Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.043
Filtrar
1.
PLoS Pathog ; 20(6): e1011979, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900808

RESUMO

The cell surface of Toxoplasma gondii is rich in glycoconjugates which hold diverse and vital functions in the lytic cycle of this obligate intracellular parasite. Additionally, the cyst wall of bradyzoites, that shields the persistent form responsible for chronic infection from the immune system, is heavily glycosylated. Formation of glycoconjugates relies on activated sugar nucleotides, such as uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). The glucosamine-phosphate-N-acetyltransferase (GNA1) generates N-acetylglucosamine-6-phosphate critical to produce UDP-GlcNAc. Here, we demonstrate that downregulation of T. gondii GNA1 results in a severe reduction of UDP-GlcNAc and a concomitant drop in glycosylphosphatidylinositols (GPIs), leading to impairment of the parasite's ability to invade and replicate in the host cell. Surprisingly, attempts to rescue this defect through exogenous GlcNAc supplementation fail to completely restore these vital functions. In depth metabolomic analyses elucidate diverse causes underlying the failed rescue: utilization of GlcNAc is inefficient under glucose-replete conditions and fails to restore UDP-GlcNAc levels in GNA1-depleted parasites. In contrast, GlcNAc-supplementation under glucose-deplete conditions fully restores UDP-GlcNAc levels but fails to rescue the defects associated with GNA1 depletion. Our results underscore the importance of glucosamine-6-phosphate acetylation in governing T. gondii replication and invasion and highlight the potential of the evolutionary divergent GNA1 in Apicomplexa as a target for the development of much-needed new therapeutic strategies.


Assuntos
Acetilglucosamina , Glucose-6-Fosfato , Toxoplasma , Toxoplasma/metabolismo , Glucose-6-Fosfato/metabolismo , Glucose-6-Fosfato/análogos & derivados , Acetilglucosamina/metabolismo , Acetilação , Animais , Glucosamina 6-Fosfato N-Acetiltransferase/metabolismo , Humanos , Glucosamina/metabolismo , Glucosamina/análogos & derivados , Camundongos , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética
2.
Microb Pathog ; 191: 106657, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38649100

RESUMO

Staphylococcus aureus is a major human pathogen that can cause infections that range from superficial skin and mucosal infections to life threatening disseminated infections. S. aureus can attach to medical devices and host tissues and form biofilms that allow the bacteria to evade the host immune system and provide protection from antimicrobial agents. To counter host-generated oxidative and nitrosative stress mechanisms that are part of the normal host responses to invading pathogens, S. aureus utilizes low molecular weight (LMW) thiols, such as bacillithiol (BSH). Additionally, S. aureus synthesizes its own nitric oxide (NO), which combined with its downstream metabolites may also protect the bacteria against specific host responses. We have previously shown that LMW thiols are required for biofilm formation in Mycobacterium smegmatis and Pseudomonas aeruginosa. Here, we show that the S. aureus bshC mutant strain, which is defective in the last step of the BSH pathway and lacks BSH, is impaired in biofilm formation. We also identify a possible S-nitrosobacillithiol reductase (BSNOR), similar in sequence to an S-nitrosomycothiol reductase found in M. smegmatis and show that the putative S. aureus bsnoR mutant strain has reduced levels of BSH and decreased biofilm formation. Our studies also show that NO plays an important role in biofilm formation and that acidified sodium nitrite severely reduces biofilm thickness. These studies provide insight into the roles of oxidative and nitrosative stress mechanisms on biofilm formation and indicate that BSH and NO are key players in normal biofilm formation in S. aureus.


Assuntos
Biofilmes , Cisteína , Glucosamina , Óxido Nítrico , Staphylococcus aureus , Biofilmes/crescimento & desenvolvimento , Staphylococcus aureus/fisiologia , Staphylococcus aureus/genética , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Cisteína/análogos & derivados , Cisteína/metabolismo , Óxido Nítrico/metabolismo , Nitrito de Sódio/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/fisiologia , Mycobacterium smegmatis/metabolismo , Mutação , Humanos , Oxirredutases/metabolismo , Oxirredutases/genética , Compostos de Sulfidrila/metabolismo , Estresse Oxidativo
3.
Int J Mol Sci ; 24(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37834442

RESUMO

This study investigated the role of a pattern of microRNA (miRNA) as possible mediators of celecoxib and prescription-grade glucosamine sulfate (GS) effects in human osteoarthritis (OA) chondrocytes. Chondrocytes were treated with celecoxib (1.85 µM) and GS (9 µM), alone or in combination, for 24 h, with or without interleukin (IL)-1ß (10 ng/mL). Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis and reactive oxygen species (ROS) by cytometry, nitric oxide (NO) by Griess method. Gene levels of miRNA, antioxidant enzymes, nuclear factor erythroid (NRF)2, and B-cell lymphoma (BCL)2 expressions were analyzed by quantitative real time polymerase chain reaction (real time PCR). Protein expression of NRF2 and BCL2 was also detected at immunofluorescence and western blot. Celecoxib and GS, alone or in combination, significantly increased viability, reduced apoptosis, ROS and NO production and the gene expression of miR-34a, -146a, -181a, -210, in comparison to baseline and to IL-1ß. The transfection with miRNA specific inhibitors significantly counteracted the IL-1ß activity and potentiated the properties of celecoxib and GS on viability, apoptosis and oxidant system, through nuclear factor (NF)-κB regulation. The observed effects were enhanced when the drugs were tested in combination. Our data confirmed the synergistic anti-inflammatory and chondroprotective properties of celecoxib and GS, suggesting microRNA as possible mediators.


Assuntos
MicroRNAs , Humanos , MicroRNAs/metabolismo , Glucosamina/farmacologia , Glucosamina/metabolismo , Celecoxib/farmacologia , Celecoxib/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Condrócitos/metabolismo , Células Cultivadas , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Apoptose
4.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373540

RESUMO

Glucosamine (GlcN) is a glycosaminoglycan (GAGs) constituent in connective tissues. It is naturally produced by our body or consumed from diets. In the last decade, in vitro and in vivo trials have demonstrated that the administration of GlcN or its derivates has a protective effect on cartilage when the balance between catabolic and anabolic processes is disrupted and cells are no longer able to fully compensate for the loss of collagen and proteoglycans. To date, these benefits are still controversial because the mechanism of action of GlcN is not yet well clarified. In this study, we have characterized the biological activities of an amino acid (AA) derivate of GlcN, called DCF001, in the growth and chondrogenic induction of circulating multipotent stem cells (CMCs) after priming with tumor necrosis factor-alpha (TNFα), a pleiotropic cytokine commonly expressed in chronic inflammatory joint diseases. In the present work, stem cells were isolated from the human peripheral blood of healthy donors. After priming with TNFα (10 ng/mL) for 3 h, cultures were treated for 24 h with DCF001 (1 µg/mL) dissolved in a proliferative (PM) or chondrogenic (CM) medium. Cell proliferation was analyzed using a Corning® Cell Counter and trypan blue exclusion technique. To evaluate the potentialities of DCF001 in counteracting the inflammatory response to TNFα, we measured the amount of extracellular ATP (eATP) and the expression of adenosine-generating enzymes CD39/CD73, TNFα receptors, and NF-κB inhibitor IκBα using flow cytometry. Finally, total RNA was extracted to perform a gene expression study of some chondrogenic differentiation markers (COL2A1, RUNX2, and MMP13). Our analysis has shed light on the ability of DCF001 to (a) regulate the expression of CD39, CD73, and TNF receptors; (b) modulate eATP under differentiative induction; (c) enhance the inhibitory activity of IκBα, reducing its phosphorylation after TNFα stimulation; and (d) preserve the chondrogenic potentialities of stem cells. Although preliminary, these results suggest that DCF001 could be a valuable supplement for ameliorating the outcome of cartilage repair interventions, enhancing the efficacy of endogenous stem cells under inflammatory stimuli.


Assuntos
Condrócitos , Glucosamina , Humanos , Glucosamina/farmacologia , Glucosamina/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Condrócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células-Tronco , Diferenciação Celular , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Condrogênese , Células Cultivadas
5.
J Immunol ; 209(9): 1674-1690, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150727

RESUMO

Immunomodulatory (IM) metabolic reprogramming in macrophages (Mϕs) is fundamental to immune function. However, limited information is available for human Mϕs, particularly in response plasticity, which is critical to understanding the variable efficacy of immunotherapies in cancer patients. We carried out an in-depth analysis by combining multiplex stable isotope-resolved metabolomics with reversed phase protein array to map the dynamic changes of the IM metabolic network and key protein regulators in four human donors' Mϕs in response to differential polarization and M1 repolarizer ß-glucan (whole glucan particles [WGPs]). These responses were compared with those of WGP-treated ex vivo organotypic tissue cultures (OTCs) of human non-small cell lung cancer. We found consistently enhanced tryptophan catabolism with blocked NAD+ and UTP synthesis in M1-type Mϕs (M1-Mϕs), which was associated with immune activation evidenced by increased release of IL-1ß/CXCL10/IFN-γ/TNF-α and reduced phagocytosis. In M2a-Mϕs, WGP treatment of M2a-Mϕs robustly increased glucose utilization via the glycolysis/oxidative branch of the pentose phosphate pathway while enhancing UDP-N-acetyl-glucosamine turnover and glutamine-fueled gluconeogenesis, which was accompanied by the release of proinflammatory IL-1ß/TNF-α to above M1-Mϕ's levels, anti-inflammatory IL-10 to above M2a-Mϕ's levels, and attenuated phagocytosis. These IM metabolic responses could underlie the opposing effects of WGP, i.e., reverting M2- to M1-type immune functions but also boosting anti-inflammation. Variable reprogrammed Krebs cycle and glutamine-fueled synthesis of UTP in WGP-treated OTCs of human non-small cell lung cancer were observed, reflecting variable M1 repolarization of tumor-associated Mϕs. This was supported by correlation with IL-1ß/TNF-α release and compromised tumor status, making patient-derived OTCs unique models for studying variable immunotherapeutic efficacy in cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , beta-Glucanas , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Glucosamina/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Interleucina-10 , Neoplasias Pulmonares/metabolismo , Macrófagos , NAD/metabolismo , Fagocitose , Triptofano/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Difosfato de Uridina/metabolismo , Uridina Trifosfato/metabolismo , beta-Glucanas/metabolismo
6.
J Agric Food Chem ; 70(12): 3917-3928, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35298175

RESUMO

To explore the role of hexokinase (HXK) on disease resistance in peach fruit, peaches were treated with N-acetyl-d-glucosamine (NAG), a known HXK inhibitor, and then inoculated with Monilinia fructicola. We demonstrate that NAG significantly inhibits HXK activity, which in turn results in significantly reduced resistance to M. fructicola infection. In the HXK-inhibited fruit, the sucrose content was higher and the glucose and fructose contents were lower than in the control fruit. By transcriptome analysis, we found 347 differentially expressed genes (DEGs) between NAG-treated and control peaches, most of which were involved in the mitogen-activated protein kinase signaling pathway in plants, plant-pathogen interaction, plant hormone signal transduction, and the phenylpropanoid biosynthesis pathway. In particular, the DEGs related to phenylpropanoid metabolism, such as peroxidase, flavonoid, and isoflavonoid biosynthesis were significantly downregulated. Nontargeted metabolomic analysis revealed 44 differential metabolites, 9 of which were increased and 35 of which were decreased in the NAG-treated fruit. The decreased metabolites were secondary metabolites, including polyphenols, flavonoids, terpenoids, and glycosides. The relationship between HXK and phenylpropanoid metabolism was further investigated, and we found that in HXK-inhibited fruits the activities of phenylalanine ammonia-lyase, 4-coumarate-CoA ligase, and cinnamate 4-hydroxylase were significantly decreased over the control fruit, as well as the total phenol and total flavone contents were also significantly decreased. These results demonstrate that the inhibition of HXK activity decreases the disease resistance of peach fruits by affecting sugar metabolism and the phenylpropanoid pathway.


Assuntos
Prunus persica , Acetilglucosamina/metabolismo , Regulação para Baixo , Frutas/genética , Frutas/metabolismo , Glucosamina/metabolismo , Hexoquinase/genética , Redes e Vias Metabólicas , Prunus persica/metabolismo
7.
Cell Biol Int ; 46(5): 829-839, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35191133

RESUMO

Oxidative stress is the crucial pathogenic factor in osteoporosis. Cell autophagy, a major form of self-digestion, plays critical functions in different forms of stress by devouring harmful cytosolic proteins or organelles for the renewal of organelles and to maintain cellular homeostasis. Glucosamine (GlcN) has been widely utilized in treatments for patients with osteoarthritis-related joint pain. It has potential antioxidant effects and its pharmacological effect in osteoblasts remains unclear. The present study aimed to investigate whether autophagy participates in the protective effects of GlcN in osteoblasts under oxidative stress and the possible mechanism. First of all, MC3T3-E1 cells were treated with hydrogen peroxide (H2 O2 ) to induce oxidative stress, as assessed by viability assays, apoptosis, the intracellular reactive oxygen species production. GlcN was capable of inducing autophagy and protected osteoblasts from those cytotoxic effects. Moreover, it significantly attenuated H2 O2 -induced oxidative stress as measured by malondialdehyde, glutathione, nitrite, and superoxide dismutase levels. Importantly, the autophagy level increased in osteoblasts treated with GlcN as represented by an increase in both Beclin1 expression and the LC3 II/I ratio. Immunofluorescence analysis of autophagosomes also confirmed the above results. In addition, GlcN decreased the mammalian target of rapamycin (mTOR) and protein kinase B (Akt). However, the Akt activator (SC79) suppressed the autophagy level induced by GlcN in osteoblasts. Consequently, the antioxidant effects of GlcN were mediated, at least in part, by enhancing autophagy through the Akt/mTOR pathway. These results suggested that GlcN might be a promising candidate for osteoporosis treatment.


Assuntos
Osteoporose , Proteínas Proto-Oncogênicas c-akt , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Autofagia , Glucosamina/metabolismo , Glucosamina/farmacologia , Humanos , Osteoblastos/metabolismo , Osteoporose/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
8.
J Antibiot (Tokyo) ; 75(3): 146-154, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35058577

RESUMO

Disulfide analogs of the alcohol sobriety medication disulfiram (Antabuse®) were evaluated for antimicrobial activity. Structure-activity relationship analyses of MIC data obtained for methicillin-resistant Staphylococcus aureus (MRSA) and other pathogenic organisms revealed correlations between the lipophilicity and bulkiness of the substituents. Analogs conferring optimal anti-MRSA activity contained S-octyl disulfides and either N,N-dimethyl- or N-pyrrolidine dithiocarbamate substituents. Additional testing revealed that both disulfiram and its S-octyl derivative are capable of sensitizing S. aureus to the bactericidal effects of fosfomycin. Mechanistic studies established that the compounds decrease intracellular levels of the fosB cofactor bacillithiol through a thiol-disulfide exchange reaction. The increased fosfomycin susceptibility in S. aureus was thereby attributed to a depleted cellular bacillithiol pool available for inactivation by fosB.


Assuntos
Anti-Infecciosos/farmacologia , Dissulfiram/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Fosfomicina/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína/análogos & derivados , Cisteína/metabolismo , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana/métodos , Infecções Estafilocócicas/tratamento farmacológico , Compostos de Sulfidrila/farmacologia
9.
Glycobiology ; 32(3): 239-250, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34939087

RESUMO

Synthetic sugar analogs are widely applied in metabolic oligosaccharide engineering (MOE) and as novel drugs to interfere with glycoconjugate biosynthesis. However, mechanistic insights on their exact cellular metabolism over time are mostly lacking. We combined ion-pair ultrahigh performance liquid chromatography-triple quadrupole mass spectrometry mass spectrometry using tributyl- and triethylamine buffers for sensitive analysis of sugar metabolites in cells and organisms and identified low abundant nucleotide sugars, such as UDP-arabinose in human cell lines and CMP-sialic acid (CMP-NeuNAc) in Drosophila. Furthermore, MOE revealed that propargyloxycarbonyl (Poc)-labeled ManNPoc was metabolized to both CMP-NeuNPoc and UDP-GlcNPoc. Finally, time-course analysis of the effect of antitumor compound 3Fax-NeuNAc by incubation of B16-F10 melanoma cells with N-acetyl-D-[UL-13C6]glucosamine revealed full depletion of endogenous ManNAc 6-phosphate and CMP-NeuNAc within 24 h. Thus, dynamic tracing of sugar metabolic pathways provides a general approach to reveal time-dependent insights into the metabolism of synthetic sugars, which is important for the rational design of analogs with optimized effects.


Assuntos
Metabolismo dos Carboidratos , Ácido N-Acetilneuramínico do Monofosfato de Citidina , Cromatografia Líquida , Ácido N-Acetilneuramínico do Monofosfato de Citidina/metabolismo , Glucosamina/metabolismo , Açúcares
10.
Cell Death Dis ; 12(10): 889, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588426

RESUMO

Diabetes is an important risk factor for liver cancer, but its mechanism is unknown. Corosolic acid (CA) has been proven to have both hypoglycemic and antitumor effects, so revealing the function of CA can help us understand the relationship between diabetes and liver cancer. In previous studies, we confirmed that CA can effectively inhibit the expression of YAP, an important oncoprotein in HCC cells, and the proliferation of HCC cells. In addition, we also found that O-GlcNAcylation plays an indispensable role in HCC tumorigenesis. However, it is not clear whether CA can inhibit the effect of O-GlcNAcylation on HCC cells. In this study, the antitumor ability of CA was investigated by inhibiting the O-GlcNAcylation level and its corresponding mechanism. The results showed that HG (high glucose) could promote the proliferation of liver cancer cells, while CA could inhibit cell growth under HG conditions and tumor growth in a xenotransplantation model. CA can inhibit the activation of the HBP pathway and reduce the expression of YAP and OGT under HG conditions. Importantly, we found that CA can reduce YAP expression and O-GlcNAcylation by inhibiting the activity of CDK19. Overexpression of CDK19 partially reversed the CA-induced decrease in YAP and O-GlcNAcylation. This is the first evidence that CA can reduce the proliferative capacity of cells with high glucose levels and further inhibit tumor growth by inactivating the CDK19/YAP/O-GlcNAcylation pathway, suggesting that CA is a candidate drug for the development of treatments against diabetes-associated liver cancer.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Progressão da Doença , Glucosamina/metabolismo , Neoplasias Hepáticas/patologia , Triterpenos/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/toxicidade , Glicosilação , Humanos , Masculino , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triterpenos/química , Proteínas de Sinalização YAP
11.
J Med Chem ; 64(16): 12261-12272, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34382796

RESUMO

Modern adjuvants for vaccine formulations are immunostimulating agents whose action is based on the activation of pattern recognition receptors (PRRs) by well-defined ligands to boost innate and adaptive immune responses. Monophosphoryl lipid A (MPLA), a detoxified analogue of lipid A, is a clinically approved adjuvant that stimulates toll-like receptor 4 (TLR4). The synthesis of MPLA poses manufacturing and quality assessment challenges. Bridging this gap, we report here the development and preclinical testing of chemically simplified TLR4 agonists that could sustainably be produced in high purity and on a large scale. Underpinned by computational and biological experiments, we show that synthetic monosaccharide-based molecules (FP compounds) bind to the TLR4/MD-2 dimer with submicromolar affinities stabilizing the active receptor conformation. This results in the activation of MyD88- and TRIF-dependent TLR4 signaling and the NLRP3 inflammasome. FP compounds lack in vivo toxicity and exhibit adjuvant activity by stimulating antibody responses with a potency comparable to MPLA.


Assuntos
Adjuvantes Imunológicos/farmacologia , Glucosamina/farmacologia , Glicolipídeos/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/toxicidade , Animais , Feminino , Glucosamina/síntese química , Glucosamina/metabolismo , Glucosamina/toxicidade , Glicolipídeos/síntese química , Glicolipídeos/metabolismo , Glicolipídeos/toxicidade , Humanos , Inflamassomos/metabolismo , Interleucina-1/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
12.
mBio ; 12(4): e0181921, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34340539

RESUMO

The Helicobacter pylori chemoreceptor TlpA plays a role in dampening host inflammation during chronic stomach colonization. TlpA has a periplasmic dCache_1 domain, a structure that is capable of sensing many ligands; however, the only characterized TlpA signals are arginine, bicarbonate, and acid. To increase our understanding of TlpA's sensing profile, we screened for diverse TlpA ligands using ligand binding arrays. TlpA bound seven ligands with affinities in the low- to middle-micromolar ranges. Three of these ligands, arginine, fumarate, and cysteine, were TlpA-dependent chemoattractants, while the others elicited no response. Molecular docking experiments, site-directed point mutants, and competition surface plasmon resonance binding assays suggested that TlpA binds ligands via both the membrane-distal and -proximal dCache_1 binding pockets. Surprisingly, one of the nonactive ligands, glucosamine, acted as a chemotaxis antagonist, preventing the chemotaxis response to chemoattractant ligands, and acted to block the binding of ligands irrespective of whether they bound the membrane-distal or -proximal dCache_1 subdomains. In total, these results suggest that TlpA senses multiple attractant ligands as well as antagonist ones, an emerging theme in chemotaxis systems. IMPORTANCE Numerous chemotactic bacterial pathogens depend on the ability to sense a diverse array of signals through chemoreceptors to achieve successful colonization and virulence within their host. The signals sensed by chemoreceptors, however, are not always fully understood. This is the case for TlpA, a dCache_1 chemoreceptor of H. pylori that enables the bacterium to induce less inflammation during chronic infections. H. pylori causes a significant global disease burden, which is driven by the development of gastric inflammation. Accordingly, it is essential to understand the processes by which H. pylori modulates host inflammation. This work uncovers the signals that TlpA can sense and highlights the underappreciated ability to regulate chemotactic responses by antagonistic chemoreceptor ligands, which is an emerging theme among other chemotactic systems.


Assuntos
Proteínas de Bactérias/metabolismo , Células Quimiorreceptoras/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Bactérias/genética , Quimiotaxia , Glucosamina/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Mutação Puntual
13.
Int J Mol Sci ; 22(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34445685

RESUMO

This study investigated the possible anti-inflammatory and chondroprotective effects of a combination of celecoxib and prescription-grade glucosamine sulfate (GS) in human osteoarthritic (OA) chondrocytes and their possible mechanism of action. Chondrocytes were treated with celecoxib (1.85 µM) and GS (9 µM), alone or in combination with IL-1ß (10 ng/mL) and a specific nuclear factor (NF)-κB inhibitor (BAY-11-7082, 1 µM). Gene expression and release of some pro-inflammatory mediators, metalloproteinases (MMPs), and type II collagen (Col2a1) were evaluated by qRT-PCR and ELISA; apoptosis and mitochondrial superoxide anion production were assessed by cytometry; B-cell lymphoma (BCL)2, antioxidant enzymes, and p50 and p65 NF-κB subunits were analyzed by qRT-PCR. Celecoxib and GS alone or co-incubated with IL-1ß significantly reduced expression and release of cyclooxygenase (COX)-2, prostaglandin (PG)E2, IL-1ß, IL-6, tumor necrosis factor (TNF)-α, and MMPs, while it increased Col2a1, compared to baseline or IL-1ß. Both drugs reduced apoptosis and superoxide production; reduced the expression of superoxide dismutase, catalase, and nuclear factor erythroid; increased BCL2; and limited p50 and p65. Celecoxib and GS combination demonstrated an increased inhibitory effect on IL-1ß than that observed by each single treatment. Drugs effects were potentiated by pre-incubation with BAY-11-7082. Our results demonstrated the synergistic effect of celecoxib and GS on OA chondrocyte metabolism, apoptosis, and oxidative stress through the modulation of the NF-κB pathway, supporting their combined use for the treatment of OA.


Assuntos
Celecoxib/farmacologia , Glucosamina/farmacologia , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Celecoxib/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Quimioterapia Combinada/métodos , Glucosamina/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Nitrilas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia
14.
Biochem J ; 478(17): 3221-3237, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34405855

RESUMO

The lysosomal degradation of heparan sulfate is mediated by the concerted action of nine different enzymes. Within this degradation pathway, Arylsulfatase G (ARSG) is critical for removing 3-O-sulfate from glucosamine, and mutations in ARSG are causative for Usher syndrome type IV. We developed a specific ARSG enzyme assay using sulfated monosaccharide substrates, which reflect derivatives of its natural substrates. These sulfated compounds were incubated with ARSG, and resulting products were analyzed by reversed-phase HPLC after chemical addition of the fluorescent dyes 2-aminoacridone or 2-aminobenzoic acid, respectively. We applied the assay to further characterize ARSG regarding its hydrolytic specificity against 3-O-sulfated monosaccharides containing additional sulfate-groups and N-acetylation. The application of recombinant ARSG and cells overexpressing ARSG as well as isolated lysosomes from wild-type and Arsg knockout mice validated the utility of our assay. We further exploited the assay to determine the sequential action of the different sulfatases involved in the lysosomal catabolism of 3-O-sulfated glucosamine residues of heparan sulfate. Our results confirm and extend the characterization of the substrate specificity of ARSG and help to determine the sequential order of the lysosomal catabolic breakdown of (3-O-)sulfated heparan sulfate.


Assuntos
Arilsulfatases/metabolismo , Heparitina Sulfato/análogos & derivados , Heparitina Sulfato/metabolismo , Lisossomos/metabolismo , Sulfatos/metabolismo , Acetilação , Animais , Arilsulfatases/genética , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Humanos , Camundongos , Camundongos Knockout , Especificidade por Substrato , Transfecção
15.
Cell Rep ; 36(2): 109361, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260942

RESUMO

Mouse embryonic stem cell (ESC) pluripotency is tightly regulated by a complex network composed of extrinsic and intrinsic factors that allow proper organismal development. O-linked ß-N-acetylglucosamine (O-GlcNAc) is the sole glycosylation mark found on cytoplasmic and nuclear proteins and plays a pivotal role in regulating fundamental cellular processes; however, its function in ESC pluripotency is still largely unexplored. Here, we identify O-GlcNAcylation of proteasome activator subunit 3 (Psme3) protein as a node of the ESC pluripotency network. Mechanistically, O-GlcNAc modification of serine 111 (S111) of Psme3 promotes degradation of Ddx6, which is essential for processing body (P-body) assembly, resulting in the maintenance of ESC pluripotent state. Conversely, loss of Psme3 S111 O-GlcNAcylation stabilizes Ddx6 and increases P-body levels, culminating in spontaneous exit of ESC from the pluripotent state. Our findings establish O-GlcNAcylation at S111 of Psme3 as a switch that regulates ESC pluripotency via control of P-body homeostasis.


Assuntos
Autoantígenos/metabolismo , Glucosamina/metabolismo , Homeostase , Células-Tronco Pluripotentes/metabolismo , Corpos de Processamento/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , RNA Helicases DEAD-box/metabolismo , Glicosilação , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Proteólise , Proteínas Proto-Oncogênicas/metabolismo
16.
ACS Chem Biol ; 16(10): 1924-1929, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34282887

RESUMO

Metabolic chemical reports have fundamentally changed the way researchers study glycosylation. However, when administered as per-O-acetylated sugars, reporter molecules can participate in nonspecific chemical labeling of cysteine residues termed S-glycosylation. Without detailed proteomic analyses, these labeling events can be indistinguishable from bona fide enzymatic labeling convoluting experimental results. Here, we report a solution in the synthesis and characterization of two reporter molecules functionalized at the anomeric position with hexanoic acid: 1-Hex-GlcNAlk and 1-Hex-6AzGlcNAc. Both reporters exhibit robust labeling over background with negligible amounts of nonspecific chemical labeling in cell lysates. This strategy serves as a template for the design of future reporter molecules allowing for more reliable interpretation of results.


Assuntos
Caproatos/metabolismo , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Glicoproteínas/metabolismo , Sondas Moleculares/metabolismo , Alcinos/química , Azidas/química , Caproatos/química , Glicoproteínas/química , Glicosilação , Células HeLa , Humanos , Sondas Moleculares/química , Estudo de Prova de Conceito , Processamento de Proteína Pós-Traducional
17.
ACS Chem Biol ; 16(10): 1961-1967, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33835779

RESUMO

Metabolic oligosaccharide engineering (MOE) has fundamentally contributed to our understanding of protein glycosylation. Efficient MOE reagents are activated into nucleotide-sugars by cellular biosynthetic machineries, introduced into glycoproteins and traceable by bioorthogonal chemistry. Despite their widespread use, the metabolic fate of many MOE reagents is only beginning to be mapped. While metabolic interconnectivity can affect probe specificity, poor uptake by biosynthetic salvage pathways may impact probe sensitivity and trigger side reactions. Here, we use metabolic engineering to turn the weak alkyne-tagged MOE reagents Ac4GalNAlk and Ac4GlcNAlk into efficient chemical tools to probe protein glycosylation. We find that bypassing a metabolic bottleneck with an engineered version of the pyrophosphorylase AGX1 boosts nucleotide-sugar biosynthesis and increases bioorthogonal cell surface labeling by up to two orders of magnitude. A comparison with known azide-tagged MOE reagents reveals major differences in glycoprotein labeling, substantially expanding the toolbox of chemical glycobiology.


Assuntos
Galactosamina/análogos & derivados , Galactosamina/metabolismo , Galactosiltransferases/metabolismo , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Alcinos/química , Sequência de Aminoácidos , Animais , Azidas/química , Linhagem Celular Tumoral , Química Click , Corantes Fluorescentes/química , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Engenharia Metabólica/métodos , Camundongos , Sondas Moleculares/química , Oligossacarídeos/biossíntese , Polissacarídeos/biossíntese , Açúcares de Uridina Difosfato/biossíntese , Açúcares de Uridina Difosfato/metabolismo
18.
J Pharm Pharmacol ; 73(7): 922-927, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33885909

RESUMO

OBJECTIVES: This study was aimed at investigating the cytotoxicity and multi-drug resistance (MDR) reversal effect of Glucosamine (GlcN) on resistant BCRP-overexpressing breast cancer MCF-7/MX cells. METHODS: After confirming the overexpression of BCRP, the cytotoxicity and MDR reversing potential of GlcN on MCF-7/MX mitoxantrone-resistant and MCF-7 sensitive breast cancer cells were assessed via MTT assay. The effects of GlcN on mitoxantrone accumulation were analyzed through flow cytometry. Finally, the expression of BCRP and Epithelial-Mesenchymal Transition (EMT)-related markers following the exposure to GlcN were assessed by real-time RT-PCR. KEY FINDINGS: This study showed that glucosamine had an inhibitory effect on the proliferation of human breast cancer cells. The respective IC50 values for MCF-7/MX cells following exposure to mitoxantrone (MX) in the presence of GlcN (0, 0.5 and 1 mm) for 72 h were 3.61 ± 0.21, 0.598 ± 0.041 and 0.284 ± 0.016 µm, respectively. Furthermore, GlcN reduced the expression of BCRP mRNA without any significant effect on EMT-related markers in breast cancer cells. CONCLUSIONS: These results proposed that glucosamine as a natural sugar could down regulate the BCRP expression and increased MX cytotoxicity in breast cancer cells.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias da Mama , Proliferação de Células/efeitos dos fármacos , Glucosamina , Mitoxantrona/farmacologia , Proteínas de Neoplasias/genética , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Glucosamina/metabolismo , Glucosamina/farmacologia , Humanos , Células MCF-7 , Resultado do Tratamento
19.
Int J Biol Macromol ; 173: 168-179, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33444657

RESUMO

The genome sequence of Thermococcus kodakarensis contains an open reading frame, TK1110, annotated as ADP-dependent glucokinase. The encoding gene was expressed in Escherichia coli and the gene product, TK-GLK, was produced in soluble and active form. The recombinant enzyme was extremely thermostable. Thermostability was increased significantly in the presence of ammonium sulfate. ADP was the preferred co-factor for TK-GLK, which could be replaced with CDP but with a 60% activity. TK-GLK was a metal ion-dependent enzyme which exhibited glucokinase, glucosamine kinase and glucose 6-phosphatase activities. It catalyzed the phosphorylation of both glucose and glucosamine with nearly the same rate and affinity. The apparent Km values for glucose and glucosamine were 0.48 ± 0.03 and 0.47 ± 0.09 mM, respectively. The catalytic efficiency (kcat/Km) values against these two substrates were 6.2 × 105 ± 0.25 and 5.8 × 105 ± 0.75 M-1 s-1. The apparent Km value for dephosphorylation of glucose 6-phosphate was ~14-fold higher than that of glucose phosphorylation. Similarly, catalytic efficiency (kcat/Km) for phosphatase reaction was ~19-fold lower than that for the kinase reaction. To the best of our knowledge, this is the first report that describes the reversible nature of a euryarchaeal ADP-dependent glucokinase.


Assuntos
Adenosina Difosfato Glucose/química , Difosfato de Adenosina/química , Proteínas Arqueais/química , Glucoquinase/química , Glucosamina/química , Glucose/química , Thermococcus/enzimologia , Difosfato de Adenosina/metabolismo , Adenosina Difosfato Glucose/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Biocatálise , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucoquinase/genética , Glucoquinase/metabolismo , Glucosamina/metabolismo , Glucose/metabolismo , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Thermococcus/química , Termodinâmica
20.
Biochem Biophys Res Commun ; 529(3): 714-719, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736697

RESUMO

Obesity is associated with metabolic disorders. Fibroblast growth factor 21 (FGF21) has been recognized as important in metabolism. Glucosamine (GLN) has been demonstrated to perform diverse beneficial functions. This study aimed to reveal whether and how GLN would modulate FGF21 production in relation to metabolism. With in vivo model of normal diet (ND) and high-fat diet (HFD) mice receiving GLN injection and in vitro model of mouse AML12 liver cells and differentiated 3T3L1 adipocytes challenged with GLN, GLN appeared to improve the glucose metabolism in HFD and ND mice and to elevate FGF21 protein expression in HFD liver and to increase both FGF21 protein and mRNA levels in WAT from HFD and ND mice and it also upregulated FGF21 expression in both AML12 and differentiated 3T3L1 cells. By using inhibitors against various signaling pathways, p38, Akt, NF-κB, and PKA appeared potentially involved in GLN-mediated FGF21 production in AML12 cells; GLN was able to mediate activation of NF-κB, p38 or PKA/CREB signaling. Our accumulated findings suggest that GLN may potentially improve the metabolic performance by inducing FGF21 production in liver and adipose tissues and such induction in liver cells may act in part due to GLN induction of the NF-κB, p38 and PKA pathways.


Assuntos
Tecido Adiposo/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Glucosamina/metabolismo , Fígado/metabolismo , Células 3T3-L1 , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA