Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34369383

RESUMO

The transcription factor Twist1 regulates several processes that could impact kidney disease progression, including epithelial cell differentiation and inflammatory cytokine induction. Podocytes are specialized epithelia that exhibit features of immune cells and could therefore mediate unique effects of Twist1 on glomerular disease. To study Twist1 functions in podocytes during proteinuric kidney disease, we employed a conditional mutant mouse in which Twist1 was selectively ablated in podocytes (Twist1-PKO). Deletion of Twist1 in podocytes augmented proteinuria, podocyte injury, and foot process effacement in glomerular injury models. Twist1 in podocytes constrained renal accumulation of monocytes/macrophages and glomerular expression of CCL2 and the macrophage cytokine TNF-α after injury. Deletion of TNF-α selectively from podocytes had no impact on the progression of proteinuric nephropathy. By contrast, the inhibition of CCL2 abrogated the exaggeration in proteinuria and podocyte injury accruing from podocyte Twist1 deletion. Collectively, Twist1 in podocytes mitigated urine albumin excretion and podocyte injury in proteinuric kidney diseases by limiting CCL2 induction that drove monocyte/macrophage infiltration into injured glomeruli. Myeloid cells, rather than podocytes, further promoted podocyte injury and glomerular disease by secreting TNF-α. These data highlight the capacity of Twist1 in the podocyte to mitigate glomerular injury by curtailing the local myeloid immune response.


Assuntos
Quimiocina CCL2/metabolismo , Células Mieloides/imunologia , Podócitos/metabolismo , Insuficiência Renal Crônica , Fator de Necrose Tumoral alfa/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Diferenciação Celular , Inativação Gênica , Imunidade/imunologia , Glomérulos Renais/imunologia , Glomérulos Renais/lesões , Glomérulos Renais/metabolismo , Macrófagos , Camundongos , Proteinúria/metabolismo , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia
2.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008770

RESUMO

Glomerular endothelial injury and effectiveness of glomerular endothelial repair play a crucial role in the progression of glomerulonephritis. Although the potent immune suppressive everolimus is increasingly used in renal transplant patients, adverse effects of its chronic use have been reported clinically in human glomerulonephritis and experimental renal disease. Recent studies suggest that progenitor stem cells could enhance glomerular endothelial repair with minimal adverse effects. Increasing evidence supports the notion that stem cell therapy and regenerative medicine can be effectively used in pathological conditions within the predictive, preventive and personalized medicine (PPPM) paradigm. In this study, using an experimental model of glomerulonephritis, we tested whether bone marrow-derived stem cells (BMDSCs) could provide better effect over everolimus in attenuating glomerular injury and improving the repair process in a rat model of glomerulonephritis. Anti-Thy1 glomerulonephritis was induced in male Sprague Dawley rats by injection of an antibody against Thy1, which is mainly expressed on glomerular mesangial cells. Additional groups of rats were treated with the immunosuppressant everolimus daily after the injection of anti-Thy1 or injected with single bolus dose of BMDSCs after one week of injection of anti-Thy1 (n = 6-8). Nine days after injection of anti-Thy1, glomerular albumin permeability and albuminuria were significantly increased when compared to control group (p < 0.05). Compared to BMDSCs, everolimus was significantly effective in attenuating glomerular injury, nephrinuria and podocalyxin excretion levels as well as in reducing inflammatory responses and apoptosis. Our findings suggest that bolus injection of BMDSCs fails to improve glomerular injury whereas everolimus slows the progression of glomerular injury in Anti-Thy-1 induced glomerulonephritis. Thus, everolimus could be used at the early stage of glomerulonephritis, suggesting potential implications of PPPM in the treatment of progressive renal injury.


Assuntos
Células da Medula Óssea/citologia , Everolimo/farmacologia , Glomérulos Renais/lesões , Glomérulos Renais/patologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Modelos Animais de Doenças , Glomérulos Renais/efeitos dos fármacos , Masculino , Proteínas de Membrana/metabolismo , Necrose , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
3.
PLoS One ; 15(6): e0234934, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32569286

RESUMO

BACKGROUND: Studies on adriamycin mice model suggest complement system is activated and together with IgM contributes to the glomerular injury of primary focal segmental glomerulosclerosis (FSGS). We recently reported primary FSGS patients with IgM and C3 deposition showed unfavorable therapeutic responses and worse renal outcomes. Here we examined the plasma and urinary complement profile of patients with primary FSGS, aiming to investigate the complement participation in FSGS pathogenesis. METHODS: Seventy patients with biopsy-proven primary FSGS were enrolled. The plasma and urinary levels of C3a, C5a, soluble C5b-9, C4d, C1q, MBL, and Bb were determined by commercial ELISA kits. RESULTS: The levels of C3a, C5a and C5b-9 in plasma and urine of FSGS patients were significantly higher than those in normal controls. The plasma and urinary levels of C5b-9 were positively correlated with urinary protein, renal dysfunction and interstitial fibrosis. The plasma C5a levels were positively correlated with the proportion of segmental sclerotic glomeruli. The urinary levels of Bb were elevated, positively correlated with C3a and C5b-9 levels, renal dysfunction, and interstitial fibrosis. The plasma C1q level was significantly decreased, and negatively correlated with urinary protein excretion. Urinary Bb level was a risk factor for no remission (HR = 3.348, 95% CI 1.264-8.870, P = 0.015) and ESRD (HR = 2.323, 95% CI 1.222-4.418, P = 0.010). CONCLUSION: In conclusion, our results identified the systemic activation of complement in human primary FSGS, possibly via the classical and alternative pathway. The activation of complement system was partly associated with the clinical manifestations, kidney pathological damage, and renal outcomes.


Assuntos
Ativação do Complemento/imunologia , Proteínas do Sistema Complemento , Glomerulosclerose Segmentar e Focal/imunologia , Glomérulos Renais , Adulto , Biomarcadores/sangue , Biomarcadores/urina , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/urina , Feminino , Humanos , Glomérulos Renais/imunologia , Glomérulos Renais/lesões , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
CEN Case Rep ; 9(4): 359-364, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32388829

RESUMO

A 52-year-old woman was diagnosed with chronic myeloid leukemia. Treatment with dasatinib, a second-generation Bcr-Abl tyrosine kinase inhibitor, was initiated, and complete cytogenetic remission was achieved. Two years later, proteinuria occurred, and the urinary protein level increased gradually in the next 3 years. Moreover, the serum creatinine level increased mildly during this period. The urinary protein level reached 2.18 g/gCr; hence, a renal biopsy was conducted. Light microscopy revealed mild proliferation of mesangial cells, and immunofluorescence analysis revealed IgG and C3 depositions in the mesangial area. Electron microscopy revealed electron-dense deposition in the paramesangial area, partial podocyte foot process effacement, and segmental endothelial cell swelling with a slight expansion of the subendothelial space. Dasatinib was discontinued, and within 3 weeks, the proteinuria disappeared, with improvements in her renal function. After switching to bosutinib, a new second-generation of tyrosine kinase inhibitor, the proteinuria remained negative. The rapid cessation of proteinuria following dasatinib discontinuation indicated that proteinuria was induced by the long-term administration of dasatinib. Proteinuria and renal function should be regularly monitored during dasatinib therapy.


Assuntos
Dasatinibe/efeitos adversos , Glomérulos Renais/lesões , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/efeitos adversos , Proteinúria/induzido quimicamente , Compostos de Anilina/uso terapêutico , Biópsia , Creatinina/sangue , Dasatinibe/uso terapêutico , Substituição de Medicamentos , Feminino , Imunofluorescência/métodos , Humanos , Rim/patologia , Glomérulos Renais/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Células Mesangiais/ultraestrutura , Microscopia Eletrônica/métodos , Pessoa de Meia-Idade , Nitrilas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Quinolinas/uso terapêutico , Indução de Remissão , Resultado do Tratamento , Suspensão de Tratamento
5.
PLoS One ; 15(4): e0231662, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315336

RESUMO

Early detection of obesity-related glomerulopathy in humans is challenging as it might not be detected by routine biomarkers of kidney function. This study's aim was to use novel kidney biomarkers and contrast-enhanced ultrasound (CEUS) to evaluate the effect of obesity development and weight-loss on kidney function, perfusion, and injury in dogs. Sixteen healthy lean adult beagles were assigned randomly but age-matched to a control group (CG) (n = 8) fed to maintain a lean body weight (BW) for 83 weeks; or to a weight-change group (WCG) (n = 8) fed the same diet to induce obesity (week 0-47), to maintain stable obese weight (week 47-56) and to lose BW (week 56-83). At 8 time points, values of systolic blood pressure (sBP); serum creatinine (sCr); blood urea nitrogen (BUN); serum cystatin C (sCysC); urine protein-to-creatinine ratio (UPC); and urinary biomarkers of glomerular and tubular injury were measured. Glomerular filtration rate (GFR) and renal perfusion using CEUS were assayed (except for week 68). For CEUS, intensity- and time-related parameters representing blood volume and velocity were derived from imaging data, respectively. At 12-22% weight-gain, cortical time-to-peak, representing blood velocity, was shorter in the WCG vs. the CG. After 37% weight-gain, sCysC, UPC, glomerular and tubular biomarkers of injury, urinary immunoglobulin G and urinary neutrophil gelatinase-associated lipocalin, respectively, were higher in the WCG. sBP, sCr, BUN and GFR were not significantly different. After 23% weight-loss, all alterations were attenuated. Early weight-gain in dogs induced renal perfusion changes measured with CEUS, without hyperfiltration, preceding increased urinary protein excretion with potential glomerular and tubular injury. The combined use of routine biomarkers of kidney function, CEUS and site-specific urinary biomarkers might be valuable in assessing kidney health of individuals at risk for obesity-related glomerulopathy in a non-invasive manner.


Assuntos
Glomerulonefrite/metabolismo , Glomérulos Renais/metabolismo , Túbulos Renais/metabolismo , Obesidade/metabolismo , Aumento de Peso/genética , Animais , Biomarcadores/urina , Nitrogênio da Ureia Sanguínea , Meios de Contraste/farmacologia , Creatinina/sangue , Modelos Animais de Doenças , Cães , Taxa de Filtração Glomerular , Glomerulonefrite/etiologia , Glomerulonefrite/patologia , Glomerulonefrite/urina , Humanos , Glomérulos Renais/diagnóstico por imagem , Glomérulos Renais/lesões , Glomérulos Renais/patologia , Túbulos Renais/diagnóstico por imagem , Túbulos Renais/lesões , Túbulos Renais/patologia , Obesidade/complicações , Obesidade/diagnóstico por imagem , Obesidade/patologia , Ultrassonografia , Sistema Urinário/metabolismo , Sistema Urinário/patologia , Aumento de Peso/fisiologia , Redução de Peso/genética , Redução de Peso/fisiologia
6.
Tohoku J Exp Med ; 249(2): 127-133, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31666446

RESUMO

Systemic lupus erythematosus (SLE) is characterized by the production of autoantibodies, which causes multi-organ injury such as lupus nephritis. SLE is associated with hypercoagulability. Activated coagulation factors such as tissue factor and VIIa complex and factor Xa activate protease-activated receptor 2 (PAR2). PAR2 promotes cytokine production through mitogen-activated protein kinase or nuclear factor kappa B signaling, and previous reports demonstrated that inhibition of PAR2 alleviated kidney injuries such as diabetic kidney disease and renal fibrosis in animal models. However, the involvement of PAR2 in the pathogenesis of SLE remains unclear. We therefore administered a selective PAR2 peptide antagonist, FSLLRY-NH2, to SLE-prone 4-month-old MRL-Faslpr mice for 4 weeks. Treatment with FSLLRY-NH2 caused the significant increases in the glomerular mesangial proliferation, glomerular deposition of both immunoglobulin G and complement factor C3d, and glomerular infiltration of Mac2-positive macrophages and CD3-positive T cells, compared with MRL-Faslpr mice treated with saline. In addition, the treatment with the PAR2 antagonist increased renal expression levels of tumor necrosis factor-α (Tnfa) and monocyte chemoattractant protein 1 (Mcp1) mRNA. Collectively, these results suggest that inhibition of PAR2 may increase the severity of inflammation in lupus nephritis; namely, opposite to previous observations, PAR2 has anti-inflammatory properties. We propose that activation of PAR2 could serve as a potential therapeutic option for patients with SLE.


Assuntos
Progressão da Doença , Glomérulos Renais/lesões , Glomérulos Renais/patologia , Lúpus Eritematoso Sistêmico/patologia , Receptor PAR-2/antagonistas & inibidores , Albuminúria/complicações , Animais , Anticorpos Antinucleares/metabolismo , Complexo CD3/metabolismo , Complemento C3/metabolismo , Citocinas/metabolismo , Feminino , Imunoglobulina G/metabolismo , Rim/metabolismo , Rim/patologia , Rim/fisiopatologia , Testes de Função Renal , Macrófagos/metabolismo , Camundongos Endogâmicos MRL lpr , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/metabolismo
7.
Int J Mol Sci ; 20(17)2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480394

RESUMO

Feeding rats with high-fat diet (HFD) with a single streptozotocin (STZ) injection induced obesity, slightly elevated fasting blood glucose and impaired glucose and insulin tolerance, and caused cardiac hypertrophy and mild diastolic dysfunction as published before by Koncsos et al. in 2016. Here we aimed to explore the renal consequences in the same groups of rats. Male Long-Evans rats were fed normal chow (CON; n = 9) or HFD containing 40% lard and were administered STZ at 20 mg/kg (i.p.) at week four (prediabetic rats, PRED, n = 9). At week 21 blood and urine samples were taken and kidney and liver samples were collected for histology, immunohistochemistry and for analysis of gene expression. HFD and STZ increased body weight and visceral adiposity and plasma leptin concentration. Despite hyperleptinemia, plasma C-reactive protein concentration decreased in PRED rats. Immunohistochemistry revealed elevated collagen IV protein expression in the glomeruli, and Lcn2 mRNA expression increased, while Il-1ß mRNA expression decreased in both the renal cortex and medulla in PRED vs. CON rats. Kidney histology, urinary protein excretion, plasma creatinine, glomerular Feret diameter, desmin protein expression, and cortical and medullary mRNA expression of TGF-ß1, Nrf2, and PPARγ were similar in CON and PRED rats. Reduced AMPKα phosphorylation of the autophagy regulator Akt was the first sign of liver damage, while plasma lipid and liver enzyme concentrations were similar. In conclusion, glomerular collagen deposition and increased lipocalin-2 expression were the early signs of kidney injury, while most biomarkers of inflammation, oxidative stress and fibrosis were negative in the kidneys of obese, prediabetic rats with mild heart and liver injury.


Assuntos
Colágeno/metabolismo , Glomérulos Renais/lesões , Glomérulos Renais/metabolismo , Lipocalina-2/metabolismo , Obesidade/metabolismo , Estado Pré-Diabético/metabolismo , Tecido Adiposo/metabolismo , Animais , Biomarcadores/metabolismo , Peso Corporal , Dieta Hiperlipídica , Fibrose , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/patologia , Glomérulos Renais/patologia , Lipídeos/sangue , Fígado/enzimologia , Fígado/patologia , Fígado/fisiopatologia , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/sangue , Estresse Oxidativo/genética , Fosforilação , Fosfosserina/metabolismo , Estado Pré-Diabético/sangue , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Long-Evans , Estreptozocina
8.
Sci Rep ; 9(1): 2986, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814628

RESUMO

Vascular endothelial growth factor (VEGF) inhibitors cause glomerular injury. We have recently shown that activation of protease-activated receptor 2 (PAR2) by factor Xa exacerbated diabetic kidney disease. However, the role of PAR2 in glomerular injury induced by VEGF blockade is not known. Herein, we investigated the effect of the lack of PAR2 on VEGF inhibitor-induced glomerular injury. Although administering an anti-VEGF antibody by itself did not show renal phenotype in wild type mice, its administration to mice lacking endothelial nitric oxide synthase (eNOS) caused glomerular injury. Different from what we expected, administration of an anti-VEGF antibody in mice lacking PAR2 and eNOS exacerbated albuminuria and reduced the expression levels of CD31, pro-angiogenic VEGF, and angiogenesis-related chemokines in their kidneys. Podocyte injury was also evident in this model of mice lacking PAR2. Our results suggest that PAR2 is protective against VEGF inhibitor-induced glomerular endothelial and podocyte injury.


Assuntos
Glomérulos Renais/lesões , Óxido Nítrico Sintase Tipo III/genética , Receptor PAR-2/metabolismo , Inibidores da Angiogênese/metabolismo , Animais , Nefropatias Diabéticas/metabolismo , Fator Xa/metabolismo , Feminino , Glomérulos Renais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/metabolismo , Podócitos/metabolismo , Substâncias Protetoras/metabolismo , Receptor PAR-2/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Lupus ; 28(3): 347-358, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30755145

RESUMO

Our study aims to evaluate the endothelial cell-podocyte crosstalk in proliferative lupus nephritis (LN). The semi-quantification scores of glomerular endothelial cell injury and the foot process width (FPW) were processed in 110 proliferative LN patients. Podocytes were stimulated with LN-derived IgG. Glomerular endothelial cells were treated with podocyte-conditioned medium (PCM), and then podocytes were incubated with endothelial cell-conditioned medium (ECM). The levels of vascular endothelial growth factor-A (VEGF-A) in PCM and endothelin-1 in ECM were analyzed, and the injury of podocyte and glomerular endothelial cells were further evaluated. The pathological score of glomerular endothelial cell injury was correlated with FPW in LN complicated with thrombotic microangiopathy. In vitro study showed the following: 1. Stimulation of podocytes by IgG from LN led to decline in the expression of nephrin with cytoskeleton rearrangement, and reduction of VEGF-A levels. 2. Exposure of glomerular endothelial cells to PCM incubated with LN-derived IgG (PCM-LN) induced more endothelin-1 secretion and disruption of intercellular tight junction. 3. Exposure of podocytes to ECM stimulated with PCM-LN could induce cytoskeleton redistribution with decrease of nephrin. In conclusion, the pathological glomerular endothelial cell lesions were associated with FPW and the VEGF-endothelin-1 system might play a critical role in the endothelial cell-podocyte crosstalk in LN.


Assuntos
Células Endoteliais/metabolismo , Glomérulos Renais/metabolismo , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Podócitos/metabolismo , Receptor Cross-Talk/fisiologia , Adulto , Biópsia , Estudos de Casos e Controles , Células Cultivadas , Células Endoteliais/patologia , Endotelina-1/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Rim/metabolismo , Rim/patologia , Glomérulos Renais/lesões , Glomérulos Renais/patologia , Nefrite Lúpica/sangue , Masculino , Podócitos/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
10.
Toxicology ; 415: 26-36, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682439

RESUMO

Drug-induced acute kidney injury (AKI) is a frequent cause of adverse drug reaction. Serum creatinine (CRE) and blood urea nitrogen (BUN) are widely used as standard biomarkers for kidney injury; however, the sensitivity and specificity are considered to be low. In recent years, circulating microRNA (miRNAs) have been attracting considerable attention as novel biomarkers for organ injury, but there are currently no established miRNA biomarkers for drug-induced AKI. The present study aimed to identify plasma miRNAs that may enable early and specific detection of drug-induced tubular and glomerular injury through next-generation sequencing analysis. Six-week old male Sprague-Dawley (SD) rats were intravenously administered cisplatin (CSP, 6 mg/kg) and gentamicin (GEN, 120 mg/kg) to induce tubular injury. To create glomerular injury models, puromycin (PUR, 120 mg/kg) and doxorubicin (DOX, 7.5 mg/kg) were intravenously administered, and these models were always accompanied by tubular damage. Small RNA-sequencing was performed to analyze time-dependent changes in the plasma miRNA profiles. The cluster analyses showed that there were distinct plasma miRNA profiles according to the types of injury, and the changes reflected the progress of renal damages. In the differential analysis, miR-3473 was specifically up-regulated in the glomerular injury models. miR-143-3p and miR-122-5p were commonly down-regulated in all models, and the changes were earlier than the traditional biomarkers, such as plasma CRE and BUN. These data indicated that changes in the specific miRNAs in plasma may enable the early and sensitive detection of tubular and glomerular injuries. The present study suggests the potential utility of plasma miRNAs in the early and type-specific detection of drug-induced AKI.


Assuntos
Cisplatino/toxicidade , Doxorrubicina/toxicidade , Gentamicinas/toxicidade , Glomérulos Renais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , MicroRNAs/sangue , Puromicina/toxicidade , Animais , Biomarcadores/sangue , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Regulação para Baixo/efeitos dos fármacos , Glomérulos Renais/lesões , Glomérulos Renais/patologia , Túbulos Renais/lesões , Túbulos Renais/patologia , Masculino , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Regulação para Cima/efeitos dos fármacos
11.
Sci Rep ; 8(1): 16812, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30429495

RESUMO

Currently, cellular senescence has emerged as a fundamental contributor to chronic organ diseases. Radiation is one of the stress factors that induce cellular senescence. Although the kidney is known as a radiosensitive organ, whether and how radiation-induced cellular senescence is associated with kidney diseases remains unclear. In this study, we performed experiments on 7-8-week-old male rats that received a single dose of 18-Gy radiation in the unilateral kidney. The irradiated kidneys showed hallmarks of cellular senescence, including increased SA-ß-gal activity, upregulation of cyclin-dependent kinase inhibitor (p53, p21, and p16), and absence of DNA proliferation marker (Ki-67). Furthermore, combined with in-vitro experiments, we demonstrated that radiation-induced senescent glomerular endothelial cells acquired altered gene expression, namely, senescence-associated secretory phenotype (particularly, IL-6), which might be triggered by NF-kB signaling pathway. Pathological analysis suggested severe glomerular endothelial cell injury, as evidenced by thrombotic microangiopathy, collapsing glomeruli, and reduced endothelial cell numbers. We suggested that glomerular endothelial cells were more susceptible to radiation-induced cellular senescence. In conclusion, the current study is the first to identify the important role of radiation-induced cellular senescence, mainly derived from glomerular endothelial cells, for the development of glomerular injury.


Assuntos
Senescência Celular/efeitos da radiação , Nefropatias/etiologia , Animais , Células Endoteliais/patologia , Células Endoteliais/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Nefropatias/patologia , Glomérulos Renais/lesões , Glomérulos Renais/patologia , Glomérulos Renais/efeitos da radiação , Masculino , Lesões Experimentais por Radiação , Ratos , Raios X/efeitos adversos
12.
J Cell Mol Med ; 22(11): 5450-5467, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30187999

RESUMO

Podocyte injury is an early pathological change characteristic of various glomerular diseases, and apoptosis and F-actin cytoskeletal disruption are typical features of podocyte injury. In this study, we found that adriamycin (ADR) treatment resulted in typical podocyte injury and repressed plectin expression. Restoring plectin expression protected against ADR-induced podocyte injury whereas siRNA-mediated plectin silencing produced similar effects as ADR-induced podocyte injury, suggesting that plectin plays a key role in preventing podocyte injury. Further analysis showed that plectin repression induced significant integrin α6ß4, focal adhesion kinase (FAK) and p38 MAPK phosphorylation. Mutating Y1494, a key tyrosine residue in the integrin ß4 subunit, blocked FAK and p38 phosphorylation, thereby alleviating podocyte injury. Inhibitor studies demonstrated that FAK Y397 phosphorylation promoted p38 activation, resulting in podocyte apoptosis and F-actin cytoskeletal disruption. In vivo studies showed that administration of ADR to rats resulted in significantly increased 24-hour urine protein levels along with decreased plectin expression and activated integrin α6ß4, FAK, and p38. Taken together, these findings indicated that plectin protects podocytes from ADR-induced apoptosis and F-actin cytoskeletal disruption by inhibiting integrin α6ß4/FAK/p38 pathway activation and that plectin may be a therapeutic target for podocyte injury-related glomerular diseases.


Assuntos
Quinase 1 de Adesão Focal/genética , Rim/metabolismo , Plectina/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Citoesqueleto de Actina/genética , Actinas/genética , Animais , Apoptose/efeitos dos fármacos , Doxorrubicina/toxicidade , Humanos , Integrina alfa6beta4/genética , Rim/lesões , Rim/patologia , Glomérulos Renais/lesões , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Camundongos , Fosforilação , Podócitos/metabolismo , Ratos , Transdução de Sinais/genética
13.
Am J Physiol Renal Physiol ; 315(4): F759-F768, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717936

RESUMO

Osteopontin (OPN) is a pro-and anti-inflammatory molecule that simultaneously attenuates oxidative stress. Both inflammation and oxidative stress play a role in the pathogenesis of glomerulonephritis and in the progression of kidney injury. Importantly, OPN is highly induced in nephritic kidneys. To characterize further the role of OPN in kidney injury we used OPN-/- mice in antiglomerular basement membrane reactive serum-induced immune (NTS) nephritis, an inflammatory and progressive model of kidney disease. Normal wild-type (WT) and OPN-/- mice did not show histological differences. However, nephritic kidneys from OPN-/- mice showed severe damage compared with WT mice. Glomerular proliferation, necrotizing lesions, crescent formation, and tubulointerstitial injury were significantly higher in OPN-/- mice. Macrophage infiltration was increased in the glomeruli and interstitium in OPN-/- mice, with higher expression of IL-6, CCL2, and chemokine CXCL1. In addition, collagen (Col) I, Col III, and Col IV deposition were increased in kidneys from OPN-/- mice. Elevated expression of the reactive oxygen species-generating enzyme Nox4 and blunted expression of Nrf2, a molecule that inhibits reactive oxygen species and inflammatory pathways, was observed in nephritic kidneys from OPN-/- mice. Notably, CD11b diphteria toxin receptor mice with NTS nephritis selectively depleted of macrophages and reconstituted with OPN-/- macrophages showed less kidney injury compared with mice receiving WT macrophages. These findings suggest that in global OPN-/- mice there is increased inflammation and redox imbalance that mediate kidney damage. However, absence of macrophage OPN is protective, indicating that macrophage OPN plays a role in the induction and progression of kidney injury in NTS nephritis.


Assuntos
Inflamação/metabolismo , Glomérulos Renais/lesões , Macrófagos/patologia , Osteopontina/metabolismo , Animais , Modelos Animais de Doenças , Glomerulonefrite/patologia , Glomérulos Renais/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Knockout , Sistema Urinário/metabolismo
14.
Cell Death Dis ; 8(6): e2883, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28617440

RESUMO

The NF-κB family of transcription factors is important for many cellular functions, in particular initiation and propagation of inflammatory and immune responses. However, recent data has suggested that different subunits of the NF-κB family can suppress the inflammatory response. NF-κB1, from the locus nfκb1, can inhibit transcription, acting as a brake to the recognised pro-inflammatory activity of other NF-κB subunits. We tested the function of NF-κB1 in an acute (nephrotoxic serum (NTS) nephritis) and a chronic (unilateral ureteric obstruction (UUO)) model of renal injury using NF-κB1 (nfκb1-/-) knockout mice. Deficiency in NF-κB1 increased the severity of glomerular injury in NTS-induced nephritis and was associated with greater proteinuria and persistent pro-inflammatory gene expression. Induction of disease in bone marrow chimeric mice demonstrated that the absence of NF-κB1 in either bone marrow or glomerular cells increased the severity of injury. Early after UUO (day 3) there was more severe histological injury in the nfκb1-/- mice but by day 10, disease severity was equivalent in wild type and nfκb1-/- mice. In conclusion, NF-κB1 modifies acute inflammatory renal injury but does not influence chronic fibrotic injury.


Assuntos
Nefropatias/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Células da Medula Óssea/citologia , Modelos Animais de Doenças , Fibrose , Perfilação da Expressão Gênica , Homozigoto , Inflamação , Rim/embriologia , Rim/lesões , Glomérulos Renais/lesões , Glomérulos Renais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrite/fisiopatologia , Estresse Oxidativo , Fenótipo , Ligação Proteica , Proteinúria/metabolismo , Fator de Transcrição RelA/genética
15.
Free Radic Biol Med ; 106: 236-244, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28193546

RESUMO

NADPH oxidase (NOX)-derived reactive oxygen species (ROS) have been demonstrated to mediate the activation of NOD-like receptor protein 3 (NLRP3) inflammasomes in podocytes in response to elevated levels of homocysteine (Hcys). However, it remains unknown how NLRP3 inflammasome activation is triggered by NOX. The present study tested whether the guanine nucleotide exchange factor Vav2 mediates Rac1-mediated NOX activation in response to elevated Hcys leading to NLRP3 inflammasome activation in podocytes and consequent glomerular injury. In a mouse model of hyperhomocysteinemia (hHcys), we found that mice with hHcys (on the FF diet) or oncoVav2 (a constitutively active form of Vav2) transfection in the kidney exhibited increased colocalization of NLRP3 with apoptosis-associated speck-like protein (ASC) or caspase-1 and elevated IL-1ß levels in glomeruli, indicating the formation and activation of the NLRP3 inflammasome. This glomerular NLRP3 inflammasome activation was accompanied by podocyte dysfunction and glomerular injury, even sclerosis. Local transfection of Vav2 shRNA plasmids significantly attenuated hHcys-induced NLRP3 inflammasome activation, podocyte injury, and glomerular sclerosis. In cultured podocytes, Hcys treatment and oncoVav2 transfection were also found to increase NLRP3 inflammasome formation and activation, which were all inhibited by Vav2 shRNA. Furthermore, Vav2 shRNA prevented Hcys-induced podocyte damage as shown by restoring Hcys-impaired VEGF secretion and podocin production. This inhibitory action of Vav2 shRNA on Hcys-induced podocyte injury was associated with reduction of Rac1 activity and ROS production. These results suggest that elevated Hcys levels activate Vav2 and thereby increase NOX activity leading to ROS production, which triggers NLRP3 inflammasome activation, podocyte dysfunction and glomerular injury.


Assuntos
Hiper-Homocisteinemia/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Modelos Animais de Doenças , Homocisteína/biossíntese , Humanos , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/patologia , Inflamassomos/genética , Inflamassomos/metabolismo , Glomérulos Renais/lesões , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neuropeptídeos/genética , Podócitos/metabolismo , Podócitos/patologia , Proteínas Proto-Oncogênicas c-vav/genética , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas rac1 de Ligação ao GTP/genética
16.
Am J Pathol ; 186(11): 2833-2845, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27662796

RESUMO

Complement-activation controllers, including decay accelerating factor (DAF), are gaining emphasis as they minimize injury in various dysregulated complement-activation disorders, including glomerulopathies. Heme oxygenase (HO)-1 overexpression or induction has been shown to attenuate injury in complement-dependent models of glomerulonephritis. This study investigated whether up-regulation of DAF by heme oxygenase 1 (HO-1) is an underlying mechanism by using Hmox-1-deficient rats (Hmox1+/-; Hmox1-/-) or rats with HO-1 overexpression targeted to glomerular epithelial cells (GECHO-1), which are particularly vulnerable to complement-mediated injury owing to their terminally differentiated nature. Constitutively expressed DAF was decreased in glomeruli of Hmox1-/- rats and augmented in glomeruli of GECHO-1 rats. In GECHO-1 rats with anti-glomerular basement membrane antibody mediated, complement-dependent injury, complement component C3 fragment b (C3b) deposition was reduced, whereas proteinuria was diminished. In glomeruli of wild-type rats, the natural Hmox substrate, hemin, induced glomerular DAF. This effect was attenuated in glomeruli of Hmox1-/- rats and augmented in glomeruli of GECHO-1 rats. Hemin analogues differing in either metal or porphyrin ring functionalities, acting as competitive Hmox-substrate inhibitors, also increased glomerular DAF and reduced C3b deposition after spontaneous complement activation. In the presence of a DAF-blocking antibody, the reduction in C3b deposition was reversed. These observations establish HO-1 as a physiologic regulator of glomerular DAF and identify hemin analogues as inducers of functional glomerular DAF able to minimize C3b deposition.


Assuntos
Antígenos CD55/metabolismo , Glomerulonefrite/imunologia , Heme Oxigenase-1/metabolismo , Hemina/imunologia , Glomérulos Renais/metabolismo , Animais , Antígenos CD55/genética , Ativação do Complemento , Complemento C3b/imunologia , Complemento C3b/metabolismo , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Glomerulonefrite/enzimologia , Glomerulonefrite/patologia , Heme Oxigenase-1/genética , Hemina/análogos & derivados , Glomérulos Renais/imunologia , Glomérulos Renais/lesões , Glomérulos Renais/patologia , Masculino , Proteinúria , Ratos , Ratos Sprague-Dawley , Regulação para Cima
17.
PLoS One ; 10(4): e0116700, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875837

RESUMO

BACKGROUND: Focal segmental glomerulosclerosis (FSGS) lesions have often been discussed as a negative predictor in idopathic membranous nephropathy (MN). The mechanism of the development of FSGS lesion in MN is still uncertain. METHODS: From 250 cases of MN, 26 cases contained FSGS lesion. We compared the clinicopathological characteristics between MN cases with FSGS lesion [MN-FSGS(+)] and MN without FSGS lesion [MN-FSGS(-)], matched for gender, age, stage of MN. RESULTS: The glomerular filtration rate (eGFR) was significantly lower in MN-FSGS(+) cases compared to MN-FSGS(-), although nephrotic syndrome, hematuria, and systolic blood pressure levels were not significantly different between the two groups. Pathologically, glomeruli in MN-FSGS(+) cases showed narrowing and loss of glomerular capillaries with separating from GBM or disappearance of CD34+ endothelial cells, and accumulation of extracellular matrix (ECM) in capillary walls, indicating the development of glomerular capillary injury. These findings of endothelial injury were seen even in MN-FSGS(-) cases, but they were more prominent in MN-FSGS(+) than MN-FSGS(-) by computer assessed morphometric analysis. In MN-FSGS(+) cases, 44 out of 534 glomeruli (8.2%) contained FSGS lesions (n = 31, NOS lesion; n = 13, perihilar lesion). Significant thickness of GBM with ECM accumulation was evident in MN-FSGS(+) cases. Podocyte injury with effacement of foot processes was also noted, but the expression of VEGF on podocytes was not different between the two groups, which suggests that the significant thickness of capillary walls may influence the function of VEGF from podocyte resulting in the glomerular capillary injury that contribute to the development of FSGS lesion in MN. CONCLUSION: Glomerular capillary injury was seen in all MN cases. Furthermore, the prominent injuries of glomerular capillaries may be associated with the deterioration of eGFR and the formation of FSGS lesions in MN.


Assuntos
Células Endoteliais/patologia , Glomerulonefrite Membranosa/patologia , Glomerulosclerose Segmentar e Focal/patologia , Glomérulos Renais/patologia , Idoso , Biópsia , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Taxa de Filtração Glomerular , Glomerulonefrite Membranosa/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Humanos , Glomérulos Renais/lesões , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Podócitos/metabolismo , Podócitos/patologia , Fator A de Crescimento do Endotélio Vascular/biossíntese
18.
Am J Physiol Renal Physiol ; 308(7): F774-83, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25587123

RESUMO

Podocyte injury and loss directly cause proteinuria and the progression to glomerulosclerosis. Elucidation of the mechanisms of podocyte survival and recovery from injury is critical for designing strategies to prevent the progression of glomerular diseases. Glial cell line-derived neurotrophic factor (GDNF) and its receptor tyrosine kinase, Ret, are upregulated in both nonimmune and immune-mediated in vitro and in vivo models of glomerular diseases. We investigated whether Ret, a known receptor tyrosine kinase critical for kidney morphogenesis and neuronal growth and development, is necessary for glomerular and podocyte development and survival in vivo. Since deletions of both GDNF and Ret result in embryonic lethality due to kidney agenesis, we examined the role of Ret in vivo by generating mice with a conditional deletion of Ret in podocytes (Ret(flox/flox); Nphs2-Cre). In contrast to the lack of any developmental and maintenance deficits, Ret(flox/flox); Nphs2-Cre mice showed a significantly enhanced susceptibility to adriamycin nephropathy, a rodent model of focal segmental glomerulosclerosis. Thus, these findings demonstrated that the Ret signaling pathway is important for podocyte survival and recovery from glomerular injury in vivo.


Assuntos
Glomérulos Renais/metabolismo , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Glomerulosclerose Segmentar e Focal/metabolismo , Glomérulos Renais/lesões , Camundongos , Camundongos Knockout , Síndrome Nefrótica/congênito , Síndrome Nefrótica/metabolismo , Podócitos/citologia , Transdução de Sinais/fisiologia
19.
J Am Soc Nephrol ; 26(1): 133-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24925721

RESUMO

Diabetic kidney disease (DKD) is the most common cause of ESRD in the United States. Podocyte injury is an important feature of DKD that is likely to be caused by circulating factors other than glucose. Soluble urokinase plasminogen activator receptor (suPAR) is a circulating factor found to be elevated in the serum of patients with FSGS and causes podocyte αVß3 integrin-dependent migration in vitro. Furthermore, αVß3 integrin activation occurs in association with decreased podocyte-specific expression of acid sphingomyelinase-like phosphodiesterase 3b (SMPDL3b) in kidney biopsy specimens from patients with FSGS. However, whether suPAR-dependent αVß3 integrin activation occurs in diseases other than FSGS and whether there is a direct link between circulating suPAR levels and SMPDL3b expression in podocytes remain to be established. Our data indicate that serum suPAR levels are also elevated in patients with DKD. However, unlike in FSGS, SMPDL3b expression was increased in glomeruli from patients with DKD and DKD sera-treated human podocytes, where it prevented αVß3 integrin activation by its interaction with suPAR and led to increased RhoA activity, rendering podocytes more susceptible to apoptosis. In vivo, inhibition of acid sphingomyelinase reduced proteinuria in experimental DKD but not FSGS, indicating that SMPDL3b expression levels determined the podocyte injury phenotype. These observations suggest that SMPDL3b may be an important modulator of podocyte function by shifting suPAR-mediated podocyte injury from a migratory phenotype to an apoptotic phenotype and that it represents a novel therapeutic glomerular disease target.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Regulação Enzimológica da Expressão Gênica , Nefropatias/metabolismo , Glomérulos Renais/patologia , Podócitos/patologia , Esfingomielina Fosfodiesterase/metabolismo , Animais , Apoptose , Movimento Celular , Feminino , Células HEK293 , Humanos , Integrina alfaVbeta3/metabolismo , Integrinas/metabolismo , Glomérulos Renais/lesões , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neuropeptídeos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Podócitos/citologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/sangue , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP
20.
Arq. bras. endocrinol. metab ; 58(6): 630-639, 08/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-721394

RESUMO

Objective: We sought to test the effect of different dosages of pioglitazone (PIO) on the glomerular expression of podocalyxin and urinary sediment podocalyxin excretion and to explore the potential renoprotective mechanism. Materials and methods: Type 1 diabetes induced with streptozotocin (65 mg/kg) in 36 male Sprague-Dawley rats were randomly allocated to be treated with vehicle or 10, 20, 30 mg/kg/d PIO respectively for 8 weeks. Eight rats were enrolled in the normal control group. Results: At 8th week, rats were sacrificed for the observation of kidney injury through electron microscope. Glomerular podocalyxin production including mRNA and protein were determined by RT-PCR and immunohistochemistry respectively. Levels of urinary albumin excretion and urinary sediment podocalyxin, kidney injury index were all significantly increased, whereas expression of glomerular podocalyxin protein and mRNA were decreased significantly in diabetic rats compared to normal control. Dosages-dependent analysis revealed that protective effect of PIO ameliorated the physiopathological changes and reached a peak at dosage of 20 mg/kg/d. Conclusion: PIO could alleviate diabetic kidney injury in a dose-dependent pattern and the role may be associated with restraining urinary sediment podocalyxin excretion and preserving the glomerular podocalyxin expression. .


Objetivo: Buscamos testar os efeitos de diferentes doses de pioglitazona (PIO) sobre a expressão glomerular de podocalixina e sobre a excreção de podocalixina em células do sedimento urinário, além de explorar o potencial mecanismo de proteção renal. Materiais e métodos: O diabetes tipo 1 foi induzido em 36 ratos Sprague-Dawley machos com estreptozotocina (65 mg/kg). Os animais foram tratados apenas com o veículo, ou com 10, 20, 30 mg/kg/d de PIO por 8 semanas. Oito ratos foram colocados no grupo controle. Resultados: Na oitava semana, os ratos foram sacrificados para se observar a lesão renal em microscopia eletrônica. A produção de podocalixina glomerular, incluindo mRNA e proteína, foi determinada por RT-PCR e imuno-histoquímica, respectivamente. Os níveis urinários de albumina e podocalixina nas células do sedimento urinário e o índice de lesão renal estavam todos significativamente aumentados, enquanto a expressão glomerular da proteína podocalixina e do mRNA estava significativamente diminuída em ratos diabéticos comparados com o controle normal. A análise dos efeitos dose-dependentes revelou que o efeito protetor da PIO melhorou as mudanças fisiopatológicas e atingiu um pico na dose de 20 mg/kg/dia. Conclusão: A PIO pode melhorar a injúria renal de forma dose-dependente e este papel pode estar associado com a prevenção da excreção de podocalixina nas células do sedimento urinário e com a preservação da expressão glomerular de podocalixina. .


Assuntos
Animais , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Podócitos/patologia , Sialoglicoproteínas/metabolismo , Tiazolidinedionas/uso terapêutico , HDL-Colesterol/sangue , HDL-Colesterol/efeitos dos fármacos , LDL-Colesterol/sangue , LDL-Colesterol/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Imuno-Histoquímica , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/lesões , Glomérulos Renais/ultraestrutura , Microscopia Eletrônica , Distribuição Aleatória , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , RNA Mensageiro/isolamento & purificação , Sialoglicoproteínas/genética , Sialoglicoproteínas/urina , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA