fatal pediatric brain cancer. One pre-requisite for tumor cells to infiltrate is adhesion to extracellular matrix (ECM) components. However, it remains largely unknown which ECM proteins are critical in enabling DIPG adhesion and migration and which integrin receptors mediate these processes. Here, we identify laminin as a key ECM protein that supports robust DIPG cell adhesion and migration. To study DIPG infiltration, we developed a DIPG-neural assembloid model, which is composed of a DIPG spheroid fused to a human induced pluripotent stem cell-derived neural organoid. Using this assembloid model, we demonstrate that knockdown of laminin-associated integrins significantly impedes DIPG infiltration. Moreover, laminin-associated integrin knockdown improves DIPG response to radiation and HDAC inhibitor treatment within the DIPG-neural assembloids. These findings reveal the critical role of laminin-associated integrins in mediating DIPG progression and drug response. The results also provide evidence that disrupting integrin receptors may offer a novel therapeutic strategy to enhance DIPG treatment outcomes. Finally, these results establish DIPG-neural assembloid models as a powerful tool to study DIPG disease progression and enable drug discovery.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Integrinas , Laminina , Humanos , Laminina/metabolismo , Integrinas/metabolismo , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/terapia , Glioma Pontino Intrínseco Difuso/patologia , Glioma Pontino Intrínseco Difuso/genética , Adesão Celular/efeitos dos fármacos , Movimento Celular , Linhagem Celular Tumoral , Glioma/patologia , Glioma/metabolismo , Glioma/genética , Glioma/terapia
11.
Front Immunol ; 15: 1369972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690285

RESUMO

Background: Temozolomide (TMZ) is a key component in the treatment of gliomas. Hypermutation induced by TMZ can be encountered in routine clinical practice, and its significance is progressively gaining recognition. However, the relationship between TMZ-induced hypermutation and the immunologic response remains controversial. Case presentation: We present the case of a 38-year-old male patient who underwent five surgeries for glioma. Initially diagnosed with IDH-mutant astrocytoma (WHO grade 2) during the first two surgeries, the disease progressed to grade 4 in subsequent interventions. Prior to the fourth surgery, the patient received 3 cycles of standard TMZ chemotherapy and 9 cycles of dose-dense TMZ regimens. Genomic and immunologic analyses of the tumor tissue obtained during the fourth surgery revealed a relatively favorable immune microenvironment, as indicated by an immunophenoscore of 5, suggesting potential benefits from immunotherapy. Consequently, the patient underwent low-dose irradiation combined with immunoadjuvant treatment. After completing 4 cycles of immunotherapy, the tumor significantly shrank, resulting in a partial response. However, after a 6-month duration of response, the patient experienced disease progression. Subsequent analysis of the tumor tissue obtained during the fifth surgery revealed the occurrence of hypermutation, with mutation signature analysis attributing TMZ treatment as the primary cause. Unfortunately, the patient succumbed shortly thereafter, with a survival period of 126 months. Conclusion: Patients subjected to a prolonged regimen of TMZ treatment may exhibit heightened vulnerability to hypermutation. This hypermutation induced by TMZ holds the potential to function as an indicator associated with unfavorable response to immunotherapy in gliomas.


Assuntos
Antineoplásicos Alquilantes , Neoplasias Encefálicas , Glioma , Mutação , Temozolomida , Humanos , Temozolomida/uso terapêutico , Masculino , Adulto , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Glioma/genética , Glioma/terapia , Glioma/tratamento farmacológico , Antineoplásicos Alquilantes/uso terapêutico , Imunoterapia/métodos , Evolução Fatal , Microambiente Tumoral/imunologia
12.
Int J Nanomedicine ; 19: 3367-3386, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617794

RESUMO

Purpose: Hypoxia is often associated with glioma chemoresistance, and alleviating hypoxia is also crucial for improving treatment efficacy. However, although there are already some methods that can improve efficacy by alleviating hypoxia, real-time monitoring that can truly achieve hypoxia relief and efficacy feedback still needs to be explored. Methods: AQ4N/Gd@PDA-FA nanoparticles (AGPF NPs) were synthesized using a one-pot method and were characterized. The effects of AGPF NPs on cell viability, cellular uptake, and apoptosis were investigated using the U87 cell line. Moreover, the effectiveness of AGPF NPs in alleviating hypoxia was explored in tumor-bearing mice through photoacoustic imaging. In addition, the diagnosis and treatment effect of AGPF NPs were evaluated by magnetic resonance imaging (MRI) and bioluminescent imaging (BLI) on orthotopic glioma mice respectively. Results: In vitro experiments showed that AGPF NPs had good dispersion, stability, and controlled release. AGPF NPs were internalized by cells through endocytosis, and could significantly reduce the survival rate of U87 cells and increase apoptosis under irradiation. In addition, we monitored blood oxygen saturation at the tumor site in real-time through photoacoustic imaging (PAI), and the results showed that synergistic mild-photothermal therapy/chemotherapy effectively alleviated tumor hypoxia. Finally, in vivo anti-tumor experiments have shown that synergistic therapy can effectively alleviate hypoxia and inhibit the growth of orthotopic gliomas. Conclusion: This work not only provides an effective means for real-time monitoring of the dynamic feedback between tumor hypoxia relief and therapeutic efficacy, but also offers a potential approach for the clinical treatment of gliomas.


Assuntos
Antraquinonas , Glioma , Terapia Fototérmica , Animais , Camundongos , Glioma/diagnóstico por imagem , Glioma/terapia , Ácido Fólico , Hipóxia
13.
Crit Rev Oncog ; 29(3): 33-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683153

RESUMO

Deep learning (DL) is poised to redefine the way medical images are processed and analyzed. Convolutional neural networks (CNNs), a specific type of DL architecture, are exceptional for high-throughput processing, allowing for the effective extraction of relevant diagnostic patterns from large volumes of complex visual data. This technology has garnered substantial interest in the field of neuro-oncology as a promising tool to enhance medical imaging throughput and analysis. A multitude of methods harnessing MRI-based CNNs have been proposed for brain tumor segmentation, classification, and prognosis prediction. They are often applied to gliomas, the most common primary brain cancer, to classify subtypes with the goal of guiding therapy decisions. Additionally, the difficulty of repeating brain biopsies to evaluate treatment response in the setting of often confusing imaging findings provides a unique niche for CNNs to help distinguish the treatment response to gliomas. For example, glioblastoma, the most aggressive type of brain cancer, can grow due to poor treatment response, can appear to grow acutely due to treatment-related inflammation as the tumor dies (pseudo-progression), or falsely appear to be regrowing after treatment as a result of brain damage from radiation (radiation necrosis). CNNs are being applied to separate this diagnostic dilemma. This review provides a detailed synthesis of recent DL methods and applications for intratumor segmentation, glioma classification, and prognosis prediction. Furthermore, this review discusses the future direction of MRI-based CNN in the field of neuro-oncology and challenges in model interpretability, data availability, and computation efficiency.


Assuntos
Neoplasias Encefálicas , Glioma , Redes Neurais de Computação , Humanos , Glioma/diagnóstico por imagem , Glioma/terapia , Glioma/patologia , Glioma/diagnóstico , Prognóstico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Aprendizado Profundo , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador
14.
Front Immunol ; 15: 1305087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665919

RESUMO

Microglia are the brain's resident macrophages that play pivotal roles in immune surveillance and maintaining homeostasis of the Central Nervous System (CNS). Microglia are functionally implicated in various cerebrovascular diseases, including stroke, aneurysm, and tumorigenesis as they regulate neuroinflammatory responses and tissue repair processes. Here, we review the manifold functions of microglia in the brain under physiological and pathological conditions, primarily focusing on the implication of microglia in glioma propagation and progression. We further review the current status of therapies targeting microglial cells, including their re-education, depletion, and re-population approaches as therapeutic options to improve patient outcomes for various neurological and neuroinflammatory disorders, including cancer.


Assuntos
Encéfalo , Microglia , Humanos , Microglia/imunologia , Encéfalo/imunologia , Encéfalo/patologia , Animais , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/patologia , Encefalopatias/imunologia , Encefalopatias/patologia , Glioma/imunologia , Glioma/patologia , Glioma/terapia
15.
Viruses ; 16(4)2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38675903

RESUMO

Gliomas account for approximately 75-80% of all malignant primary tumors in the central nervous system (CNS), with glioblastoma multiforme (GBM) considered the deadliest. Despite aggressive treatment involving a combination of chemotherapy, radiotherapy, and surgical intervention, patients with GBM have limited survival rates of 2 to 5 years, accompanied by a significant decline in their quality of life. In recent years, novel management strategies have emerged, such as immunotherapy, which includes the development of vaccines or T cells with chimeric antigen receptors, and oncolytic virotherapy (OVT), wherein wild type (WT) or genetically modified viruses are utilized to selectively lyse tumor cells. In vitro and in vivo studies have shown that the Zika virus (ZIKV) can infect glioma cells and induce a robust oncolytic activity. Consequently, interest in exploring this virus as a potential oncolytic virus (OV) for high-grade gliomas has surged. Given that ZIKV actively circulates in Colombia, evaluating its neurotropic and oncolytic capabilities holds considerable national and international importance, as it may emerge as an alternative for treating highly complex gliomas. Therefore, this literature review outlines the generalities of GBM, the factors determining ZIKV's specific tropism for nervous tissue, and its oncolytic capacity. Additionally, we briefly present the progress in preclinical studies supporting the use of ZIKV as an OVT for gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Infecção por Zika virus , Zika virus , Terapia Viral Oncolítica/métodos , Humanos , Zika virus/fisiologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Glioma/terapia , Glioma/virologia , Animais , Infecção por Zika virus/terapia , Infecção por Zika virus/virologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/virologia , Glioblastoma/terapia , Glioblastoma/virologia
16.
Int Immunopharmacol ; 133: 112045, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38615384

RESUMO

The ATP1A3 gene is associated with the development and progression of neurological diseases. However, the pathological function and therapeutic value of ATP1A3 in glioblastoma (GBM) remains unknown. In this study, we tried to explore the correlation between the ATP1A3 gene expression and immune features in GBM samples. We found that ATP1A3 gene expression levels showed significant negative correlation with immune checkpoints such as PD-L1, CTLA-4 and IDO1. Next, ATP1A3 gene expression levels showed significant negative correlation with the anti-cancer immune cell process, the immune score and stromal score. By grouping ATP1A3 expression levels, we found that that immunomodulator-related genes and tumor-associated immune cell effector gene expression levels were associated with lower ATP1A3 expression. In addition, immunotherapy prediction pathway activity and a majority of the anti-cancer immune cell process activity levels were also showed to be correlated with lower ATP1A3 gene expression. Further, nine prognostic factors were identified by prognostic analysis, and a GBM prognostic model (risk score) was established. We applied the model to the TCGA GBM training set sample and the GSE4412 validation set sample and found that patients in the high risk score subgroup had significantly shorter survival time, demonstrating the prognostic value and prognostic efficacy of the risk score. Furthermore, ATP1A3 overexpression has also been found to sensitize cancer cells to anti-PD-1 therapy. In conclusion, we showed that ATP1A3 is a highly promising treatment target in GBM and the risk score is an independent prognostic factor for cancer and can be used to help guide the prediction of survival time in patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioma , Imunoterapia , ATPase Trocadora de Sódio-Potássio , Humanos , Prognóstico , Imunoterapia/métodos , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/mortalidade , Glioma/genética , Glioma/imunologia , Glioma/terapia , Glioma/mortalidade , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Feminino , Masculino , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/imunologia , Glioblastoma/mortalidade , Pessoa de Meia-Idade
17.
Eur J Pediatr ; 183(6): 2549-2562, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558313

RESUMO

Pediatric gliomas, consisting of both pediatric low-grade (pLGG) and high-grade gliomas (pHGG), are the most frequently occurring brain tumors in children. Over the last decade, several milestone advancements in treatments have been achieved as a result of stronger understanding of the molecular biology behind these tumors. This review provides an overview of pLGG and pHGG highlighting their clinical presentation, molecular characteristics, and latest advancements in therapeutic treatments.  Conclusion: The increasing understanding of the molecular biology characterizing pediatric low and high grade gliomas has revolutionized treatment options for these patients, especially in pLGG. The implementation of next generation sequencing techniques for these tumors is crucial in obtaining less toxic and more efficacious treatments. What is Known: • Pediatric Gliomas are the most common brain tumour in children. They are responsible for significant morbidity and mortality in this population. What is New: • Over the last two decades, there has been a significant increase in our global understanding of the molecular background of pediatric low and high grade gliomas. • The implementation of next generation sequencing techniques for these tumors is crucial in obtaining less toxic and more efficacious treatments, with the ultimate goal of improving both the survival and the quality of life of these patients.


Assuntos
Neoplasias Encefálicas , Glioma , Medicina de Precisão , Humanos , Glioma/genética , Glioma/terapia , Criança , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Medicina de Precisão/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Gradação de Tumores
18.
In Vivo ; 38(3): 1459-1464, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688589

RESUMO

BACKGROUND/AIM: Gliomas are the most common and recalcitrant malignant primary brain tumors. All cancer types are addicted to methionine, which is a fundamental and general hallmark of cancer known as the Hoffman effect. Particularly glioma cells exhibit methionine addiction. Because of methionine addiction, [11C]-methionine positron emission tomography (MET-PET) is widely used for glioma imaging in clinical practice, which can monitor the extent of methionine addiction. Methionine restriction including recombinant methioninase (rMETase) and a low-methionine diet, has shown high efficacy in preclinical models of gliomas, especially in combination with chemotherapy. The aim of the present study was to determine the efficacy of methionine restriction with oral rMETase (o-rMETase) and a low-methionine diet, combined with radiation and temozolomide (TMZ), on a teenage female patient with high-grade glioma. CASE REPORT: A 16-year-old girl was diagnosed with high-grade glioma. Magnetic resonance imaging (MRI) showed a left temporal-lobe tumor with compression to the left lateral ventricle and narrowing of sulci in the left temporal lobe. After the start of methionine restriction with o-rMETase and a low-methionine diet, along with TMZ combined with radiotherapy, the tumor size shrunk at least 60%, with improvement in the left lateral ventricle and sulci. The patient's condition remains stable for 19 months without severe adverse effects. CONCLUSION: Methionine restriction consisting of o-rMETase and a low-methionine diet, in combination with radiation and TMZ as first-line chemotherapy, were highly effective in a patient with high-grade glioma.


Assuntos
Liases de Carbono-Enxofre , Glioma , Metionina , Temozolomida , Humanos , Feminino , Glioma/patologia , Glioma/tratamento farmacológico , Glioma/terapia , Temozolomida/administração & dosagem , Temozolomida/uso terapêutico , Metionina/administração & dosagem , Adolescente , Imageamento por Ressonância Magnética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Resultado do Tratamento , Gradação de Tumores , Tomografia por Emissão de Pósitrons , Proteínas Recombinantes/administração & dosagem , Terapia Combinada
19.
Clin Radiol ; 79(6): e842-e853, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582632

RESUMO

AIM: We design a feasibility study to obtain a set of metabolic-hemodynamic habitats for tackling tumor spatial metabolic patterns with hemodynamic information. MATERIALS AND METHODS: Preoperative data from 69 high-grade gliomas (HGG) patients with subsequent histologic confirmation of HGG were prospectively collected (January 2016 to March 2020) after concurrent chemoradiotherapy (CCRT). Four vascular habitats were automatically segmented by multiparametric magnetic resonance imaging (MRI). The metabolic information, either at enhancing or edema tumor regions, was obtained by two neuroradiologists. The relative habitat volumes were used for weight estimation procedures for computing the coefficients of a linear regression model using weighted least squares (WLS) for metabolite semiquantifications (i.e. the Cho/NAA ratio and the Cho/Cr ratio) at vascular habitats. Multivariate Cox proportional hazard regression analyses are used to obtain the odds ratio (OR) and develop a nomogram using weighted estimators corresponding to each covariate derived from Cox regression coefficients. RESULTS: There was a strongly correlation between perfusion indexes and the Cho/Cr ratio (rCBV, r=0.71) or Cho/NAA ratio (rCBV, r=0.66) at high-angiogenic enhancing tumor habitats (HAT) habitat. Compared isocitrate dehydrogenase (IDH) mutation to their wild type, the IDH wild type had significantly decreased Cho/Cr ratio (IDH mutation: Cho/Cr ratio = 2.44 ± 0.33, IDH wildtype: Cho/Cr ratio = 2.66 ± 0.36, p=0.02) and Cho/NAA ratio (IDH mutation: Cho/Cr ratio = 4.59 ± 0.61, IDH wildtype: Cho/Cr ratio = 4.99 ± 0.66, p=0.022) at the HAT. The C-index for the median progression-free survival (PFS) prediction was 0.769 for the Cho/NAA nomogram and 0.747 for the Cho/Cr nomogram through 1000 bootstrapping validation. CONCLUSIONS: Our findings suggest that spatial metabolism combined with hemodynamic heterogeneity is associated with individual PFS to HGG patients post-CCRT.


Assuntos
Neoplasias Encefálicas , Estudos de Viabilidade , Glioma , Hemodinâmica , Intervalo Livre de Progressão , Humanos , Glioma/diagnóstico por imagem , Glioma/patologia , Glioma/terapia , Feminino , Masculino , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Pessoa de Meia-Idade , Hemodinâmica/fisiologia , Adulto , Estudos Prospectivos , Idoso , Imageamento por Ressonância Magnética Multiparamétrica/métodos
20.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673835

RESUMO

Virotherapy is one of the perspective technologies in the treatment of malignant neoplasms. Previously, we have developed oncolytic vaccinia virus VV-GMCSF-Lact and its high cytotoxic activity and antitumor efficacy against glioma was shown. In this work, using immortalized and patient-derived cells with different sensitivity to VV-GMCSF-Lact, we evaluated the cytotoxic effect of chemotherapy agents. Additionally, we studied the combination of VV-GMCSF-Lact with temozolomide which is the most preferred drug for glioma treatment. Experimental results indicate that first adding temozolomide and then the virus to the cells is inherently more efficient than dosing it in the reverse order. Testing these regimens in the U87 MG xenograft glioblastoma model confirmed this effect, as assessed by tumor growth inhibition index and histological analysis. Moreover, VV-GMCSF-Lact as monotherapy is more effective against U87 MG glioblastoma xenografts comparing temozolomide.


Assuntos
Glioma , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Terapia Viral Oncolítica , Vírus Oncolíticos , Temozolomida , Vaccinia virus , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Linhagem Celular Tumoral , Camundongos , Glioma/terapia , Glioma/tratamento farmacológico , Glioma/patologia , Vaccinia virus/genética , Vaccinia virus/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Camundongos Nus , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Terapia Combinada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA