Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 397: 111075, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815667

RESUMO

Polybrominated biphenyls (PBBs) are associated with an increased risk of thyroid cancer; however, relevant mechanistic studies are lacking. In this study, we investigated the mechanisms underlying PBB-induced human thyroid cancer. Molecular docking and molecular dynamics methods were employed to investigate the metabolism of PBBs by the cytochrome P450 enzyme under aryl hydrocarbon receptor mediation into mono- and di-hydroxylated metabolites. This was taken as the molecular initiation event. Subsequently, considering the interactions of PBBs and their metabolites with the thyroxine-binding globulin protein as key events, an adverse outcome pathway for thyroid cancer caused by PBBs exposure was constructed. Based on 2D quantitative structure activity relationship (2D-QSAR) models, the contribution of amino acid residues and binding energy were analyzed to understand the mechanism underlying human carcinogenicity (adverse effect) of PBBs. Hydrogen bond and van der Waals interactions were identified as key factors influencing the carcinogenic adverse outcome pathway of PBBs. Analysis of non-bonding forces revealed that PBBs and their hydroxylation products were predominantly bound to the thyroxine-binding globulin protein through hydrophobic and hydrogen bond interactions. The key amino acids involved in hydrophobic interactions were alanine 330, arginine 381 and lysine 270, and the key amino acids involved in hydrogen bond interactions were arginine 381 and lysine 270. This study provides valuable insights into the mechanisms underlying human health risk associated with PBBs exposure.


Assuntos
Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Bifenil Polibromatos , Relação Quantitativa Estrutura-Atividade , Humanos , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/química , Bifenil Polibromatos/metabolismo , Ligação de Hidrogênio , Neoplasias da Glândula Tireoide/induzido quimicamente , Neoplasias da Glândula Tireoide/metabolismo , Globulina de Ligação a Tiroxina/metabolismo , Globulina de Ligação a Tiroxina/química , Ligação Proteica , Sítios de Ligação , Carcinógenos/toxicidade , Carcinógenos/química , Interações Hidrofóbicas e Hidrofílicas , Simulação por Computador , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/química
2.
Environ Sci Process Impacts ; 21(6): 950-956, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31143904

RESUMO

Polybrominated diphenyl ethers (PBDEs) can be metabolized to hydroxylated PBDEs (OH-PBDEs), which play important roles in their disruption effects on the thyroid hormone (TH) system. Recently, multiple in vitro studies suggested that OH-PBDEs might be further metabolically transformed to PBDE sulfates. However, information about the bioactivity of PBDE sulfate metabolites is limited. In the present study, we explored the possible disruption effects of PBDE sulfates to the TH system by studying their binding and activity towards TH transport proteins and nuclear receptors. We found PBDE sulfates could bind to two major TH transport proteins (thyroxine-binding globulin and transthyretin). Besides, PBDE sulfates could also bind to two subtypes of TH nuclear receptors (TRα and TRß) and showed agonistic activity towards the subsequent signaling pathway. Moreover, the PBDE sulfates showed higher binding potency to TH transport proteins and TRs compared with their corresponding OH-PBDE precursors. Molecular docking results showed that replacement of hydroxyl groups with sulfate groups might lead to more hydrogen bond interactions with these proteins. Overall, our study suggested that PBDE sulfates might disturb the TH system by binding to TH transport proteins or TRs. Our finding indicated a possible mechanism for the TH system disruption effects of PBDEs through their sulfate metabolites.


Assuntos
Éteres Difenil Halogenados/farmacologia , Pré-Albumina/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Sulfatos/farmacologia , Globulina de Ligação a Tiroxina/metabolismo , Animais , Linhagem Celular , Éteres Difenil Halogenados/química , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Pré-Albumina/química , Ratos , Receptores dos Hormônios Tireóideos/química , Sulfatos/química , Globulina de Ligação a Tiroxina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA