Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mol Cell Neurosci ; 118: 103694, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954382

RESUMO

Rupture and stretching of spinal roots are common incidents that take place in high-energy accidents. The proximal axotomy of motoneurons by crushing of ventral roots is directly related to the degeneration of half of the lesioned population within the first two weeks. Moreover, only a small percentage of surviving motoneurons can successfully achieve regeneration after such a proximal lesion, and new treatments are necessary to improve this scenario. In this sense, mesenchymal stem cells (MSC) are of great interest once they secrete a broad spectrum of bioactive molecules that are immunomodulatory and can restore the environment after a lesion. The present work aimed at studying the effects of human mesenchymal stem cells (hMSC) therapy after ventral root crush (VRC) in mice. We evaluated motoneuron survival, glial reaction, and synapse preservation at the ventral horn. For this purpose, C57BL/6 J were submitted to a crush procedure of L4 to L6 ventral roots and treated with a single intravenous injection of adipose-derived hMSC. Evaluation of the results was carried out at 7, 14, and 28 days after injury. Analysis of motoneuron survival and astrogliosis showed that hMSC treatment resulted in higher motoneuron preservation (motoneuron survival ipsi/contralateral ratio: VRC group = 53%, VRC + hMSC group = 66%; p < 0.01), combined with reduction of astrogliosis (ipsi/contralateral GFAP immunolabeling: VRC group = 470%, VRC + hMSC group = 250%; p < 0.001). The morphological classification and Sholl analysis of microglial activation revealed that hMSC treatment reduced type V and increased type II profiles, indicating an enhancement of surveying over activated microglial cells. The glial reactivity modulation directly influenced synaptic inputs in apposition to axotomized motoneurons. In the hMSC-treated group, synaptic maintenance was increased (ipsi/contralateral synaptophysin immunolabeling: VRC group = 53%, VRC + hMSC group = 64%; p < 0.05). Overall, the present data show that intravenous injection of hMSC has neuroprotective and anti-inflammatory effects, decreasing reactive astrogliosis, and microglial reaction. Also, such cell therapy results in motoneuron preservation, combined with significant maintenance of spinal cord circuits, in particular those related to the ventral horn.


Assuntos
Gliose , Células-Tronco Mesenquimais , Animais , Gliose/terapia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuroproteção , Medula Espinal , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/patologia
2.
Brain Res Bull ; 175: 196-204, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34339780

RESUMO

Reactive gliosis is a key feature and an important pathophysiological mechanism underlying chronic neurodegeneration following traumatic brain injury (TBI). In this study, we have explored the effects of intramuscular IGF-1 gene therapy on reactive gliosis and functional outcome after an injury of the cerebral cortex. Young adult male rats were intramuscularly injected with a recombinant adenoviral construct harboring the cDNA of human IGF-1 (RAd-IGF1), with a control vector expressing green fluorescent protein (RAd-GFP) or PBS as control. Three weeks after the intramuscular injections of adenoviral vectors, animals were subjected to a unilateral penetrating brain injury. The data revealed that RAd-IGF1 gene therapy significantly increased serum IGF1 levels and improved working memory performance after one week of TBI as compared to PBS or RAd-GFP lesioned animals. At the same time, when we analyzed the effects of therapy on glial scar formation, the treatment with RAd-IGF1 did not modify the number of glial fibrillary acidic protein (GFAP) positive cells, but we observed a decrease in vimentin immunoreactive astrocytes at 7 days post-lesion in the injured hemisphere compared to RAd-GFP group. Moreover, IGF-1 gene therapy reduced the number of Iba1+ cells with reactive phenotype and the number of MHCII + cells in the injured hemisphere. These results suggest that intramuscular IGF-1 gene therapy may represent a new approach to prevent traumatic brain injury outcomes in rats.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Terapia Genética/métodos , Gliose/genética , Gliose/terapia , Fator de Crescimento Insulin-Like I/genética , Microglia , Animais , Lesões Encefálicas Traumáticas/psicologia , Proteínas de Ligação ao Cálcio/metabolismo , Vetores Genéticos/administração & dosagem , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Injeções Intramusculares , Masculino , Memória de Curto Prazo , Proteínas dos Microfilamentos/metabolismo , Neuroglia/imunologia , Neuroproteção , Desempenho Psicomotor , Ratos , Resultado do Tratamento , Vimentina/metabolismo
4.
J Neurotrauma ; 38(6): 777-788, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33107383

RESUMO

Chronic spinal cord injury (SCI) is a devastating medical condition. In the acute phase after injury, there is cell loss resulting in chronic axonal damage and loss of sensory and motor function including loss of oligodendrocytes that results in demyelination of axons and further dysfunction. In the chronic phase, the inhibitory environment within the lesion including the glial scar can arrest axonal growth and regeneration and can also potentially affect transplanted cells. We hypothesized that glial scar ablation (GSA) along with cell transplantation may be required as a combinatorial therapy to achieve functional recovery, and therefore we proposed to examine the survival and fate of human induced pluripotent stem cell (iPSC) derived pre-oligodendrocyte progenitor cells (pre-OPCs) transplanted in a model of chronic SCI, whether this was affected by GSA, and whether this combination of treatments would result in functional recovery. In this study, chronically injured athymic nude (ATN) rats were allocated to one of three treatment groups: GSA only, pre-OPCs only, or GSA+pre-OPCs. We found that human iPSC derived pre-OPCs were multi-potent and retained the ability to differentiate into mainly oligodendrocytes or neurons when transplanted into the chronically injured spinal cords of rats. Twelve weeks after cell transplantation, we observed that more of the transplanted cells differentiated into oligodendrocytes when the glial scar was ablated compared with no GSA. Further, we also observed that a higher percentage of transplanted cells differentiated into V2a interneurons and motor neurons in the pre-OPCs only group when compared with GSA+pre-OPCs. This suggests that the local environment created by ablation of the glial scar may have a significant effect on the fate of cells transplanted into the injury site.


Assuntos
Gliose/terapia , Neurônios Motores/fisiologia , Células Precursoras de Oligodendrócitos/fisiologia , Oligodendroglia/fisiologia , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Feminino , Corantes Fluorescentes/administração & dosagem , Gliose/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/química , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Neurônios Motores/química , Células Precursoras de Oligodendrócitos/química , Células Precursoras de Oligodendrócitos/transplante , Oligodendroglia/química , Ratos , Rosa Bengala/administração & dosagem , Traumatismos da Medula Espinal/patologia , Vértebras Torácicas/lesões
5.
Stem Cells Transl Med ; 10(3): 427-440, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33103374

RESUMO

There is increasing evidence that administration of many types of stem cells, including human amnion epithelial cells (hAECs), can reduce hypoxic-ischemic injury, including in the perinatal brain. However, the therapeutic window for single dose treatment is not known. We compared the effects of early and delayed intracerebroventricular administration of hAECs in fetal sheep at 0.7 gestation on brain injury induced by 25 minutes of complete umbilical cord occlusion (UCO) or sham occlusion. Fetuses received either 1 × 106 hAECs or vehicle alone, as an infusion over 1 hour, either 2 or 24 hours after UCO. Fetuses were killed for brain histology at 7 days post-UCO. hAEC infusion at both 2 and 24 hours had dramatic anti-inflammatory and anti-gliotic effects, including significantly attenuating the increase in microglia after UCO in the white and gray matter and the number of astrocytes in the white matter. Both protocols partially improved myelination, but had no effect on total or immature/mature numbers of oligodendrocytes. Neuronal survival in the hippocampus was increased by hAEC infusion at either 2 or 24 hours, whereas only hAECs at 24 hours were associated with improved neuronal survival in the striatum and thalamus. Neither protocol improved recovery of electroencephalographic (EEG) power. These data suggest that a single infusion of hAECs is anti-inflammatory, anti-gliotic, and neuroprotective in preterm fetal sheep when given up to 24 hours after hypoxia-ischemia, but was associated with limited white matter protection after 7 days recovery and no improvement in the recovery of EEG power.


Assuntos
Âmnio , Gliose , Hipóxia Encefálica/terapia , Transplante de Células-Tronco , Âmnio/citologia , Animais , Células Epiteliais/transplante , Feminino , Feto , Gliose/terapia , Humanos , Gravidez , Ovinos , Células-Tronco , Cordão Umbilical
6.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339379

RESUMO

A systemic inflammatory response induces multiple organ dysfunction and results in poor long-term neurological outcomes in neonatal sepsis. However, there is no effective therapy for treating or preventing neonatal sepsis besides antibiotics and supportive care. Therefore, a novel strategy to improve neonatal sepsis-related morbidity and mortality is desirable. Recently, we reported that prophylactic therapy with human amniotic stem cells (hAFSCs) improved survival in a rat model of lipopolysaccharide (LPS)-induced neonatal sepsis through immunomodulation. Besides improving the mortality, increasing survival without major morbidities is an important goal of neonatal intensive care for neonatal sepsis. This study investigated long-term neurological outcomes in neonatal sepsis survivors treated with hAFSCs using the LPS-induced neonatal sepsis model in rats. We found that prophylactic therapy with hAFSCs improved spatial awareness and memory-based behavior in neonatal sepsis survivors at adolescence in rats. The treatment suppressed acute reactive gliosis and subsequently reduced astrogliosis in the hippocampal region over a long period of assessment. To the best of our knowledge, this is the first report that proves the concept that hAFSC treatment improves cognitive impairment in neonatal sepsis survivors. We demonstrate the efficacy of hAFSC therapy in improving the mortality and morbidity associated with neonatal sepsis.


Assuntos
Disfunção Cognitiva/prevenção & controle , Gliose/prevenção & controle , Transplante de Células-Tronco Mesenquimais/métodos , Sepse Neonatal/complicações , Líquido Amniótico/citologia , Animais , Células Cultivadas , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Gliose/etiologia , Gliose/terapia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Crit Care Med ; 48(4): e290-e298, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32205619

RESUMO

OBJECTIVES: Survivors of sepsis are frequently left with significant cognitive and behavioral impairments. These complications derive from nonresolving inflammation that persists following hospital discharge. To date, no study has investigated the effects of mesenchymal stromal cell therapy on the blood-brain barrier, astrocyte activation, neuroinflammation, and cognitive and behavioral alterations in experimental sepsis. DESIGN: Prospective, randomized, controlled experimental study. SETTING: Government-affiliated research laboratory. SUBJECTS: Male Swiss Webster mice (n = 309). INTERVENTIONS: Sepsis was induced by cecal ligation and puncture; sham-operated animals were used as control. All animals received volume resuscitation (1 mL saline/mouse subcutaneously) and antibiotics (meropenem 10 mg/kg intraperitoneally at 6, 24, and 48 hours). Six hours after surgery, mice were treated with mesenchymal stromal cells IV (1 × 10 cells in 0.05 mL of saline/mouse) or saline (0.05 mL IV). MEASUREMENTS AND MAIN RESULTS: At day 1, clinical score and plasma levels of inflammatory mediators were increased in cecal ligation and puncture mice. Mesenchymal stromal cells did not alter clinical score or survival rate, but reduced levels of systemic interleukin-1ß, interleukin-6, and monocyte chemoattractant protein-1. At day 15, survivor mice completed a battery of cognitive and behavioral tasks. Cecal ligation and puncture mice exhibited spatial and aversive memory deficits and anxiety-like behavior. These effects may be related to increased blood-brain barrier permeability, with altered tight-junction messenger RNA expression, increased brain levels of inflammatory mediators, and astrogliosis (induced at day 3). Mesenchymal stromal cells mitigated these cognitive and behavioral alterations, as well as reduced blood-brain barrier dysfunction, astrocyte activation, and interleukin-1ß, interleukin-6, tumor necrosis factor-α, and interleukin-10 levels in vivo. In cultured primary astrocytes stimulated with lipopolysaccharide, conditioned media from mesenchymal stromal cells reduced astrogliosis, interleukin-1ß, and monocyte chemoattractant protein-1, suggesting a paracrine mechanism of action. CONCLUSIONS: In mice who survived experimental sepsis, mesenchymal stromal cell therapy protected blood-brain barrier integrity, reduced astrogliosis and neuroinflammation, as well as improved cognition and behavior.


Assuntos
Barreira Hematoencefálica , Transtornos Cognitivos , Gliose , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Sepse , Animais , Masculino , Camundongos , Comportamento Animal , Barreira Hematoencefálica/metabolismo , Transtornos Cognitivos/prevenção & controle , Modelos Animais de Doenças , Gliose/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Estudos Prospectivos , Sepse/terapia
8.
Mol Ther ; 27(7): 1313-1326, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31043342

RESUMO

Mutations within over 250 known genes are associated with inherited retinal degeneration. Clinical success following gene-replacement therapy for congenital blindness due to RPE65 mutations establishes a platform for the development of downstream treatments targeting other forms of inherited ocular disease. Unfortunately, several challenges relevant to complex disease pathology and limitations of current gene-transfer technologies impede the development of related strategies for each specific form of inherited retinal degeneration. Here, we describe a gene-augmentation strategy that delays retinal degeneration by stimulating features of anabolic metabolism necessary for survival and structural maintenance of photoreceptors. We targeted two critical points of regulation in the canonical insulin/AKT/mammalian target of rapamycin (mTOR) pathway with AAV-mediated gene augmentation in a mouse model of retinitis pigmentosa. AAV vectors expressing the serine/threonine kinase, AKT3, promote dramatic preservation of photoreceptor numbers, structure, and partial visual function. This protective effect was associated with successful reprogramming of photoreceptor metabolism toward pathways associated with cell growth and survival. Collectively, these findings underscore the importance of AKT activity and downstream pathways associated with anabolic metabolism in photoreceptor survival and maintenance.


Assuntos
Terapia Genética/métodos , Neuroproteção/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Retinose Pigmentar/terapia , Transdução de Sinais/genética , Transdução Genética , Animais , Sobrevivência Celular/genética , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Modelos Animais de Doenças , Vetores Genéticos , Gliose/genética , Gliose/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação Puntual , Degeneração Retiniana/terapia , Retinose Pigmentar/genética , Serina-Treonina Quinases TOR/metabolismo , Acuidade Visual/genética
9.
J Neurol Sci ; 402: 16-29, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31100652

RESUMO

Spinal cord injury (SCI) is an incurable disorder with an unmet need of an effective treatment. Recently, autologous human bone marrow-derived stem cells have shown to promote functional improvement, due to their anti-inflammatory and regenerative/apocrine properties. In this study, the primary objective was to test whether a single intrathecal injection with a 100 µL suspension of 400,000 fresh human bone marrow-derived CD34+ and an equal number of CD105+ stem cells (Neuro-Cells (NC)), one day after balloon-compression of the spinal cord, improves motor function and reduces secondary damage in immunodeficient rats. During the first 5 weeks after this intervention, NC significantly improved locomotor recovery and induced less injury-associated adverse events compared to vehicle-treated rats. Histological analysis showed that NC reduced astrogliosis, and apoptosis early after administration (day 4), but not at a later stage (day 56) after SCI. Proteomic studies (at day 56) pointed to the release of paracrine factors and identified proteins involved in regenerative processes. As stem cells seem to reach their effects in acute lesions by mainly suppressing (secondary) inflammation, it is thus realistic to expect a lower magnitude of their eventual beneficial effect in T-cell deficient rats, a fact reinforcing the robustness of Neuro-Cells efficacy. Taken together, this study indicates that an intrathecal instillation of Neuro-Cells holds great promise as a neuro-regenerative intervention in a clinical setting with acute SCI patients.


Assuntos
Apoptose/fisiologia , Transplante de Medula Óssea/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Animais , Gliose/complicações , Gliose/terapia , Humanos , Interleucina-1beta/sangue , Interleucina-6/sangue , Locomoção/fisiologia , Masculino , Ratos , Ratos Nus , Traumatismos da Medula Espinal/sangue , Traumatismos da Medula Espinal/complicações , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue
10.
J Tissue Eng Regen Med ; 13(3): 509-521, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30726582

RESUMO

Spinal cord injuries (SCIs) result in the loss of sensory and motor function with massive cell death and axon degeneration. We have previously shown that transplantation of spinal cord-derived ependymal progenitor cells (epSPC) significantly improves functional recovery after acute and chronic SCI in experimental models, via neuronal differentiation and trophic glial cell support. Here, we propose an improved procedure based on transplantation of epSPC in a tubular conduit of hyaluronic acid containing poly (lactic acid) fibres creating a biohybrid scaffold. In vitro analysis showed that the poly (lactic acid) fibres included in the conduit induce a preferential neuronal fate of the epSPC rather than glial differentiation, favouring elongation of cellular processes. The safety and efficacy of the biohybrid implantation was evaluated in a complete SCI rat model. The conduits allowed efficient epSPC transfer into the spinal cord, improving the preservation of the neuronal tissue by increasing the presence of neuronal fibres at the injury site and by reducing cavities and cyst formation. The biohybrid-implanted animals presented diminished astrocytic reactivity surrounding the scar area, an increased number of preserved neuronal fibres with a horizontal directional pattern, and enhanced coexpression of the growth cone marker GAP43. The biohybrids offer an improved method for cell transplantation with potential capabilities for neuronal tissue regeneration, opening a promising avenue for cell therapies and SCI treatment.


Assuntos
Materiais Biocompatíveis/farmacologia , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal , Animais , Diferenciação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Epêndima/citologia , Feminino , Gliose/terapia , Ácido Hialurônico/farmacologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Poliésteres/farmacologia , Porosidade , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/patologia , Regeneração da Medula Espinal/efeitos dos fármacos
11.
PLoS One ; 13(11): e0208105, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30485360

RESUMO

Cerebral palsy (CP) encompasses a group of non-progressive brain disorders that are often acquired through perinatal hypoxic-ischemic (HI) brain injury. Injury leads to a cascade of cell death events, resulting in lifetime motor and cognitive deficits. There are currently no treatments that can repair the resulting brain damage and improve functional outcomes. To date, preclinical research using neural precursor cell (NPC) transplantation as a therapy for HI brain injury has shown promise. To translate this treatment to the clinic, it is essential that human-derived NPCs also be tested in animal models, however, a major limitation is the high risk of xenograft rejection. A solution is to transplant the cells into immune-deficient rodents, but there are currently no models of HI brain injury established in such a cohort of animals. Here, we demonstrate that a model of HI brain injury can be generated in immune-deficient Prkdc knockout (KO) rats. Long-term deficits in sensorimotor function were similar between KO and wildtype (WT) rats. Interestingly, some aspects of the injury were more severe in KO rats. Additionally, human induced pluripotent stem cell derived (hiPSC)-NPCs had higher survival at 10 weeks post-transplant in KO rats when compared to their WT counterparts. This work establishes a reliable model of neonatal HI brain injury in Prkdc KO rats that will allow for future transplantation, survival, and long-term evaluation of the safety and efficacy of hiPSC-NPCs for neonatal brain damage. This model will enable critical preclinical translational research using human NPCs.


Assuntos
Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/terapia , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Neurais/transplante , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Sobrevivência Celular , Proteína Quinase Ativada por DNA/genética , Gliose/patologia , Gliose/terapia , Humanos , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Neurais/patologia , Proteínas Nucleares/genética , Distribuição Aleatória , Ratos Long-Evans , Ratos Transgênicos , Imunodeficiência Combinada Severa/genética , Transplante Heterólogo
12.
J Stroke Cerebrovasc Dis ; 27(9): 2453-2465, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30029838

RESUMO

INTRODUCTION: Stroke represents an attractive target for cell therapy. Although different types of cells have been employed in animal models with variable results, the human adipose-derived stem cells (hASCs) have demonstrated favorable characteristics in the treatment of diseases with inflammatory substrate, but experience in their intracerebral administration is lacking. The purpose of this study is to evaluate the effect and safety of the intracerebral application of hASCs in a stroke model. METHODS: A first group of Athymic Nude mice after stroke received a stereotactic injection of hASCs at a concentration of 4 × 104/µL at the penumbra area, a second group without stroke received the same cell concentration, and a third group had only stroke and no cells. After 7, 15, and 30 days, the animals underwent fluorodeoxyglucose-positron emission tomography and magnetic resonance imaging; subsequently, they were sacrificed for histological evaluation (HuNu, GFAP, IBA-1, Ki67, DCX) of the penumbra area and ipsilateral subventricular zone (iSVZ). RESULTS: The in vitro studies found no alterations in the molecular karyotype, clonogenic capacity, and expression of 62 kDa transcription factor and telomerase. Animals implanted with cells showed no adverse events. The implanted cells showed no evidence of proliferation or differentiation. However, there was an increase of capillaries, less astrocytes and microglia, and increased bromodeoxyuridine and doublecortin-positive cells in the iSVZ and in the vicinity of ischemic injury. CONCLUSIONS: These results suggest that hASCs in the implanted dose modulate inflammation, promote endogenous neurogenesis, and do not proliferate or migrate in the brain. These data confirm the safety of cell therapy with hASCs.


Assuntos
Isquemia Encefálica/terapia , Transplante de Células-Tronco , Tecido Adiposo/citologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Proliferação de Células , Modelos Animais de Doenças , Proteína Duplacortina , Gliose/diagnóstico por imagem , Gliose/metabolismo , Gliose/patologia , Gliose/terapia , Humanos , Masculino , Camundongos Nus , Microglia/metabolismo , Microglia/patologia , Atividade Motora , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/terapia , Neurônios/metabolismo , Neurônios/patologia , Distribuição Aleatória , Transplante de Células-Tronco/efeitos adversos , Células-Tronco/citologia , Transplante Heterólogo
13.
Exp Eye Res ; 169: 1-12, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29355737

RESUMO

Photobiomodulation (PBM) with 670 nm light has been shown to accelerate wound healing in soft tissue injuries, and also to protect neuronal tissues. However, little data exist on its effects on the non-neuronal components of the retina, such as Müller cells (MCs), which are the principal macroglia of the retina that play a role in maintaining retinal homeostasis. The aim of this study was to explore the effects of 670 nm light on activated MCs using in vivo and in vitro stress models. Adult Sprague-Dawley rats were exposed to photo-oxidative damage (PD) for 24 h and treated with 670 nm light at 0, 3 and 14 days after PD. Tissue was collected at 30 days post-PD for analysis. Using the in vitro scratch model with a human MC line (MIO-M1), area coverage and cellular stress were analysed following treatment with 670 nm light. We showed that early treatment with 670 nm light after PD reduced MC activation, lowering the retinal expression of GFAP and FGF-2. 670 nm light treatment mitigated the production of MC-related pro-inflammatory cytokines (including IL-1ß), and reduced microglia/macrophage (MG/MΦ) recruitment into the outer retina following PD. This subsequently decreased photoreceptor loss, slowing the progression of retinal degeneration. In vitro, we showed that 670 nm light directly modulated MC activation, reducing rates of area coverage by suppressing cellular proliferation and spreading. This study indicates that 670 nm light treatment post-injury may have therapeutic benefit when administered shortly after retinal damage, and could be useful for retinal degenerations where MC gliosis is a feature of disease progression.


Assuntos
Células Ependimogliais/efeitos da radiação , Gliose/terapia , Fototerapia/métodos , Lesões Experimentais por Radiação/terapia , Lesões por Radiação/terapia , Retina/efeitos da radiação , Degeneração Retiniana/terapia , Animais , Linhagem Celular , Movimento Celular , Sobrevivência Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo , Técnica Indireta de Fluorescência para Anticorpo , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/etiologia , Gliose/metabolismo , Gliose/patologia , Humanos , Luz/efeitos adversos , Estresse Oxidativo , Lesões por Radiação/etiologia , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia
14.
J Tissue Eng Regen Med ; 12(2): e1034-e1045, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28112873

RESUMO

This study aimed to evaluate the therapeutic effect on tissue repair and scar formation of human bone marrow-derived clonal mesenchymal stem cells (hcMSCs) homogeneously isolated by using a subfractionation culturing method, in comparison with the non-clonal MSCs (hMSCs), in a rat spinal cord injury (SCI) model. The SCI was made using a vascular clip at the T9 level. Cells were transplanted into the lesion site 3 days after injury. A functional test was performed over 4 weeks employing a BBB score. Rats were killed for histological analysis at 3 days, 1 week and 4 weeks after injury. The transplantation of hMSCs and hcMSCs significantly reduced lesion size and the fluid-filled cavity at 4 weeks in comparison with the control group injected with phosphate buffered saline (PBS) (p < 0.01). Transplantation of hcMSCs showed more axons reserved than that of hMSCs in the lesion epicentre filled with non-neuronal tissues. In addition, hMSCs and hcMSCs clearly reduced the inflammatory reaction and intraparenchymal hemorrhaging, compared with the PBS group. Interestingly, hcMSCs largely decreased Col IV expression, one of the markers of fibrotic scars. hcMSCs yielded therapeutic effects more than equal to those of hMSCs on the SCI. Both hMSCs and hcMSCs created an increase in axon regeneration and reduced scar formation around the SCI lesion. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Células da Medula Óssea/citologia , Cicatriz/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Traumatismos da Medula Espinal/terapia , Animais , Axônios/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cicatriz/complicações , Cicatriz/patologia , Cicatriz/fisiopatologia , Células Clonais , Modelos Animais de Doenças , Fibrose , Gliose/patologia , Gliose/fisiopatologia , Gliose/terapia , Humanos , Masculino , Atividade Motora , Bainha de Mielina/metabolismo , Fator de Crescimento Neural/metabolismo , Regeneração Nervosa , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
15.
Brain ; 141(1): 99-116, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186350

RESUMO

Mucopolysaccharidosis IIIB is a paediatric lysosomal storage disease caused by deficiency of the enzyme α-N-acetylglucosaminidase (NAGLU), involved in the degradation of the glycosaminoglycan heparan sulphate. Absence of NAGLU leads to accumulation of partially degraded heparan sulphate within lysosomes and the extracellular matrix, giving rise to severe CNS degeneration with progressive cognitive impairment and behavioural problems. There are no therapies. Haematopoietic stem cell transplant shows great efficacy in the related disease mucopolysaccharidosis I, where donor-derived monocytes can transmigrate into the brain following bone marrow engraftment, secrete the missing enzyme and cross-correct neighbouring cells. However, little neurological correction is achieved in patients with mucopolysaccharidosis IIIB. We have therefore developed an ex vivo haematopoietic stem cell gene therapy approach in a mouse model of mucopolysaccharidosis IIIB, using a high-titre lentiviral vector and the myeloid-specific CD11b promoter, driving the expression of NAGLU (LV.NAGLU). To understand the mechanism of correction we also compared this with a poorly secreted version of NAGLU containing a C-terminal fusion to IGFII (LV.NAGLU-IGFII). Mucopolysaccharidosis IIIB haematopoietic stem cells were transduced with vector, transplanted into myeloablated mucopolysaccharidosis IIIB mice and compared at 8 months of age with mice receiving a wild-type transplant. As the disease is characterized by increased inflammation, we also tested the anti-inflammatory steroidal agent prednisolone alone, or in combination with LV.NAGLU, to understand the importance of inflammation on behaviour. NAGLU enzyme was substantially increased in the brain of LV.NAGLU and LV.NAGLU-IGFII-treated mice, with little expression in wild-type bone marrow transplanted mice. LV.NAGLU treatment led to behavioural correction, normalization of heparan sulphate and sulphation patterning, reduced inflammatory cytokine expression and correction of astrocytosis, microgliosis and lysosomal compartment size throughout the brain. The addition of prednisolone improved inflammatory aspects further. Substantial correction of lysosomal storage in neurons and astrocytes was also achieved in LV.NAGLU-IGFII-treated mice, despite limited enzyme secretion from engrafted macrophages in the brain. Interestingly both wild-type bone marrow transplant and prednisolone treatment alone corrected behaviour, despite having little effect on brain neuropathology. This was attributed to a decrease in peripheral inflammatory cytokines. Here we show significant neurological disease correction is achieved using haematopoietic stem cell gene therapy, suggesting this therapy alone or in combination with anti-inflammatories may improve neurological function in patients.


Assuntos
Encefalite/etiologia , Encefalite/terapia , Terapia Genética/métodos , Macrófagos/enzimologia , Mucopolissacaridose III , Células-Tronco/fisiologia , Animais , Encéfalo/enzimologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Gliose/terapia , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Humanos , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucopolissacaridose III/complicações , Mucopolissacaridose III/genética , Mucopolissacaridose III/patologia , Mucopolissacaridose III/terapia , Prednisolona/uso terapêutico , Baço/enzimologia , Sulfatases/genética , Sulfatases/metabolismo
16.
Brain Res ; 1669: 141-149, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28629741

RESUMO

Although hypothermic-targeted temperature management (HTTM) holds great potential for the treatment of traumatic brain injury (TBI), translation of the efficacy of hypothermia from animal models to TBI patientshas no entire consistency. This study aimed to find an ideal time window model in experimental rats which was more in accordance with clinical practice through the delayed HTTM intervention. Sprague-Dawley rats were subjected to unilateral cortical contusion injury and received therapeutic hypothermia at 15mins, 2 h, 4 h respectively after TBI. The neurological function was evaluated with the modified neurological severity score and Morris water maze test. The brain edema and morphological changes were measured with the water content and H&E staining. Brain sections were immunostained with antibodies against DCX (a neuroblast marker) and GFAP (an astrocyte marker). The apoptosis levels in the ipsilateral hippocampi and cortex were examined with antibodies against the apoptotic proteins Bcl-2, Bax, and cleaved caspase-3 by the immunofluorescence and western blotting. The results indicated that each hypothermia therapy group could improve neurobehavioral and cognitive function, alleviate brain edema and reduce inflammation. Furthermore, we observed that therapeutic hypothermia increased DCX expression, decreased GFAP expression, upregulated Bcl-2 expression and downregulated Bax and cleaved Caspase-3 expression. The above results suggested that HTTM at 2h or even at 4h post-injury revealed beneficial brain protection similarly, despite the best effect at 15min post-injury. These findings may provide relatively ideal time window models, further making the following experimental results more credible and persuasive.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Hipotermia Induzida/métodos , Animais , Apoptose , Astrócitos/patologia , Astrócitos/fisiologia , Edema Encefálico/patologia , Edema Encefálico/fisiopatologia , Edema Encefálico/terapia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Caspase 3/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/patologia , Gliose/fisiopatologia , Gliose/terapia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Neuroproteção , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Fatores de Tempo , Proteína X Associada a bcl-2/metabolismo
17.
Neuroscience ; 355: 175-187, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28504197

RESUMO

Intraventricular hemorrhage (IVH) is a frequent complication of preterm newborns, resulting in cerebral palsy and cognitive handicap as well as hypoxic ischemic encephalopathy and periventricular leukomalacia. In this study, we investigated the restorative effect on neonatal IVH by umbilical cord-derived mesenchymal stromal cells (UC-MSCs) cultured in serum-free medium (RM medium) for clinical application. UC-MSCs were cultured with αMEM medium supplemented with FBS or RM. A neonatal IVH mouse model at postnatal day 5 was generated by intraventricular injection of autologous blood, and mice were intravenously administered 1×105 UC-MSCs two days after IVH. Brain magnetic resonance imaging was performed at postnatal day 15, 22 and neurological behavioral measurements were performed at postnatal day 23, accompanied by histopathological analysis and cytokine bead assays in serum after IVH with or without UC-MSCs. Both UC-MSCs cultured with αMEM and RM met the criteria of MSCs and improved behavioral outcome of IVH mice. Moreover the RM group exhibited significant behavioral improvement compared to the control group. Histopathological analysis revealed UC-MSCs cultured with RM significantly attenuated periventricular reactive gliosis, hypomyelination, and periventricular cell death observed after IVH. Furthermore, human brain-derived neurotrophic factor and hepatocyte growth factor were elevated in the serum, cerebrospinal fluid and brain tissue of neonatal IVH model mice 24h after UC-MSCs administration. These results suggest UC-MSCs attenuate neonatal IVH by protecting gliosis and apoptosis of the injured brain, and intravenous injection of UC-MSCs cultured in RM may be feasible for neonatal IVH in clinic.


Assuntos
Hemorragia Cerebral Intraventricular/complicações , Doenças Desmielinizantes/terapia , Gliose/etiologia , Gliose/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Adipócitos/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular , Hemorragia Cerebral Intraventricular/diagnóstico por imagem , Meios de Cultura Livres de Soro/farmacologia , Doenças Desmielinizantes/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Gliose/diagnóstico por imagem , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Pulmão/citologia , Pulmão/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Cordão Umbilical/citologia
18.
Acta Neuropathol Commun ; 5(1): 2, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28057080

RESUMO

Multiple system atrophy (MSA) is a fatal neurodegenerative disorder characterized by the pathological accumulation of alpha-synuclein (α-syn) in oligodendrocytes. Therapeutic efforts to stop or delay the progression of MSA have yielded suboptimal results in clinical trials, and there are no efficient treatments currently available for MSA patients. We hypothesize that combining therapies targeting different aspects of the disease may lead to better clinical outcomes. To test this hypothesis, we combined the use of a single-chain antibody targeting α-syn modified for improved central nervous system penetration (CD5-D5) with an unconventional anti-inflammatory treatment (lenalidomide) in the myelin basic protein (MBP)-α-syn transgenic mouse model of MSA. While the use of either CD5-D5 or lenalidomide alone had positive effects on neuroinflammation and/or α-syn accumulation in this mouse model of MSA, the combination of both approaches yielded better results than each single treatment. The combined treatment reduced astrogliosis, microgliosis, soluble and aggregated α-syn levels, and partially improved behavioral deficits in MBP-α-syn transgenic mice. These effects were associated with an activation of the Akt signaling pathway, which may mediate cytoprotective effects downstream tumor necrosis factor alpha (TNFα). These results suggest that a strategic combination of treatments may improve the therapeutic outcome in trials for MSA and related neurodegenerative disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Imunoterapia , Atrofia de Múltiplos Sistemas/terapia , Anticorpos de Cadeia Única/farmacologia , Talidomida/análogos & derivados , alfa-Sinucleína/imunologia , Animais , Modelos Animais de Doenças , Gliose/imunologia , Gliose/patologia , Gliose/terapia , Humanos , Lenalidomida , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/imunologia , Atrofia de Múltiplos Sistemas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Talidomida/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
19.
Curr Alzheimer Res ; 14(1): 104-111, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27719629

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is the most common cause of dementia. The search for new treatments is made more urgent given its increasing prevalence resulting from the aging of the global population. Over the past 20 years, stem cell technologies have become an increasingly attractive option to both study and potentially treat neurodegenerative diseases. Several investigators reported a beneficial effect of different types of stem or progenitor cells on the pathology and cognitive function in AD models. Mouse models are one of the most important research tools for finding new treatment for AD. We aimed to explore the possible therapeutic potential of human umbilical cord mesenchymal stem cell xenografts in a transgenic (Tg) mouse model of AD. METHODS: APP/PS1 Tg AD model mice received human umbilical cord stem cells, directly injected into the carotid artery. To test the efficacy of the umbilical cord stem cells in this AD model, behavioral tasks (sensorimotor and cognitive tests) and immunohistochemical quantitation of the pathology was performed. RESULTS: Treatment of the APP/PS1 AD model mice, with human umbilical cord stem cells, produced a reduction of the amyloid beta burden in the cortex and the hippocampus which correlated with a reduction of the cognitive loss. CONCLUSION: Human umbilical cord mesenchymal stem cells appear to reduce AD pathology in a transgenic mouse model as documented by a reduction of the amyloid plaque burden compared to controls. This amelioration of pathology correlates with improvements on cognitive and sensorimotor tasks.


Assuntos
Doença de Alzheimer/terapia , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Artérias Carótidas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Feminino , Gliose/metabolismo , Gliose/patologia , Gliose/terapia , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Memória de Curto Prazo , Camundongos Transgênicos , Atividade Motora , Presenilina-1/genética , Presenilina-1/metabolismo , Reconhecimento Psicológico , Transplante Heterólogo
20.
Neuroscience ; 340: 117-125, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27793778

RESUMO

Sandhoff disease (SD) is a lysosomal storage disorder characterized by the absence of hydrolytic enzyme ß-N-acetylhexosaminidase (Hex), which results in storage of GM2 ganglioside in neurons and unremitting neurodegeneration. Neuron loss initially affects fine motor skills, but rapidly progresses to loss of all body faculties, a vegetative state, and death by five years of age in humans. A well-established feline model of SD allows characterization of the disease in a large animal model and provides a means to test the safety and efficacy of therapeutic interventions before initiating clinical trials. In this study, we demonstrate a robust central nervous system (CNS) inflammatory response in feline SD, primarily marked by expansion and activation of the microglial cell population. Quantification of major histocompatibility complex II (MHC-II) labeling revealed significant up-regulation throughout the CNS with areas rich in white matter most severely affected. Expression of the leukocyte chemokine macrophage inflammatory protein-1 alpha (MIP-1α) was also up-regulated in the brain. SD cats were treated with intracranial delivery of adeno-associated viral (AAV) vectors expressing feline Hex, with a study endpoint 16weeks post treatment. AAV-mediated gene delivery repressed the expansion and activation of microglia and normalized MHC-II and MIP-1α levels. These data reiterate the profound inflammatory response in SD and show that neuroinflammation is abrogated after AAV-mediated restoration of enzymatic activity.


Assuntos
Encéfalo/imunologia , Terapia Genética , Doença de Sandhoff/imunologia , Doença de Sandhoff/terapia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Astrócitos/imunologia , Astrócitos/patologia , Encéfalo/patologia , Gatos , Dependovirus/genética , Modelos Animais de Doenças , Genes MHC da Classe II/fisiologia , Vetores Genéticos , Gliose/imunologia , Gliose/patologia , Gliose/terapia , Imuno-Histoquímica , Microglia/imunologia , Microglia/patologia , Neurônios/imunologia , Neurônios/patologia , Reação em Cadeia da Polimerase , Doença de Sandhoff/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA