Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Cells ; 11(15)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35954165

RESUMO

(1) Background: angiogenesis plays an important role in the growth and metastasis of tumors. We established the CAM assay application, an image analysis software of the IKOSA platform by KML Vision, for the quantification of blood vessels with the in ovo chorioallantoic membrane (CAM) model. We added this proprietary deep learning algorithm to the already established laser speckle contrast imaging (LSCI). (2) Methods: angiosarcoma cell line tumors were grafted onto the CAM. Angiogenesis was measured at the beginning and at the end of tumor growth with both measurement methods. The CAM assay application was trained to enable the recognition of in ovo CAM vessels. Histological stains of the tissue were performed and gluconate, an anti-angiogenic substance, was applied to the tumors. (3) Results: the angiosarcoma cells formed tumors on the CAM that appeared to stay vital and proliferated. An increase in perfusion was observed using both methods. The CAM assay application was successfully established in the in ovo CAM model and anti-angiogenic effects of gluconate were observed. (4) Conclusions: the CAM assay application appears to be a useful method for the quantification of angiogenesis in the CAM model and gluconate could be a potential treatment of angiosarcomas. Both aspects should be evaluated in further research.


Assuntos
Aprendizado Profundo , Hemangiossarcoma , Animais , Membrana Corioalantoide/metabolismo , Gluconatos/metabolismo , Gluconatos/farmacologia , Hemangiossarcoma/metabolismo , Imagem de Contraste de Manchas a Laser , Neovascularização Patológica/metabolismo
2.
Molecules ; 26(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379310

RESUMO

Hydrogen sulfide (H2S) is the third gasotransmitter and is generated endogenously in hypoxic or inflammatory tissues and various cancers. We have recently demonstrated that endogenous H2S can be imaged with [99mTc]Tc-gluconate. In the present study, we detected H2S generated in hypoxic tissue, both in vitro and in vivo, using [99mTc]Tc-gluconate. In vitro uptake of [99mTc]Tc-gluconate was measured under hypoxic and normoxic conditions, using the colon carcinoma cell line CT26, and was higher in hypoxic cells than that in normoxic cells. An acute hindlimb ischemia-reperfusion model was established in BALB/c mice by exposing the animals to 3 h of ischemia and 3 h of reperfusion prior to in vivo imaging. [99mTc]Tc-gluconate (12.5 MBq) was intravenously injected through the tail vein, and uptake in the lower limb was analyzed by single-photon emission computed tomography/computed tomography (SPECT/CT). SPECT/CT images showed five times higher uptake in the ischemic limb than that in the normal limb. The standard uptake value (SUVmean) of the ischemic limb was 0.39 ± 0.03, while that of the normal limb was 0.07 ± 0.01. [99mTc]Tc-gluconate is a novel imaging agent that can be used both in vitro and in vivo for the detection of endogenous H2S generated in hypoxic tissue.


Assuntos
Gluconatos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hipóxia/metabolismo , Compostos de Organotecnécio/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Tecnécio/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Membro Posterior/metabolismo , Isquemia/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Traumatismo por Reperfusão/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos
3.
Eur J Pharmacol ; 889: 173592, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32979354

RESUMO

Prodiginines and tambjamines are anion-selective ionophores capable of facilitating the transport of anions across the plasma membrane in mammalian cells. One of the potential applications of these anionophores is the possibility of employing them as a substitutive therapy for pathologies involving anion channels, as in cystic fibrosis. We have studied the interaction of a large anion as gluconate with three prodiginine- and two tambjamine-like compounds. Apparent dissociation constants for the chloride, iodide and gluconate complexes were estimated from iodide influx experiments in mammalian cells exposed to different extracellular anion combinations. Our experiments indicate that gluconate is not transported by the prodiginines, leaving the anionophores free to transport chloride and iodide. Conversely, gluconate would be transported to some extent by the tambjamines, competing with halides for the anionophores, and consequently reducing their flux. This might be related to the different structural features of both families of compounds. These data have important implications for the selection of impermeable anions in the analysis of the anionophore mechanism.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Prodigiosina/análogos & derivados , Pirróis/metabolismo , Animais , Proteínas de Transporte de Ânions/química , Gluconatos/metabolismo , Transporte de Íons/fisiologia , Prodigiosina/química , Prodigiosina/metabolismo , Pirróis/química , Ratos , Ratos Endogâmicos F344
4.
Mol Cell ; 76(6): 857-871.e9, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31586547

RESUMO

The oxidative pentose phosphate pathway (oxiPPP) contributes to cell metabolism through not only the production of metabolic intermediates and reductive NADPH but also inhibition of LKB1-AMPK signaling by ribulose-5-phosphate (Ru-5-P), the product of the third oxiPPP enzyme 6-phosphogluconate dehydrogenase (6PGD). However, we found that knockdown of glucose-6-phosphate dehydrogenase (G6PD), the first oxiPPP enzyme, did not affect AMPK activation despite decreased Ru-5-P and subsequent LKB1 activation, due to enhanced activity of PP2A, the upstream phosphatase of AMPK. In contrast, knockdown of 6PGD or 6-phosphogluconolactonase (PGLS), the second oxiPPP enzyme, reduced PP2A activity. Mechanistically, knockdown of G6PD or PGLS decreased or increased 6-phosphogluconolactone level, respectively, which enhanced the inhibitory phosphorylation of PP2A by Src. Furthermore, γ-6-phosphogluconolactone, an oxiPPP byproduct with unknown function generated through intramolecular rearrangement of δ-6-phosphogluconolactone, the only substrate of PGLS, bound to Src and enhanced PP2A recruitment. Together, oxiPPP regulates AMPK homeostasis by balancing the opposing LKB1 and PP2A.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Gluconatos/metabolismo , Neoplasias/enzimologia , Proteína Fosfatase 2/metabolismo , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Animais , Proliferação de Células , Ativação Enzimática , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Células HEK293 , Células HT29 , Humanos , Células K562 , Células MCF-7 , Camundongos Nus , Neoplasias/genética , Neoplasias/patologia , Células PC-3 , Via de Pentose Fosfato , Ligação Proteica , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ribulosefosfatos/metabolismo , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Carga Tumoral , Quinases da Família src/metabolismo
5.
J Mater Chem B ; 7(30): 4669-4676, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31364688

RESUMO

We report herein the assembly of an integrated nanodevice with bi-enzymatic cascade control for on-command cargo release. This nanocarrier is based on Au-mesoporous silica Janus nanoparticles capped at the mesoporous face with benzimidazole/ß-cyclodextrin-glucose oxidase pH-sensitive gate-like ensembles and functionalized with invertase on the gold face. The rationale for this delivery mechanism is based on the invertase-mediated hydrolysis of sucrose yielding glucose, which is further transformed into gluconic acid by glucose oxidase causing the disruption of the pH-sensitive supramolecular gates at the Janus nanoparticles. This enzyme-powered device was successfully employed in the autonomous and on-demand delivery of doxorubicin in HeLa cancer cells.


Assuntos
Portadores de Fármacos/uso terapêutico , Nanopartículas Multifuncionais/uso terapêutico , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Gluconatos/metabolismo , Glucose Oxidase/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , beta-Frutofuranosidase/metabolismo
6.
Infect Immun ; 87(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31036600

RESUMO

Enterococcus faecalis strains are resident intestinal bacteria associated with invasive infections, inflammatory bowel diseases, and colon cancer. Although factors promoting E. faecalis colonization of intestines are not fully known, one implicated pathway is a phosphotransferase system (PTS) in E. faecalis strain OG1RF that phosphorylates gluconate and contains the genes OG1RF_12399 to OG1RF_12402 (OG1RF_12399-12402). We hypothesize that this PTS permits growth in gluconate, facilitates E. faecalis intestinal colonization, and exacerbates colitis. We generated E. faecalis strains containing deletions/point mutations in this PTS and measured bacterial growth and PTS gene expression in minimal medium supplemented with selected carbohydrates. We show that E. faecalis upregulates OG1RF_12399 transcription specifically in the presence of gluconate and that E. faecalis strains lacking, or harboring a single point mutation in, OG1RF_12399-12402 are unable to grow in minimal medium containing gluconate. We colonized germfree wild-type and colitis-prone interleukin-10-deficient mice with defined bacterial consortia containing the E. faecalis strains and measured inflammation and bacterial abundance in the colon. We infected macrophage and intestinal epithelial cell lines with the E. faecalis strains and measured intracellular bacterial survival and proinflammatory cytokine secretion. The presence of OG1RF_12399-12402 is not required for E. faecalis colonization of the mouse intestine but is associated with an accelerated onset of experimental colitis in interleukin-10-deficient mice, altered bacterial composition in the colon, enhanced E. faecalis survival within macrophages, and increased proinflammatory cytokine secretion by colon tissue and macrophages. Further studies of bacterial carbohydrate metabolism in general, and E. faecalis PTS-gluconate in particular, during inflammation may identify new mechanisms of disease pathogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Colite/microbiologia , Enterococcus faecalis/enzimologia , Macrófagos/imunologia , Fosfotransferases/metabolismo , Animais , Proteínas de Bactérias/genética , Colite/genética , Colite/imunologia , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Feminino , Gluconatos/metabolismo , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Macrófagos/microbiologia , Masculino , Camundongos , Óperon , Fosfotransferases/genética
7.
Nat Commun ; 9(1): 3307, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120230

RESUMO

Methods for site-selective chemistry on proteins are in high demand for the synthesis of chemically modified biopharmaceuticals, as well as for applications in chemical biology, biosensors and more. Inadvertent N-terminal gluconoylation has been reported during expression of proteins with an N-terminal His tag. Here we report the development of this side-reaction into a general method for highly selective N-terminal acylation of proteins to introduce functional groups. We identify an optimized N-terminal sequence, GHHHn- for the reaction with gluconolactone and 4-methoxyphenyl esters as acylating agents, facilitating the introduction of functionalities in a highly selective and efficient manner. Azides, biotin or a fluorophore are introduced at the N-termini of four unrelated proteins by effective and selective acylation with the 4-methoxyphenyl esters. This Gly-Hisn tag adds the unique capability for highly selective N-terminal chemical acylation of expressed proteins. We anticipate that it can find wide application in chemical biology and for biopharmaceuticals.


Assuntos
Dipeptídeos/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Acilação , Sequência de Aminoácidos , Azidas/química , Biotina/metabolismo , Ésteres/metabolismo , Corantes Fluorescentes/química , Gluconatos/metabolismo , Lactonas/metabolismo , Peptídeos/química , Polietilenoglicóis/química , Processamento de Proteína Pós-Traducional
8.
Int J Biol Macromol ; 118(Pt A): 534-541, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29940229

RESUMO

The membrane-bound glucose dehydrogenase (mGDH) is a rate-limiting enzyme for the industrial production of 2-keto-d-gluconic acid (2KGA) from glucose. In this study, mGDH was firstly purified from a 2KGA industrial producing strain Pseudomonas plecoglossicida JUIM01. The purified mGDH exhibited a specific activity of 16.85 U/mg and was identified as monomeric membrane-bound PQQ-dependent dehydrogenase with a molecular mass of ~87 kDa. The Km and Vmax value of d-glucose were 0.042 mM and 14.620 µM/min, and the optimal pH and temperature were of 6.0 and 35 °C with favorable acid resistance and poor heat tolerance. Ca2+/Mg2+ showed a significantly positive effect on mGDH activity with 20% increase, whereas EDTA/EGTA had a negative influence, and Ca2+ was essential for enzyme activity. Furthermore, a 2412 bp-length gcd was amplified by genome walking technique and heterologously expressed in Escherichia coli. Bioinformatics analysis and heterologous expression further confirmed it as a mGDH encoding gene. mGDH contained binding sites of Ca2+, cofactor PQQ and polypeptide binding sites concluded from alignment results of mGDHs from different genera. This study would lay the foundation for improving 2KGA productivity through further strain modification.


Assuntos
Membrana Celular/metabolismo , Gluconatos/metabolismo , Glucose 1-Desidrogenase/genética , Glucose 1-Desidrogenase/isolamento & purificação , Indústrias , Pseudomonas/enzimologia , Biocatálise , Clonagem Molecular , Engenharia Genética , Glucose 1-Desidrogenase/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Pseudomonas/genética , Pseudomonas/metabolismo , Especificidade por Substrato
9.
Transfusion ; 58(8): 1992-2002, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29624679

RESUMO

BACKGROUND: Over a century of advancements in the field of additive solutions for red blood cell (RBC) storage has made transfusion therapy a safe and effective practice for millions of recipients worldwide. Still, storage in the blood bank results in the progressive accumulation of metabolic alterations, a phenomenon that is mitigated by storage in novel storage additives, such as alkaline additive solutions. While novel alkaline additive formulations have been proposed, no metabolomics characterization has been performed to date. STUDY DESIGN AND METHODS: We performed UHPLC-MS metabolomics analyses of red blood cells stored in SAGM (standard additive in Europe), (PAGGSM), or alkaline additives SOLX, E-SOL 5 and PAG3M for either 1, 21, 35 (end of shelf-life in the Netherlands), or 56 days. RESULTS: Alkaline additives (especially PAG3M) better preserved 2,3-diphosphoglycerate and adenosine triphosphate (ATP). Deaminated purines such as hypoxanthine were predictive of hemolysis and morphological alterations. Guanosine supplementation in PAGGSM and PAG3M fueled ATP generation by feeding into the nonoxidative pentose phosphate pathway via phosphoribolysis. Decreased urate to hypoxanthine ratios were observed in alkaline additives, suggestive of decreased generation of urate and hydrogen peroxide. Despite the many benefits observed in purine and redox metabolism, alkaline additives did not prevent accumulation of free fatty acids and oxidized byproducts, opening a window for future alkaline formulations including (lipophilic) antioxidants. CONCLUSION: Alkalinization via different strategies (replacement of chloride anions with either high bicarbonate, high citrate/phosphate, or membrane impermeant gluconate) results in different metabolic outcomes, which are superior to current canonical additives in all cases.


Assuntos
Antiácidos/farmacologia , Preservação de Sangue/métodos , Eritrócitos/citologia , Gluconatos/farmacologia , Guanosina/farmacologia , Metabolômica/métodos , Antiácidos/metabolismo , Gluconatos/metabolismo , Guanosina/metabolismo , Humanos , Purinas/metabolismo , Soluções
10.
Food Microbiol ; 73: 11-16, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29526195

RESUMO

Kombucha is a traditional beverage produced by tea fermentation, carried out by a symbiotic consortium of bacteria and yeasts. Acetic Acid Bacteria (AAB) usually dominate the bacterial community of Kombucha, driving the fermentative process. The consumption of this beverage was often associated to beneficial effects for the health, due to its antioxidant and detoxifying properties. We characterized bacterial populations of Kombucha tea fermented at 20 or 30 °C by using culture-dependent and -independent methods and monitored the concentration of gluconic and glucuronic acids, as well as of total polyphenols. We found significant differences in the microbiota at the two temperatures. Moreover, different species of Gluconacetobacter were selected, leading to a differential abundance of gluconic and glucuronic acids.


Assuntos
Ácido Acético/metabolismo , Bactérias/metabolismo , Chá de Kombucha/análise , Chá de Kombucha/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fermentação , Gluconatos/análise , Gluconatos/metabolismo , Glucuronatos/análise , Glucuronatos/metabolismo , Microbiota , Filogenia , Polifenóis/análise , Polifenóis/metabolismo , Temperatura
11.
J Biol Chem ; 292(41): 17113-17120, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28848047

RESUMO

Recent studies have revealed that the oxidative pentose phosphate pathway (PPP), malic enzyme (ME), and folate metabolism are the three major routes for generating cellular NADPH, a key cofactor involved in redox control and reductive biosynthesis. Many tumor cells exhibit altered NADPH metabolism to fuel their rapid proliferation. However, little is known about how NADPH metabolism is coordinated in tumor cells. Here we report that ME1 increases the PPP flux by forming physiological complexes with 6-phosphogluconate dehydrogenase (6PGD). We found that ME1 and 6PGD form a hetero-oligomer that increases the capability of 6PGD to bind its substrate 6-phosphogluconate. Through activating 6PGD, ME1 enhances NADPH generation, PPP flux, and tumor cell growth. Interestingly, although ME1 could bind either the dimer-defect mutant 6PGD (K294R) or the NADP+-binding defect 6PGD mutants, only 6PGD (K294R) activity was induced by ME1. Thus, ME1/6PGD hetero-complexes may mimic the active oligomer form of 6PGD. Together, these findings uncover a direct cross-talk mechanism between ME1 and PPP, may reveal an alternative model for signaling transduction via protein conformational simulation, and pave the way for better understanding how metabolic pathways are coordinated in cancer.


Assuntos
Malato Desidrogenase/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Via de Pentose Fosfato , Multimerização Proteica , Transdução de Sinais , Linhagem Celular Tumoral , Gluconatos/química , Gluconatos/metabolismo , Humanos , Hidroliases/química , Hidroliases/genética , Hidroliases/metabolismo , Malato Desidrogenase/química , Malato Desidrogenase/genética , Mutação de Sentido Incorreto , NADP/química , NADP/genética , NADP/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Neoplasias/genética
12.
Microbiol Res ; 199: 98-109, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28454714

RESUMO

The aims of this study were, to analyze in vitro phosphate solubilization activity of six native peanut bacteria and to determine the effect of single and mixed inoculation of these bacteria on peanut and maize plants. Ability to produce organic acids and cofactor PQQ, to solubilize FePO4 and AlPO4 and phosphatase activity were analyzed. Also, the ability to solubilize phosphate under abiotic stress and in the presence of pesticides of the selected bacteria was determined. The effect of single and mixed bacterial inocula was analyzed on seed germination, maize plant growth and in a crop rotation plant assay with peanut and maize. The six strains produced gluconic acid and five released cofactor PQQ into the medium. All bacteria showed ability to solubilize phosphate from FePO4 and AlPO4 and phosphatase activity. The ability of the bacteria to solubilize tricalcium phosphate under abiotic stress and in presence of pesticides indicated encouraging results. Bacterial inoculation on peanut and maize increased seed germination, plant́s growth and P content. Phosphate solubilizing bacteria used in this study showed efficient phosphate mineralizing and solubilization ability and would be potential P-biofertilizers for peanut and maize.


Assuntos
Arachis/crescimento & desenvolvimento , Arachis/microbiologia , Bactérias/metabolismo , Praguicidas , Fosfatos/farmacologia , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Ácidos/análise , Fosfatase Alcalina/análise , DNA Bacteriano , Ensaios Enzimáticos , Germinação , Gluconatos/metabolismo , Concentração de Íons de Hidrogênio , Fosfatos/química , Monoéster Fosfórico Hidrolases/análise , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Sementes/microbiologia , Solo/química , Microbiologia do Solo , Solubilidade
13.
NMR Biomed ; 30(6)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28272754

RESUMO

The pentose phosphate pathway (PPP) is thought to be upregulated in trauma (to produce excess NADPH) and in cancer (to provide ribose for nucleotide biosynthesis), but simple methods for detecting changes in flux through this pathway are not available. MRI of hyperpolarized 13 C-enriched metabolites offers considerable potential as a rapid, non-invasive tool for detecting changes in metabolic fluxes. In this study, hyperpolarized δ-[1-13 C]gluconolactone was used as a probe to detect flux through the oxidative portion of the pentose phosphate pathway (PPPox ) in isolated perfused mouse livers. The appearance of hyperpolarized (HP) H13 CO3- within seconds after exposure of livers to HP-δ-[1-13 C]gluconolactone demonstrates that this probe rapidly enters hepatocytes, becomes phosphorylated, and enters the PPPox pathway to produce HP-H13 CO3- after three enzyme catalyzed steps (6P-gluconolactonase, 6-phosphogluconate dehydrogenase, and carbonic anhydrase). Livers perfused with octanoate as their sole energy source show no change in production of H13 CO3- after exposure to low levels of H2 O2 , while livers perfused with glucose and insulin showed a twofold increase in H13 CO3- after exposure to peroxide. This indicates that flux through the PPPox is stimulated by H2 O2 in glucose perfused livers but not in livers perfused with octanoate alone. Subsequent perfusion of livers with non-polarized [1,2-13 C]glucose followed by 1 H NMR analysis of lactate in the perfusate verified that flux through the PPPox is indeed low in healthy livers and modestly higher in peroxide damaged livers. We conclude that hyperpolarized δ-[1-13 C]gluconolactone has the potential to serve as a metabolic imaging probe of this important biological pathway.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Gluconatos/metabolismo , Lactonas/metabolismo , Via de Pentose Fosfato , Animais , Gluconatos/química , Glucose/farmacologia , Insulina/farmacologia , Lactonas/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Fatores de Tempo
14.
Biomed Pharmacother ; 86: 637-644, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28033580

RESUMO

The isotonic substitution of extracellular chloride by gluconate (extracellular Cl--free) has been demonstrated to elicit cardioprotection by attenuating ischaemia/reperfusion-induced elevation of intracellular chloride ion concentration ([Cl-]i). However, the downstream mechanism underlying the cardioprotective effect of extracellular Cl--free is not fully established. Here, it was investigated whether extracellular Cl--free attenuates mitochondrial dysfunction after hypoxia/reoxygenation (H/R) and whether mitochondrial permeability transition pore (mPTP) plays a key role in the extracellular Cl--free cardioprotection. H9c2 cells were incubated with or without Cl--free solution, in which Cl- was replaced with equimolar gluconate, during H/R. The involvement of mPTP was determined with atractyloside (Atr), a specific mPTP opener. The results showed that extracellular Cl--free attenuated H/R-induced the elevation of [Cl-]i, accompanied by increase of cell viability and reduction of lactate dehydrogenase release. Moreover, extracellular Cl--free inhibited mPTP opening, and improved mitochondria function, as indicated by preserved mitochondrial membrane potential and respiratory chain complex activities, decreased mitochondrial reactive oxygen species generation, and increased ATP content. Intriguingly, pharmacologically opening of the mPTP with Atr attenuated all the protective effects caused by extracellular Cl--free, including suppression of mPTP opening, maintenance of mitochondrial membrane potential, and subsequent improvement of mitochondrial function. These results indicated that extracellular Cl--free protects mitochondria from H/R injury in H9c2 cells and inhibition of mPTP opening is a crucial step in mediating the cardioprotection of extracellular Cl--free.


Assuntos
Cloretos/metabolismo , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Substâncias Protetoras/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/fisiologia , Gluconatos/metabolismo , L-Lactato Desidrogenase/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
15.
Appl Microbiol Biotechnol ; 100(17): 7549-63, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27102126

RESUMO

We describe here the identification and characterization of two novel enzymes belonging to the IlvD/EDD protein family, the D-xylonate dehydratase from Caulobacter crescentus, Cc XyDHT, (EC 4.2.1.82), and the L-arabonate dehydratase from Rhizobium leguminosarum bv. trifolii, Rl ArDHT (EC 4.2.1.25), that produce the corresponding 2-keto-3-deoxy-sugar acids. There is only a very limited amount of characterization data available on pentonate dehydratases, even though the enzymes from these oxidative pathways have potential applications with plant biomass pentose sugars. The two bacterial enzymes share 41 % amino acid sequence identity and were expressed and purified from Escherichia coli as homotetrameric proteins. Both dehydratases were shown to accept pentonate and hexonate sugar acids as their substrates and require Mg(2+) for their activity. Cc XyDHT displayed the highest activity on D-xylonate and D-gluconate, while Rl ArDHT functioned best on D-fuconate, L-arabonate and D-galactonate. The configuration of the OH groups at C2 and C3 position of the sugar acid were shown to be critical, and the C4 configuration also contributed substantially to the substrate recognition. The two enzymes were also shown to contain an iron-sulphur [Fe-S] cluster. Our phylogenetic analysis and mutagenesis studies demonstrated that the three conserved cysteine residues in the aldonic acid dehydratase group of IlvD/EDD family members, those of C60, C128 and C201 in Cc XyDHT, and of C59, C127 and C200 in Rl ArDHT, are needed for coordination of the [Fe-S] cluster. The iron-sulphur cluster was shown to be crucial for the catalytic activity (kcat) but not for the substrate binding (Km) of the two pentonate dehydratases.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacter crescentus/enzimologia , Hidroliases/genética , Hidroliases/metabolismo , Rhizobium leguminosarum/enzimologia , Sequência de Aminoácidos , Arabinose/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Gluconatos/metabolismo , Alinhamento de Sequência , Xilose/metabolismo
16.
Colloids Surf B Biointerfaces ; 140: 382-391, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26774574

RESUMO

In this study, we develop a facile one-pot approach to the fabrication of poly(L-lactic acid) (PLLA) microsphere-incorporated calcium alginate (ALG-Ca)/hydroxyapatite (HAp) porous scaffolds based on HAp nanoparticle-stabilized oil-in-water Pickering emulsion templates, which contain alginate in the aqueous phase and PLLA in the oil phase. The emulsion aqueous phase is solidified by in situ gelation of alginate with Ca(2+) released from HAp by decreasing pH with slow hydrolysis of D-gluconic acid δ-lactone (GDL) to produce emulsion droplet-incorporated gels, followed by freeze-drying to form porous scaffolds containing microspheres. The pore structure of porous scaffolds can be adjusted by varying the HAp or GDL concentration. The compressive tests show that the increase of HAp or GDL concentration is beneficial to improve the compressive property of porous scaffolds, while the excessive HAp can lead to the decrease in compressive property. Moreover, the swelling behavior studies display that the swelling ratios of porous scaffolds reduce with increasing HAp or GDL concentration. Furthermore, hydrophobic drug ibuprofen (IBU) and hydrophilic drug bovine serum albumin (BSA) are loaded into the microspheres and scaffold matrix, respectively. In vitro drug release results indicate that BSA has a rapid release while IBU has a sustained release in the dual drug-loaded scaffolds. In vitro cell culture experiments verify that mouse bone mesenchymal stem cells can proliferate on the porous scaffolds well, indicating the good biocompatibility of porous scaffolds. All these results demonstrate that the PLLA microsphere-incorporated ALG-Ca/HAp porous scaffolds have a promising potential for tissue engineering and drug delivery applications.


Assuntos
Alginatos/química , Durapatita/química , Ácido Láctico/química , Microesferas , Polímeros/química , Alicerces Teciduais/química , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Bovinos , Proliferação de Células , Células Cultivadas , Liberação Controlada de Fármacos , Emulsões , Gluconatos/química , Gluconatos/metabolismo , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Ibuprofeno/química , Ibuprofeno/farmacocinética , Lactonas/química , Lactonas/metabolismo , Células-Tronco Mesenquimais/citologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Nanopartículas/química , Nanopartículas/ultraestrutura , Poliésteres , Porosidade , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacocinética , Engenharia Tecidual/métodos
17.
Microbiologyopen ; 5(1): 3-20, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26377487

RESUMO

Decreased biomass growth in iron (Fe)-limited Pseudomonas is generally attributed to downregulated expression of Fe-requiring proteins accompanied by an increase in siderophore biosynthesis. Here, we applied a stable isotope-assisted metabolomics approach to explore the underlying carbon metabolism in glucose-grown Pseudomonas putida KT2440. Compared to Fe-replete cells, Fe-limited cells exhibited a sixfold reduction in growth rate but the glucose uptake rate was only halved, implying an imbalance between glucose uptake and biomass growth. This imbalance could not be explained by carbon loss via siderophore production, which accounted for only 10% of the carbon-equivalent glucose uptake. In lieu of the classic glycolytic pathway, the Entner-Doudoroff (ED) pathway in Pseudomonas is the principal route for glucose catabolism following glucose oxidation to gluconate. Remarkably, gluconate secretion represented 44% of the glucose uptake in Fe-limited cells but only 2% in Fe-replete cells. Metabolic (13) C flux analysis and intracellular metabolite levels under Fe limitation indicated a decrease in carbon fluxes through the ED pathway and through Fe-containing metabolic enzymes. The secreted siderophore was found to promote dissolution of Fe-bearing minerals to a greater extent than the high extracellular gluconate. In sum, bypasses in the Fe-limited glucose metabolism were achieved to promote Fe availability via siderophore secretion and to reroute excess carbon influx via enhanced gluconate secretion.


Assuntos
Gluconatos/metabolismo , Glucose/metabolismo , Deficiências de Ferro , Pseudomonas putida/metabolismo , Sideróforos/metabolismo , Transporte Biológico , Ferro/metabolismo , Redes e Vias Metabólicas , Metabolômica/métodos , Oxirredução , Pseudomonas putida/crescimento & desenvolvimento
18.
FEBS Lett ; 589(23): 3548-55, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26505675

RESUMO

Gluconate is a commonly encountered nutrient, which is degraded by the enzyme gluconokinase to generate 6-phosphogluconate. Here we used isothermal titration calorimetry to study the properties of this reaction. ΔH, KM and kcat are reported along with substrate binding data. We propose that the reaction follows a ternary complex mechanism, with ATP binding first. The reaction is inhibited by gluconate, as it binds to an Enzyme-ADP complex forming a dead-end complex. The study exemplifies that ITC can be used to determine mechanisms of enzyme catalyzed reactions, for which it is currently not commonly applied.


Assuntos
Inibidores Enzimáticos/metabolismo , Gluconatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Difosfato de Adenosina/metabolismo , Calorimetria , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Gluconatos/farmacologia , Humanos , Cinética , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Temperatura
19.
Can J Microbiol ; 61(12): 885-97, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26435508

RESUMO

Organic phosphorus (P) is abundant in most soils but is largely unavailable to plants. Pseudomonas spp. can improve the availability of P to plants through the production of phytases and organic anions. Gluconate is a major component of Pseudomonas organic anion production and may therefore play an important role in the mineralization of insoluble organic P forms such as calcium-phytate (CaIHP). Organic anion and phytase production was characterized in 2 Pseudomonas spp. soil isolates (CCAR59, Ha200) and an isogenic mutant of strain Ha200, which lacked a functional glucose dehydrogenase (Gcd) gene (strain Ha200 gcd::Tn5B8). Wild-type and mutant strains of Pseudomonas spp. were evaluated for their ability to solubilize and hydrolyze CaIHP and to promote the growth and assimilation of P by tobacco plants. Gluconate, 2-keto-gluconate, pyruvate, ascorbate, acetate, and formate were detected in Pseudomonas spp. supernatants. Wild-type pseudomonads containing a functional gcd could produce gluconate and mineralize CaIHP, whereas the isogenic mutant could not. Inoculation with Pseudomonas improved the bioavailability of CaIHP to tobacco plants, but there was no difference in plant growth response due to Gcd function. Gcd function is required for the mineralization of CaIHP in vitro; however, further studies will be needed to quantify the relative contribution of specific organic anions such as gluconate to plant growth promotion by soil pseudomonads.


Assuntos
Cálcio/metabolismo , Gluconatos/metabolismo , Nicotiana/metabolismo , Ácido Fítico/metabolismo , Pseudomonas/metabolismo , 6-Fitase/genética , Disponibilidade Biológica , Fósforo/metabolismo , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Microbiologia do Solo , Nicotiana/crescimento & desenvolvimento , Nicotiana/microbiologia
20.
Int J Antimicrob Agents ; 45(5): 529-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25735764

RESUMO

The aim of this work was to investigate the impact of single amino acid substitutions occurring in specific porin OprD on carbapenem resistance of cystic fibrosis (CF) strains of Pseudomonas aeruginosa. A PAO1ΔoprD mutant was complemented with the oprD genes from five carbapenem-resistant CF strains exhibiting very low amounts of mutated OprD porins in their outer membrane despite wild-type levels of oprD transcripts. Compared with wild-type porin from strain PAO1, single amino acid substitutions S403P (in periplasmic loop 8), Y242H, S278P and L345P (in ß-sheets 10, 12 and 14, respectively) were found to result in reduced amounts of OprD in the outer membrane, increased carbapenem resistance, and slower growth in minimal medium containing gluconate, an OprD substrate, as the sole source of carbon and energy. This indicates that in CF strains of P. aeruginosa, loss of porin OprD may not only result from mutations downregulating the expression of or disrupting the oprD gene, but also from mutations generating deleterious amino acid substitutions in the porin structure.


Assuntos
Substituição de Aminoácidos , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Porinas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Resistência beta-Lactâmica , Meios de Cultura/química , Fibrose Cística/complicações , Deleção de Genes , Teste de Complementação Genética , Gluconatos/metabolismo , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Porinas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA