Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 656
Filtrar
1.
Molecules ; 25(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575421

RESUMO

Phosphodiesters of glucose-2-phosphate (G2P) are found only in few natural compounds such as agrocinopine D and agrocin 84. Agrocinopine D is a G2P phosphodiester produced by plants infected by Agrobacterium fabrum C58 and recognized by the bacterial periplasmic binding protein AccA for being transported into the bacteria before cleavage by the phosphodiesterase AccF, releasing G2P, which promotes virulence by binding the repressor protein AccR. The G2P amide agrocin 84 is a natural antibiotic produced by the non-pathogenic Agrobacterium radiobacter K84 strain used as a biocontrol agent by competing with Agrobacterium fabrum C58. G2P esters are also found in irregular glycogen structures. The rare glucopyranosyl-2-phophoryl moiety found in agrocin 84 is the key structural signature enabling its action as a natural antibiotic. Likewise, G2P and G2P esters can also dupe the Agrobacterium agrocinopine catabolism cascade. Such observations illustrate the importance of G2P esters on which we have recently focused our interest. After a brief review of the reported phosphorylation coupling methods and the choice of carbohydrate building blocks used in G2P chemistry, a flexible access to glucose-2-phosphate esters using the phosphoramidite route is proposed.


Assuntos
Nucleotídeos de Adenina , Agrobacterium , Glucofosfatos , Glicogênio , Nucleotídeos de Adenina/química , Nucleotídeos de Adenina/metabolismo , Agrobacterium/química , Agrobacterium/metabolismo , Ésteres/química , Ésteres/metabolismo , Glucofosfatos/química , Glucofosfatos/metabolismo , Glicogênio/química , Glicogênio/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo
2.
J Invest Dermatol ; 140(8): 1513-1523.e5, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32004566

RESUMO

Condylomata acuminata (CA) is caused by human papillomavirus (HPV) infections of keratinocytes and is a common sexually transmitted disease. The main clinical feature and risk of CA is the high recurrence of genital warts formed by infected keratinocytes. Metabolic reprogramming of most types of mammalian cells including keratinocytes can provide energy and intermediates essential for their survival. Here, we report that HPV infection develops a hypoxic microenvironment in CA warts by inducing the accumulation of glycogen and increased glycogen metabolism in the infected keratinocytes in a hypoxia-inducible factor 1α (HIF-1α) -dependent pathway. Our in vitro studies show that the increased glycogen metabolism is essential for the survival and proliferation of keratinocytes. Regarding its mechanism of action, glycogenolysis generates glucose-1-phosphate that fluxes into the pentose phosphate pathway and, then, generates abundant nicotinamide adenine dinucleotide phosphate, thereby ensuring high levels of glutathione in keratinocytes under hypoxia. The abrogation of glycogen synthesis and glycogenolysis decreases the ratio of glutathione and glutathione disulfide and increases the level of ROS, further resulting in the impairment of keratinocyte survival. Collectively, our work offers an insight into the metabolic reprogramming in the development of CA and implies that the intervention of glycogen metabolism would be a promising therapeutic target for CA.


Assuntos
Condiloma Acuminado/patologia , Glicogênio/metabolismo , Glicogenólise , Queratinócitos/metabolismo , Papillomaviridae/patogenicidade , Hipóxia Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Condiloma Acuminado/virologia , Glucofosfatos/metabolismo , Humanos , Queratinócitos/patologia , Queratinócitos/virologia , Masculino , Via de Pentose Fosfato
3.
Carbohydr Res ; 488: 107902, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31911362

RESUMO

Trehalose 6-phosphate (Tre6P) is an important intermediate for trehalose biosynthesis. Recent researches have revealed that Tre6P is an endogenous signaling molecule that regulates plant development and stress responses. The necessity of Tre6P in physiological studies is expected to be increasing. To achieve the cost-effective production of Tre6P, a novel approach is required. In this study, we utilized trehalose 6-phosphate phosphorylase (TrePP) from Lactococcus lactis to produce Tre6P. In the reverse phosphorolysis by the TrePP, 91.9 mM Tre6P was produced from 100 mM ß-glucose 1-phosphate (ß-Glc1P) and 100 mM glucose 6-phosphate (Glc6P). The one-pot reaction of TrePP and maltose phosphorylase (MP) enabled production of 65 mM Tre6P from 100 mM maltose, 100 mM Glc6P, and 20 mM inorganic phosphate. Addition of ß-phosphoglucomutase to this reaction produced Glc6P from ß-Glc1P and thus reduced requirement of Glc6P as a starting material. Within the range of 20-469 mM inorganic phosphate tested, the 54 mM concentration yielded the highest amount of Tre6P (33 mM). Addition of yeast increased the yield because of its glucose consumption. Finally, from 100 mmol maltose and 60 mmol inorganic phosphate, we successfully achieved production of 37.5 mmol Tre6P in a one-pot reaction (100 mL), and 9.4 g Tre6P dipotassium salt was obtained.


Assuntos
Glucosiltransferases/metabolismo , Lactococcus lactis/enzimologia , Fosfatos Açúcares/biossíntese , Trealose/análogos & derivados , Leveduras/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Clonagem Molecular , Glucose-6-Fosfatase/metabolismo , Glucofosfatos/metabolismo , Glucosiltransferases/genética , Lactococcus lactis/genética , Fosfatos/metabolismo , Trealose/biossíntese , Leveduras/genética
4.
J Biol Chem ; 293(18): 6925-6941, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29540484

RESUMO

Cardiac energy demands during early embryonic periods are sufficiently met through glycolysis, but as development proceeds, the oxidative phosphorylation in mitochondria becomes increasingly vital. Adrenergic hormones are known to stimulate metabolism in adult mammals and are essential for embryonic development, but relatively little is known about their effects on metabolism in the embryonic heart. Here, we show that embryos lacking adrenergic stimulation have ∼10-fold less cardiac ATP compared with littermate controls. Despite this deficit in steady-state ATP, neither the rates of ATP formation nor degradation was affected in adrenergic hormone-deficient hearts, suggesting that ATP synthesis and hydrolysis mechanisms were fully operational. We thus hypothesized that adrenergic hormones stimulate metabolism of glucose to provide chemical substrates for oxidation in mitochondria. To test this hypothesis, we employed a metabolomics-based approach using LC/MS. Our results showed glucose 1-phosphate and glucose 6-phosphate concentrations were not significantly altered, but several downstream metabolites in both glycolytic and pentose-phosphate pathways were significantly lower compared with controls. Furthermore, we identified glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase as key enzymes in those respective metabolic pathways whose activity was significantly (p < 0.05) and substantially (80 and 40%, respectively) lower in adrenergic hormone-deficient hearts. Addition of pyruvate and to a lesser extent ribose led to significant recovery of steady-state ATP concentrations. These results demonstrate that without adrenergic stimulation, glucose metabolism in the embryonic heart is severely impaired in multiple pathways, ultimately leading to insufficient metabolic substrate availability for successful transition to aerobic respiration needed for survival.


Assuntos
Coração/embriologia , Metabolômica , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Via de Pentose Fosfato , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/metabolismo , Animais , Epinefrina/metabolismo , Feminino , Glucose/metabolismo , Glucose-6-Fosfato/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Glucofosfatos/metabolismo , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/metabolismo , Glicólise , Hidrólise , Cetona Oxirredutases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Norepinefrina/metabolismo , Fosforilação , Gravidez
5.
Infect Immun ; 85(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28396325

RESUMO

Listeria monocytogenes is an environmental saprophyte and intracellular bacterial pathogen. Upon invading mammalian cells, the bacterium senses abrupt changes in its metabolic environment, which are rapidly transduced to regulation of virulence gene expression. To explore the relationship between L. monocytogenes metabolism and virulence, we monitored virulence gene expression dynamics across a library of genetic mutants grown under two metabolic conditions known to activate the virulent state: charcoal-treated rich medium containing glucose-1-phosphate and minimal defined medium containing limiting concentrations of branched-chain amino acids (BCAAs). We identified over 100 distinct mutants that exhibit aberrant virulence gene expression profiles, the majority of which mapped to nonessential metabolic genes. Mutants displayed enhanced, decreased, and early and late virulence gene expression profiles, as well as persistent levels, demonstrating a high plasticity in virulence gene regulation. Among the mutants, one was noteworthy for its particularly low virulence gene expression level and mapped to an X-prolyl aminopeptidase (PepP). We show that this peptidase plays a role in posttranslational activation of the major virulence regulator, PrfA. Specifically, PepP mediates recruitment of PrfA to the cytoplasmic membrane, a step identified as critical for PrfA protein activation. This study establishes a novel step in the complex mechanism of PrfA activation and further highlights the cross regulation of metabolism and virulence.


Assuntos
Aminopeptidases/metabolismo , Proteínas de Bactérias/genética , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Macrófagos/microbiologia , Fatores de Terminação de Peptídeos/genética , Fatores de Virulência/genética , Animais , Feminino , Regulação Bacteriana da Expressão Gênica , Glucofosfatos/metabolismo , Listeria monocytogenes/metabolismo , Listeriose/microbiologia , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Mutação , RNA Bacteriano/genética , Virulência/genética
6.
Tuberculosis (Edinb) ; 95(6): 664-677, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26318557

RESUMO

N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) is a pivotal bifunctional enzyme, its N and C terminal domains catalyzes uridyltransferase and acetyltransferase activities, respectively. Final product of GlmU catalyzed reaction, uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc), acts as sugar donor providing GlcNAc residues in the synthesis of peptidoglycan and a disaccharide linker (D-N-GlcNAc-1-rhamnose), the key structural components of Mycobacterium tuberculosis (M. tuberculosis) cell wall. In the present study, we have searched new inhibitors against acetyltransferase activity of M. tuberculosis GlmU. A subset of 1607 synthetic compounds, selected through dual approach i.e., in-silico and whole cell screen against 20,000 compounds from ChemBridge library, was further screened using an in-vitro high throughput bioassay to identify inhibitors of acetyltransferase domain of M. tuberculosis GlmU. Four compounds were found to inhibit GlmU enzyme specific to acetyltransferase activity, with IC50 values ranging from 9 to 70 µM. Two compounds (6624116, 5655606) also exhibited whole cell activity against drug susceptible as well as drug resistant M. tuberculosis. These two compounds also exhibited increased anti-TB activity when tested in combination with rifampicin, isoniazid and ethambutol, however 5655606 was cytotoxic to eukaryotic cell line. These results demonstrate that identified chemical scaffolds can be used as inhibitors of M. tuberculosis cell wall enzyme after optimizations for future anti-TB drug development program.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Complexos Multienzimáticos/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/química , Antituberculosos/toxicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Quimioterapia Combinada , Inibidores Enzimáticos/química , Inibidores Enzimáticos/toxicidade , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Glucofosfatos/metabolismo , Células Hep G2 , Humanos , Cinética , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Terapia de Alvo Molecular , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Mutação , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Relação Estrutura-Atividade
7.
FEBS Lett ; 589(13): 1444-9, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25953126

RESUMO

Substrate binding properties of the large (LS) and small (SS) subunits of potato tuber ADP-glucose pyrophosphorylase were investigated by using isothermal titration calorimetry. Our results clearly show that the wild type heterotetramer (S(WT)L(WT)) possesses two distinct types of ATP binding sites, whereas the homotetrameric LS and SS variant forms only exhibited properties of one of the two binding sites. The wild type enzyme also exhibited significantly increased affinity to this substrate compared to the homotetrameric enzyme forms. No stable binding was evident for the second substrate, glucose-1-phosphate, in the presence or absence of ATPγS suggesting that interaction of glucose-1-phosphate is dependent on hydrolysis of ATP and supports the Theorell-Chance bi bi reaction mechanism.


Assuntos
Calorimetria/métodos , Glucose-1-Fosfato Adenililtransferase/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos/enzimologia , Solanum tuberosum/enzimologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Ligação Competitiva , Western Blotting , Glucose-1-Fosfato Adenililtransferase/química , Glucofosfatos/química , Glucofosfatos/metabolismo , Cinética , Modelos Moleculares , Estrutura Molecular , Proteínas de Plantas/química , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Termodinâmica
8.
Plant J ; 81(6): 947-60, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25645872

RESUMO

Upon nutrient deprivation, microalgae partition photosynthate into starch and lipids at the expense of protein synthesis and growth. We investigated the role of starch biosynthesis with respect to photosynthetic growth and carbon partitioning in the Chlamydomonas reinhardtii starchless mutant, sta6, which lacks ADP-glucose pyrophosphorylase. This mutant is unable to convert glucose-1-phosphate to ADP-glucose, the precursor of starch biosynthesis. During nutrient-replete culturing, sta6 does not re-direct metabolism to make more proteins or lipids, and accumulates 20% less biomass. The underlying molecular basis for the decreased biomass phenotype was identified using LC-MS metabolomics studies and flux methods. Above a threshold light intensity, photosynthetic electron transport rates (water → CO2) decrease in sta6 due to attenuated rates of NADPH re-oxidation, without affecting photosystems I or II (no change in isolated photosynthetic electron transport). We observed large accumulations of carbon metabolites that are precursors for the biosynthesis of lipids, amino acids and sugars/starch, indicating system-wide consequences of slower NADPH re-oxidation. Attenuated carbon fixation resulted in imbalances in both redox and adenylate energy. The pool sizes of both pyridine and adenylate nucleotides in sta6 increased substantially to compensate for the slower rate of turnover. Mitochondrial respiration partially relieved the reductant stress; however, prolonged high-light exposure caused accelerated photoinhibition. Thus, starch biosynthesis in Chlamydomonas plays a critical role as a principal carbon sink influencing cellular energy balance however, disrupting starch biosynthesis does not redirect resources to other bioproducts (lipids or proteins) during nutrient-replete culturing, resulting in cells that are susceptible to photochemical damage caused by redox stress.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Amido/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Biomassa , Carbono/metabolismo , Chlamydomonas reinhardtii/genética , Transporte de Elétrons , Glucose-1-Fosfato Adenililtransferase/metabolismo , Glucofosfatos/metabolismo , Luz , Metabolômica , Mutação , NADP/metabolismo , Oxirredução , Fenótipo , Fotossíntese , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
9.
Appl Environ Microbiol ; 81(5): 1559-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25527541

RESUMO

The Cori ester α-d-glucose 1-phosphate (αGlc 1-P) is a high-energy intermediate of cellular carbohydrate metabolism. Its glycosidic phosphomonoester moiety primes αGlc 1-P for flexible exploitation in glucosyl and phosphoryl transfer reactions. Two structurally and mechanistically distinct sugar-phosphate phosphatases from Escherichia coli were characterized in this study for utilization of αGlc 1-P as a phosphoryl donor substrate. The agp gene encodes a periplasmic αGlc 1-P phosphatase (Agp) belonging to the histidine acid phosphatase family. Had13 is from the haloacid dehydrogenase-like phosphatase family. Cytoplasmic expression of Agp (in E. coli Origami B) gave a functional enzyme preparation (kcat for phosphoryl transfer from αGlc 1-P to water, 40 s(-1)) that was shown by mass spectrometry to exhibit no free cysteines and the native intramolecular disulfide bond between Cys(189) and Cys(195). Enzymatic phosphoryl transfer from αGlc 1-P to water in H2 (18)O solvent proceeded with complete (18)O label incorporation into the phosphate released, consistent with catalytic reaction through O-1-P, but not C-1-O, bond cleavage. Hydrolase activity of both enzymes was not restricted to a glycosidic phosphomonoester substrate, and d-glucose 6-phosphate was converted with a kcat similar to that of αGlc 1-P. By examining phosphoryl transfer from αGlc 1-P to an acceptor substrate other than water (d-fructose or d-glucose), we discovered that Agp exhibited pronounced synthetic activity, unlike Had13, which utilized αGlc 1-P mainly for phosphoryl transfer to water. By applying d-fructose in 10-fold molar excess over αGlc 1-P (20 mM), enzymatic conversion furnished d-fructose 1-phosphate as the main product in a 55% overall yield. Agp is a promising biocatalyst for use in transphosphorylation from αGlc 1-P.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Glucofosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fósforo/metabolismo , Cinética , Especificidade por Substrato
10.
Biotechnol Bioeng ; 112(5): 1033-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25502731

RESUMO

Eukaryotic metabolism consists of a complex network of enzymatic reactions and transport processes which are distributed over different subcellular compartments. Currently, available metabolite measurement protocols allow to measure metabolite whole cell amounts which hinder progress to describe the in vivo dynamics in different compartments, which are driven by compartment specific concentrations. Phosphate (Pi) is an essential component for: (1) the metabolic balance of upper and lower glycolytic flux; (2) Together with ATP and ADP determines the phosphorylation energy. Especially, the cytosolic Pi has a critical role in disregulation of glycolysis in tps1 knockout. Here we developed a method that enables us to monitor the cytosolic Pi concentration in S. cerevisiae using an equilibrium sensor reaction: maltose + Pi < = > glucose + glucose-1-phosphate. The required enzyme, maltose phosphorylase from L. sanfranciscensis was overexpressed in S. cerevisiae. With this reaction in place, the cytosolic Pi concentration was obtained from intracellular glucose, G1P and maltose concentrations. The cytosolic Pi concentration was determined in batch and chemostat (D = 0.1 h(-1) ) conditions, which was 17.88 µmol/gDW and 25.02 µmol/gDW, respectively under Pi-excess conditions. Under Pi-limited steady state (D = 0.1 h(-1) ) conditions, the cytosolic Pi concentration dropped to only 17.7% of the cytosolic Pi in Pi-excess condition (4.42 µmol/gDW vs. 25.02 µmol/gDW). In response to a Pi pulse, the cytosolic Pi increased very rapidly, together with the concentration of sugar phosphates. Main sources of the rapid Pi increase are vacuolar Pi (and not the polyPi), as well as Pi uptake from the extracellular space. The temporal increase of cytosolic Pi increases the driving force of GAPDH reaction of the lower glycolytic reactions. The novel cytosol specific Pi concentration measurements provide new insight into the thermodynamic driving force for ATP hydrolysis, GAPDH reaction, and Pi transport over the plasma and vacuolar membranes.


Assuntos
Glucofosfatos/metabolismo , Fosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Técnicas Biossensoriais/economia , Técnicas Biossensoriais/métodos , Glucose/metabolismo , Glicólise , Maltose/metabolismo , Metabolômica/economia , Metabolômica/métodos , Saccharomyces cerevisiae/citologia
11.
Biochim Biophys Acta ; 1850(1): 13-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25277548

RESUMO

BACKGROUND: Mycobacterium tuberculosis is a pathogenic prokaryote adapted to survive in hostile environments. In this organism and other Gram-positive actinobacteria, the metabolic pathways of glycogen and trehalose are interconnected. RESULTS: In this work we show the production, purification and characterization of recombinant enzymes involved in the partitioning of glucose-1-phosphate between glycogen and trehalose in M. tuberculosis H37Rv, namely: ADP-glucose pyrophosphorylase, glycogen synthase, UDP-glucose pyrophosphorylase and trehalose-6-phosphate synthase. The substrate specificity, kinetic parameters and allosteric regulation of each enzyme were determined. ADP-glucose pyrophosphorylase was highly specific for ADP-glucose while trehalose-6-phosphate synthase used not only ADP-glucose but also UDP-glucose, albeit to a lesser extent. ADP-glucose pyrophosphorylase was allosterically activated primarily by phosphoenolpyruvate and glucose-6-phosphate, while the activity of trehalose-6-phosphate synthase was increased up to 2-fold by fructose-6-phosphate. None of the other two enzymes tested exhibited allosteric regulation. CONCLUSIONS: Results give information about how the glucose-1-phosphate/ADP-glucose node is controlled after kinetic and regulatory properties of key enzymes for mycobacteria metabolism. GENERAL SIGNIFICANCE: This work increases our understanding of oligo and polysaccharides metabolism in M. tuberculosis and reinforces the importance of the interconnection between glycogen and trehalose biosynthesis in this human pathogen.


Assuntos
Glucofosfatos/metabolismo , Glicogênio/biossíntese , Redes e Vias Metabólicas , Mycobacterium tuberculosis/metabolismo , Trealose/biossíntese , Regulação Alostérica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Glucose-6-Fosfato/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicogênio Sintase/genética , Glicogênio Sintase/metabolismo , Cinética , Modelos Biológicos , Mycobacterium tuberculosis/enzimologia , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo
12.
Biochim Biophys Acta ; 1850(1): 88-96, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25316289

RESUMO

BACKGROUND: Giardia lamblia is a pathogen of humans and other vertebrates. The synthesis of glycogen and of structural oligo and polysaccharides critically determine the parasite's capacity for survival and pathogenicity. These characteristics establish that UDP-glucose is a relevant metabolite, as it is a main substrate to initiate varied carbohydrate metabolic routes. RESULTS: Herein, we report the molecular cloning of the gene encoding UDP-glucose pyrophosphorylase from genomic DNA of G. lamblia, followed by its heterologous expression in Escherichia coli. The purified recombinant enzyme was characterized to have a monomeric structure. Glucose-1-phosphate and UTP were preferred substrates, but the enzyme also used galactose-1-phosphate and TTP. The catalytic efficiency to synthesize UDP-galactose was significant. Oxidation by physiological compounds (hydrogen peroxide and nitric oxide) inactivated the enzyme and the process was reverted after reduction by cysteine and thioredoxin. UDP-N-acetyl-glucosamine pyrophosphorylase, the other UTP-related enzyme in the parasite, neither used galactose-1-phosphate nor was affected by redox modification. CONCLUSIONS: Our results suggest that in G. lamblia the UDP-glucose pyrophosphorylase is regulated by oxido-reduction mechanism. The enzyme exhibits the ability to synthesize UDP-glucose and UDP-galactose and it plays a key role providing substrates to glycosyl transferases that produce oligo and polysaccharides. GENERAL SIGNIFICANCE: The characterization of the G. lamblia UDP-glucose pyrophosphorylase reinforces the view that in protozoa this enzyme is regulated by a redox mechanism. As well, we propose a new pathway for UDP-galactose production mediated by the promiscuous UDP-glucose pyrophosphorylase of this organism.


Assuntos
Galactosefosfatos/metabolismo , Giardia lamblia/enzimologia , Proteínas de Protozoários/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Sequência de Aminoácidos , Biocatálise , Clonagem Molecular , Cisteína/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Giardia lamblia/genética , Glucofosfatos/metabolismo , Cinética , Dados de Sequência Molecular , Oxirredução , Proteínas de Protozoários/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tiorredoxinas/metabolismo , Fatores de Tempo , UTP-Glucose-1-Fosfato Uridililtransferase/genética
13.
Mol Microbiol ; 95(4): 624-44, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25430920

RESUMO

Metabolic adaptations are critical to the ability of bacterial pathogens to grow within host cells and are normally preceded by sensing of host-specific metabolic signals, which in turn can influence the pathogen's virulence state. Previously, we reported that the intracellular bacterial pathogen Listeria monocytogenes responds to low availability of branched-chain amino acids (BCAAs) within mammalian cells by up-regulating both BCAA biosynthesis and virulence genes. The induction of virulence genes required the BCAA-responsive transcription regulator, CodY, but the molecular mechanism governing this mode of regulation was unclear. In this report, we demonstrate that CodY directly binds the coding sequence of the L. monocytogenes master virulence activator gene, prfA, 15 nt downstream of its start codon, and that this binding results in up-regulation of prfA transcription specifically under low concentrations of BCAA. Mutating this site abolished CodY binding and reduced prfA transcription in macrophages, and attenuated bacterial virulence in mice. Notably, the mutated binding site did not alter prfA transcription or PrfA activity under other conditions that are known to activate PrfA, such as during growth in the presence of glucose-1-phosphate. This study highlights the tight crosstalk between L. monocytogenes metabolism and virulence, while revealing novel features of CodY-mediated regulation.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Fatores de Terminação de Peptídeos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Genes Reguladores , Glucofosfatos/metabolismo , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/patogenicidade , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Óperon , Fatores de Terminação de Peptídeos/metabolismo , Regiões Promotoras Genéticas , Ativação Transcricional , Regulação para Cima , Virulência/genética
14.
FEBS Lett ; 588(17): 3074-80, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-24952355

RESUMO

Phosphoglucomutase (PGM)1 catalyzes the reversible conversion reaction between glucose-1-phosphate (G-1-P) and glucose-6-phosphate (G-6-P). Although both G-1-P and G-6-P are important intermediates for glucose and glycogen metabolism, the biological roles and regulatory mechanisms of PGM1 are largely unknown. In this study we found that T553 is obligatory for PGM1 stability and the last C-terminal residue, T562, is critical for its activity. Interestingly, depletion of PGM1 was associated with declined cellular glycogen content and decreased rates of glycogenolysis and glycogenesis. Furthermore, PGM1 depletion suppressed cell proliferation under long-term repetitive glucose depletion. Our results suggest that PGM1 is required for sustained cell growth during nutritional changes, probably through regulating the balance of G-1-P and G-6-P in order to satisfy the cellular demands during nutritional stress.


Assuntos
Glucose/deficiência , Fosfoglucomutase/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estabilidade Enzimática , Glucose/farmacologia , Glucose-6-Fosfato/metabolismo , Glucofosfatos/metabolismo , Glicogênio/metabolismo , Humanos , Fosfoglucomutase/química , Treonina
15.
N Engl J Med ; 370(6): 533-42, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24499211

RESUMO

BACKGROUND: Congenital disorders of glycosylation are genetic syndromes that result in impaired glycoprotein production. We evaluated patients who had a novel recessive disorder of glycosylation, with a range of clinical manifestations that included hepatopathy, bifid uvula, malignant hyperthermia, hypogonadotropic hypogonadism, growth retardation, hypoglycemia, myopathy, dilated cardiomyopathy, and cardiac arrest. METHODS: Homozygosity mapping followed by whole-exome sequencing was used to identify a mutation in the gene for phosphoglucomutase 1 (PGM1) in two siblings. Sequencing identified additional mutations in 15 other families. Phosphoglucomutase 1 enzyme activity was assayed on cell extracts. Analyses of glycosylation efficiency and quantitative studies of sugar metabolites were performed. Galactose supplementation in fibroblast cultures and dietary supplementation in the patients were studied to determine the effect on glycosylation. RESULTS: Phosphoglucomutase 1 enzyme activity was markedly diminished in all patients. Mass spectrometry of transferrin showed a loss of complete N-glycans and the presence of truncated glycans lacking galactose. Fibroblasts supplemented with galactose showed restoration of protein glycosylation and no evidence of glycogen accumulation. Dietary supplementation with galactose in six patients resulted in changes suggestive of clinical improvement. A new screening test showed good discrimination between patients and controls. CONCLUSIONS: Phosphoglucomutase 1 deficiency, previously identified as a glycogenosis, is also a congenital disorder of glycosylation. Supplementation with galactose leads to biochemical improvement in indexes of glycosylation in cells and patients, and supplementation with complex carbohydrates stabilizes blood glucose. A new screening test has been developed but has not yet been validated. (Funded by the Netherlands Organization for Scientific Research and others.).


Assuntos
Glucofosfatos/genética , Doença de Depósito de Glicogênio/genética , Fenótipo , Fosfoglucomutase/genética , Galactose/uso terapêutico , Genes Recessivos , Glucose/metabolismo , Glucofosfatos/metabolismo , Doença de Depósito de Glicogênio/dietoterapia , Doença de Depósito de Glicogênio/metabolismo , Glicoproteínas/biossíntese , Glicosilação , Humanos , Masculino , Mutação , Fosfoglucomutase/metabolismo , RNA Mensageiro/análise
16.
Metab Eng ; 20: 187-97, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24148183

RESUMO

Mithramycin (MTM) is a polyketide antitumor compound produced by Streptomyces argillaceus constituted by a tricyclic aglycone with two aliphatic side chains, a trisaccharide and a disaccharide chain. The biosynthesis of the polyketide aglycone is initiated by the condensation of ten malonyl-CoA units to render a carbon chain that is modified to a tetracyclic intermediate and sequentially glycosylated by five deoxysugars originated from glucose-1-phosphate. Further oxidation and reduction render the final compound. We aimed to increase the precursor supply of malonyl-CoA and/or glucose-1-phosphate in S. argillaceus to enhance MTM production. We have shown that by overexpressing either the S. coelicolor phosphoglucomutase gene pgm or the acetyl-CoA carboxylase ovmGIH genes from the oviedomycin biosynthesis gene cluster in S. argillaceus, we were able to increase the intracellular pool of glucose-1-phosphate and malonyl-CoA, respectively. Moreover, we have cloned the S. argillaceus ADP-glucose pyrophosphorylase gene glgCa and the acyl-CoA:diacylglycerol acyltransferase gene aftAa, and we showed that by inactivating them, an increase of the intracellular concentration of glucose-1-phosphate/glucose-6-phosphate and malonyl-CoA/acetyl-CoA was observed, respectively. Each individual modification resulted in an enhancement of MTM production but the highest production level was obtained by combining all strategies together. In addition, some of these strategies were successfully applied to increase production of four MTM derivatives with improved pharmacological properties: demycarosyl-mithramycin, demycarosyl-3D-ß-D-digitoxosyl-mithramycin, mithramycin SK and mithramycin SDK.


Assuntos
Antibióticos Antineoplásicos/biossíntese , Glucofosfatos , Malonil Coenzima A , Engenharia Metabólica , Plicamicina/biossíntese , Streptomyces , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Glucofosfatos/genética , Glucofosfatos/metabolismo , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
17.
Int J Mol Sci ; 14(5): 9703-21, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23648478

RESUMO

In bacteria, glycogen or oligosaccharide accumulation involves glucose-1-phosphate partitioning into either ADP-glucose (ADP-Glc) or UDP-Glc. Their respective synthesis is catalyzed by allosterically regulated ADP-Glc pyrophosphorylase (EC 2.7.7.27, ADP-Glc PPase) or unregulated UDP-Glc PPase (EC 2.7.7.9). In this work, we characterized the UDP-Glc PPase from Streptococcus mutans. In addition, we constructed a chimeric protein by cutting the C-terminal domain of the ADP-Glc PPase from Escherichia coli and pasting it to the entire S. mutans UDP-Glc PPase. Both proteins were fully active as UDP-Glc PPases and their kinetic parameters were measured. The chimeric enzyme had a slightly higher affinity for substrates than the native S. mutans UDP-Glc PPase, but the maximal activity was four times lower. Interestingly, the chimeric protein was sensitive to regulation by pyruvate, 3-phosphoglyceric acid and fructose-1,6-bis-phosphate, which are known to be effectors of ADP-Glc PPases from different sources. The three compounds activated the chimeric enzyme up to three-fold, and increased the affinity for substrates. This chimeric protein is the first reported UDP-Glc PPase with allosteric regulatory properties. In addition, this is a pioneer work dealing with a chimeric enzyme constructed as a hybrid of two pyrophosphorylases with different specificity toward nucleoside-diphospho-glucose and our results turn to be relevant for a deeper understanding of the evolution of allosterism in this family of enzymes.


Assuntos
Escherichia coli/enzimologia , Glucose-1-Fosfato Adenililtransferase/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Streptococcus mutans/enzimologia , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli/química , Escherichia coli/genética , Glucose-1-Fosfato Adenililtransferase/química , Glucose-1-Fosfato Adenililtransferase/genética , Glucofosfatos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Streptococcus mutans/química , Streptococcus mutans/genética , UTP-Glucose-1-Fosfato Uridililtransferase/química , UTP-Glucose-1-Fosfato Uridililtransferase/genética
18.
Expert Opin Ther Pat ; 23(8): 1017-32, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23627914

RESUMO

INTRODUCTION: Glycogen phosphorylase (GP) is the enzyme responsible for the synthesis of glucose-1-phosphate, the source of energy for muscles and the rest of the body. The binding of different ligands in catalytic or allosteric sites assures activation and deactivation of the enzyme. A description of the regulation mechanism and the implications in glycogen metabolism are given. AREAS COVERED: Deregulation of GP has been observed in diseases such as diabetes mellitus or cancers. Therefore, it appears as an attractive therapeutic target for the treatment of such pathologies. Numbers of inhibitors have been published in academic literature or patented in the last two decades. This review presents the main patent claims published between 2008 and 2012. EXPERT OPINION: Good inhibitors with interesting IC50 and in vivo results are presented. However, such therapeutic strategy raises questions and some answers are proposed to bring new insights in the field.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Animais , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/enzimologia , Inibidores Enzimáticos/administração & dosagem , Glucofosfatos/biossíntese , Glucofosfatos/metabolismo , Glicogênio/metabolismo , Glicogênio Fosforilase/metabolismo , Humanos , Concentração Inibidora 50 , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Patentes como Assunto
19.
Perspect Biol Med ; 55(2): 236-49, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22643761

RESUMO

In 1945, Earl Sutherland (1915-1974) [corrected] and associates began studies of the mechanism of hormone-induced glycogen breakdown in the liver. In 1956, their efforts culminated in the identification of cyclic AMP, an ancient molecule generated in many cell types in response to hormonal and other extracellular signals. Cyclic AMP, the original "second messenger," transmits such signals through pathways that regulate a diversity of cellular functions and capabilities: metabolic processes such as lipolysis and glycogenolysis; hormone secretion; the permeability of ion channels; gene expression; cell proliferation and survival. Indeed, it can be argued that the discovery of cyclic AMP initiated the study of intracellular signaling pathways, a major focus of contemporary biomedical inquiry. This review presents relevant details of Sutherland's career; summarizes key contributions of his mentors, Carl and Gerti Cori, to the knowledge of glycogen metabolism (contributions that were the foundation for his own research); describes the experiments that led to his identification, isolation, and characterization of cyclic AMP; assesses the significance of his work; and considers some aspects of the impact of cyclic nucleotide research on clinical medicine.


Assuntos
AMP Cíclico/história , Transdução de Sinais , AMP Cíclico/metabolismo , Epinefrina/metabolismo , Glucagon/metabolismo , Glucofosfatos/metabolismo , Glicogênio/metabolismo , Glicogenólise , História do Século XX , Hormônios/metabolismo , Prêmio Nobel , Fisiologia/história , Estados Unidos
20.
J Bacteriol ; 194(6): 1485-93, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22210767

RESUMO

Streptomyces coelicolor exhibits a major secondary metabolism, deriving important amounts of glucose to synthesize pigmented antibiotics. Understanding the pathways occurring in the bacterium with respect to synthesis of oligo- and polysaccharides is of relevance to determine a plausible scenario for the partitioning of glucose-1-phosphate into different metabolic fates. We report the molecular cloning of the genes coding for UDP- and ADP-glucose pyrophosphorylases as well as for glycogen synthase from genomic DNA of S. coelicolor A3(2). Each gene was heterologously expressed in Escherichia coli cells to produce and purify to electrophoretic homogeneity the respective enzymes. UDP-glucose pyrophosphorylase (UDP-Glc PPase) was characterized as a dimer exhibiting a relatively high V(max) in catalyzing UDP-glucose synthesis (270 units/mg) and with respect to dTDP-glucose (94 units/mg). ADP-glucose pyrophosphorylase (ADP-Glc PPase) was found to be tetrameric in structure and specific in utilizing ATP as a substrate, reaching similar activities in the directions of ADP-glucose synthesis or pyrophosphorolysis (V(max) of 0.15 and 0.27 units/mg, respectively). Glycogen synthase was arranged as a dimer and exhibited specificity in the use of ADP-glucose to elongate α-1,4-glucan chains in the polysaccharide. ADP-Glc PPase was the only of the three enzymes exhibiting sensitivity to allosteric regulation by different metabolites. Mannose-6-phosphate, phosphoenolpyruvate, fructose-6-phosphate, and glucose-6-phosphate behaved as major activators, whereas NADPH was a main inhibitor of ADP-Glc PPase. The results support a metabolic picture where glycogen synthesis occurs via ADP-glucose in S. coelicolor, with the pathway being strictly regulated in connection with other routes involved with oligo- and polysaccharides, as well as with antibiotic synthesis in the bacterium.


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Glucofosfatos/metabolismo , Glicogênio Sintase/metabolismo , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Clonagem Molecular , Escherichia coli/genética , Expressão Gênica , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/isolamento & purificação , Glicogênio Sintase/genética , Glicogênio Sintase/isolamento & purificação , Cinética , Polissacarídeos/metabolismo , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , UTP-Glucose-1-Fosfato Uridililtransferase/genética , UTP-Glucose-1-Fosfato Uridililtransferase/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA