Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Carbohydr Res ; 517: 108581, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35561477

RESUMO

Glucosamine (2-amino-2-deoxy-d-glucose, GlcN) is a naturally occurring amino monosaccharide that is essential for a variety of biological functions, it is mainly involved in the formation of polysaccharide structures. It was recently reported to enable the imaging of cancerous tumors as an exogenous contrast agent using the MRI technique of chemical exchange saturation transfer (CEST). In preparation for the clinical use of GlcN, its anomeric equilibrium and mutarotation rate constants were directly investigated in this study utilizing high resolution 1H and 13C NMR spectroscopy. The effects of GlcN concentration, temperature, pH and buffer on the mutarotation rate constant and mutarotation equilibrium were measured. The mutarotation rate constant increased markedly with increasing GlcN concentrations. The rate constant of mutarotation of GlcN at room temperature was 2.2 × 10-4 - 5.0 × 10-4 s-1 at concentrations of 0.02-0.5 M, corresponding to a time of 3.8-1.7 h to reach 95% equilibrium. The anomeric ratio was strongly pH-dependent. The influence of phosphate buffer on the apparent rate constant of GlcN mutarotation was investigated. For phosphate buffer saline values between 0 and 50 mM, there was a six-fold increase in rate at pH 7.0. The mutarotation rate constant rose rapidly with pH at a phosphate concentration of 50 mM: from 0.4 × 10-3 s-1 at pH 5.0 to 7.8 × 10-3 s-1 at pH 9.4, suggesting that the catalysis is due to the HPO42- and PO43- ions. These findings might help researchers design the experimental setting for employing GlcN for cancer detection using GlcN-CEST MRI.


Assuntos
Glucosamina , Fosfatos , Catálise , Glucosamina/química , Indicadores e Reagentes , Cinética , Espectroscopia de Ressonância Magnética
2.
Int J Biol Macromol ; 173: 168-179, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33444657

RESUMO

The genome sequence of Thermococcus kodakarensis contains an open reading frame, TK1110, annotated as ADP-dependent glucokinase. The encoding gene was expressed in Escherichia coli and the gene product, TK-GLK, was produced in soluble and active form. The recombinant enzyme was extremely thermostable. Thermostability was increased significantly in the presence of ammonium sulfate. ADP was the preferred co-factor for TK-GLK, which could be replaced with CDP but with a 60% activity. TK-GLK was a metal ion-dependent enzyme which exhibited glucokinase, glucosamine kinase and glucose 6-phosphatase activities. It catalyzed the phosphorylation of both glucose and glucosamine with nearly the same rate and affinity. The apparent Km values for glucose and glucosamine were 0.48 ± 0.03 and 0.47 ± 0.09 mM, respectively. The catalytic efficiency (kcat/Km) values against these two substrates were 6.2 × 105 ± 0.25 and 5.8 × 105 ± 0.75 M-1 s-1. The apparent Km value for dephosphorylation of glucose 6-phosphate was ~14-fold higher than that of glucose phosphorylation. Similarly, catalytic efficiency (kcat/Km) for phosphatase reaction was ~19-fold lower than that for the kinase reaction. To the best of our knowledge, this is the first report that describes the reversible nature of a euryarchaeal ADP-dependent glucokinase.


Assuntos
Adenosina Difosfato Glucose/química , Difosfato de Adenosina/química , Proteínas Arqueais/química , Glucoquinase/química , Glucosamina/química , Glucose/química , Thermococcus/enzimologia , Difosfato de Adenosina/metabolismo , Adenosina Difosfato Glucose/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Biocatálise , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glucoquinase/genética , Glucoquinase/metabolismo , Glucosamina/metabolismo , Glucose/metabolismo , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Thermococcus/química , Termodinâmica
3.
Biochemistry ; 59(51): 4793-4798, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33326741

RESUMO

Low G+C Gram-positive Firmicutes, such as the clinically important pathogens Staphylococcus aureus and Bacillus cereus, use the low-molecular weight thiol bacillithiol (BSH) as a defense mechanism to buffer the intracellular redox environment and counteract oxidative stress encountered by human neutrophils during infections. The protein YpdA has recently been shown to function as an essential NADPH-dependent reductase of oxidized bacillithiol disulfide (BSSB) resulting from stress responses and is crucial for maintaining the reduced pool of BSH and cellular redox balance. In this work, we present the first crystallographic structures of YpdAs, namely, those from S. aureus and B. cereus. Our analyses reveal a uniquely organized biological tetramer; however, the structure of the monomeric subunit is highly similar to those of other flavoprotein disulfide reductases. The absence of a redox active cysteine in the vicinity of the FAD isoalloxazine ring implies a new direct disulfide reduction mechanism, which is backed by the presence of a potentially gated channel, serving as a putative binding site for BSSB in the proximity of the FAD cofactor. We also report enzymatic activities for both YpdAs, which along with the structures presented in this work provide important structural and functional insight into a new class of FAD-containing NADPH-dependent oxidoreductases, related to the emerging fight against pathogenic bacteria.


Assuntos
Proteínas de Bactérias/química , Cisteína/análogos & derivados , Flavina-Adenina Dinucleotídeo/química , Glucosamina/análogos & derivados , NADP/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Bacillus cereus/enzimologia , Cristalografia por Raios X , Cisteína/química , Glucosamina/química , Oxirredução , Estrutura Quaternária de Proteína , Staphylococcus aureus/enzimologia
4.
J Biol Inorg Chem ; 25(8): 1139-1152, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33128617

RESUMO

Development of biocompatible and multifunctional nanoprobes for tumor targeting, imaging, and therapy still remains a great challenge. Herein, gold nanoparticles (AuNPs) were synthesized in the cavity of horse spleen apoferritin protein (HoSAF) and protein surface was labeled with 2-amino-2-deoxy-glucose (2DG) as a cell surface glucose transport protein specific targeting probe to study the feasibility of its usage as a computer tomography (CT) contrast agent with tumor targeting capability through in vitro experiments. 2DG conjugated and gold-loaded apoferritin (Au-HoSAF-2DG) nanoparticles (NPs) showed selective targeting for human breast adenocarcinoma (MCF-7) cells when compared to normal breast (MCF-10A) cells. This AuNP-based imaging agent was found to be non-cytotoxic in a given concentration range with an apoptotic effect upon longer exposure times towards MCF-7 cells, while MCF-10A cells were affected less. This selective cell death would also be useful for further cancer treatments with the ability of X-ray attenuation in in vitro X-ray and computed tomography (CT) imaging.


Assuntos
Apoferritinas/química , Neoplasias da Mama/patologia , Glucosamina/química , Ouro/química , Imagem Molecular/métodos , Nanoestruturas/química , Animais , Humanos , Células MCF-7 , Nanomedicina
5.
J Med Chem ; 63(20): 11691-11706, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32960056

RESUMO

Self-adjuvanting vaccines, wherein an antigenic peptide is covalently bound to an immunostimulating agent, have been shown to be promising tools for immunotherapy. Synthetic Toll-like receptor (TLR) ligands are ideal adjuvants for covalent linking to peptides or proteins. We here introduce a conjugation-ready TLR4 ligand, CRX-527, a potent powerful lipid A analogue, in the generation of novel conjugate-vaccine modalities. Effective chemistry has been developed for the synthesis of the conjugation-ready ligand as well as the connection of it to the peptide antigen. Different linker systems and connection modes to a model peptide were explored, and in vitro evaluation of the conjugates showed them to be powerful immune-activating agents, significantly more effective than the separate components. Mounting the CRX-527 ligand at the N-terminus of the model peptide antigen delivered a vaccine modality that proved to be potent in activation of dendritic cells, in facilitating antigen presentation, and in initiating specific CD8+ T-cell-mediated killing of antigen-loaded target cells in vivo. Synthetic TLR4 ligands thus show great promise in potentiating the conjugate vaccine platform for application in cancer vaccination.


Assuntos
Vacinas Anticâncer/síntese química , Glucosamina/análogos & derivados , Lipídeo A/análogos & derivados , Compostos Organofosforados/química , Ovalbumina/química , Receptor 4 Toll-Like/imunologia , Adjuvantes Imunológicos , Animais , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Glucosamina/química , Glucosamina/imunologia , Imunoglobulina G/sangue , Ligantes , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Compostos Organofosforados/imunologia , Ovalbumina/imunologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Vacinas Conjugadas
6.
Drug Dev Ind Pharm ; 46(8): 1265-1277, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32594775

RESUMO

Gefitinib as an epidermal growth factor receptor tyrosine kinase inhibitor has strong potential in lung cancer therapy. However, a major challenge of using gefitinib is its toxicities. In the present study, we developed a dry powder inhaler dosage form containing gefitinib loaded glucosamine targeted solid lipid nanopaticles (Gef-G-SLNs) to locally transfer anticancer agent to the lung tumor. The Gef-G-SLNs were prepared by emulsion-solvent diffusion and evaporation method and optimized with irregular factorial design. The optimized nanoformulation was tested for action against A549 cells. Mannitol or lactose based dry powders were obtained from Gef-G-SLNs after spray drying and characterized using Anderson Cascade Impactor. The optimized formulation had drug loading of 33.29%, encapsulation efficiency of 97.31 ± 0.23%, zeta potential of -15.53 ± 0.47 mV, particle size of 187.23 ± 14.08 nm, polydispersity index of 0.28 ± 0.02 and release efficiency of 35.46 ± 2.25%. The Gef-G-SLNs showed superior anticancer effect compared to free gefitinib. The increased cellular uptake of G-SLNs in A549 cells was demonstrated compared with non-targeted SLNs using flow cytometry and fluorescence microscopy. The produced mannitol based microparticles showed suitable aerodynamic properties with an acceptable mass median aerodynamic diameter of 4.48 µm and fine particle fraction of 44.41%. Therefore, it can be concluded that this formulation represents promising drug delivery to treatment of lung cancer.


Assuntos
Gefitinibe/uso terapêutico , Glucosamina/administração & dosagem , Neoplasias Pulmonares , Nanopartículas , Administração por Inalação , Inaladores de Pó Seco , Gefitinibe/química , Glucosamina/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Tamanho da Partícula , Pós
7.
Int J Nanomedicine ; 15: 2921-2933, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425524

RESUMO

BACKGROUND: Targeted prodrug has various applications as drug formulation for tumor therapy. Therefore, amphoteric small-molecule prodrug combined with nanoscale characteristics for the self-assembly of the nano-drug delivery system (DDS) is a highly interesting research topic. METHODS AND RESULTS: In this study, we developed a prodrug self-assembled nanoplatform, 2-glucosamine-fluorescein-5(6)-isothiocyanate-glutamic acid-paclitaxel (2DA-FITC-PTX NPs) by integration of targeted small molecule and nano-DDS with regular structure and perfect targeting ability. 2-glucosamine (DA) and paclitaxel were conjugated as the targeted ligand and anti-tumor chemotherapy drug by amino acid group. 2-DA molecular structure can enhance the targeting ability of prodrug-based 2DA-FITC-PTX NPs and prolong retention time, thereby reducing the toxicity of normal cell/tissue. The fluorescent dye FITC or near-infrared fluorescent dye ICG in prodrug-based DDS was attractive for in vivo optical imaging to study the behavior of 2DA-FITC-PTX NPs. In vitro and in vivo results proved that 2DA-FITC-PTX NPs exhibited excellent targeting ability, anticancer activity, and weak side effects. CONCLUSION: This work demonstrates a new combination of nanomaterials for chemotherapy and may promote prodrug-based DDS clinical applications in the future.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Paclitaxel/administração & dosagem , Pró-Fármacos/química , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Fluoresceína-5-Isotiocianato/química , Glucosamina/química , Ácido Glutâmico/química , Humanos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Paclitaxel/química , Paclitaxel/farmacocinética , Pró-Fármacos/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Bioorg Chem ; 99: 103835, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32305695

RESUMO

A series ofN-acyl glucosamine-bearingtriterpenoidsaponins has been synthesized with cytotoxic activities evaluated against HL-60, PC-3, HCT-116, and CT-26 tumor cells. Saponins incorporated anoleanolic acid (OA) triterpenoidal core exhibited the highest cytotoxic activity. To study the influence of the lengths of acyl-carbon chain onN-position of glucosamine, cells were treated with28-propargylamides and then reacted with an azido-fluorogenic probe under CuAACclickreactions to visualize the intact distributions of these compounds by confocal microscopy and flow cytometry; it was found that cytotoxic-active compounds (30-32) located in the cytosol and inactivecompounds bearing longer carbon chains (33-35) were impenetrable across cell membranes.Our study demonstrated the defined lipophilic acyl-carbon chain length can precisely regulate thecytotoxic activityof saponins, which is useful for the future development of cytotoxic agents.Furthermore, using quantitative proteomics and immunolabeling,the mechanism ofcytotoxicity induced by the synthetic saponin after membrane penetration could be a result of activation of death receptor pathway and inhibition of PI3K/Akt/mTOR pathway.


Assuntos
Antineoplásicos/farmacologia , Glucosamina/farmacologia , Ácido Oleanólico/farmacologia , Saponinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glucosamina/química , Humanos , Estrutura Molecular , Ácido Oleanólico/química , Saponinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
9.
Curr Pharm Des ; 26(15): 1650-1665, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32065087

RESUMO

The synthetic heterocyclic compounds have their importance due to their wide applications in various fields of science. The heterocyclic compounds have been reported for their anticancer, antitubercular, insecticides, analeptics, analgesic, anti-bacterial, anti-viral, anti-fungal, and weedicidal activity. Researchers have tried various newer targets in search of better antimicrobials acting via novel mechanisms. Glucosamine-6-Phosphate synthase is an enzyme present in microbial cells. The inactivation of G-6-P synthase may serve as a novel approach to find better antimicrobials. The increasing demands development of newer and effective antimicrobial drugs has reported in search of newer techniques for the generation of new drugs. Hence, the molecular docking technique shall be explored to find or investigate the newer target finding the novel compounds which can be an active antimicrobial compound. The present review has focused on the reported heterocyclic compounds which have been evaluated for their antimicrobial potential using G-6-P synthase as a target. The results of in silico methods and in vitro methods have been compared and critically discussed.


Assuntos
Glucosamina/química , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante) , Compostos Heterocíclicos , Compostos Heterocíclicos/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Inquéritos e Questionários
10.
Food Chem ; 306: 125613, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31610331

RESUMO

Reduction of bitter taste in protein hydrolysates is a challenging task. The aim of this study was to apply a simple two-step approach to prepare low bitter hydrolysates and investigate the influence of peptide modifications on taste characteristics. Protein hydrolysates were prepared from porcine muscle and plasma through simultaneous hydrolysis using endo- and exo-peptidases combined with peptide glycation by glucosamine (GlcN). Spectroscopic analysis and quantification of major alpha-dicarbonyl compounds (α-DCs) indicated the relatively low extent of Maillard reaction in GlcN-glycated protein hydrolysates. Thermal degradation of high MW peptides (>10 kDa) might play a major role in Maillard reaction, reflected by the formation of more Maillard reacted peptides (1-5 kDa), especially in plasma samples. Sensory evaluation indicated that glycation by GlcN can alter taste profiles of protein hydrolysates, which may be attributed to the formation of Maillard reacted peptides and peptide modifications revealed by LC-MS/MS analysis.


Assuntos
Exopeptidases/química , Músculo Esquelético/química , Paladar , Animais , Aspergillus oryzae/enzimologia , Exopeptidases/metabolismo , Glucosamina/química , Glucosamina/metabolismo , Glicosilação , Hidrólise , Reação de Maillard , Músculo Esquelético/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Hidrolisados de Proteína/química , Suínos
11.
J Biomed Mater Res B Appl Biomater ; 108(3): 990-999, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31369700

RESUMO

Glucosamine (GlcN) has been widely used to reduce joint pain and osteoarthritis progression, but the efficacy of GlcN remains controversial because of the low GlcN concentration reaching the articular cavity. The aim of this study is to provide an effective approach of GlcN delivery to a target site using photocrosslinkable methacrylated gelatin (GelMA)-based hydrogels, where GlcN could be gradually released during the degradation of the GelMA hydrogel. Herein, GlcN was acrylated as the acryloyl glucosamine (AGA) and covalently grafted to GelMA, and more than 87.7% of 15% (w/v) GelMA hydrogel was grafted with AGA. Moreover, in vitro outgrowth and apoptosis assay of bone marrow stem cells (BMSCs) demonstrated that the GelMA-AGA hydrogels had better biocompatibility, larger cell attachment, and higher cell viability than pure GlcN and AGA materials. Also, 15% (w/v) GelMA-AGA hydrogel was injected into the defect site for in vivo rabbit cartilage repair. Compared with oral administration of pure GlcN and injection of pure GelMA, the repaired cartilages using GelMA-AGA hydrogels had the smoothest surface of the defect site, filling more than 95% defect bulk. The similar content of glycosaminoglycans to the native tissue and the maximum amount of type II collagen was found in the repaired cartilage using GelMA-AGA hydrogels, indicating the outgrowth of hyaline cartilage.


Assuntos
Materiais Biocompatíveis/química , Cartilagem/efeitos dos fármacos , Gelatina/química , Glucosamina/química , Hidrogéis/química , Animais , Apoptose , Células da Medula Óssea/citologia , Osso e Ossos , Cartilagem/metabolismo , Proliferação de Células , Força Compressiva , Reagentes de Ligações Cruzadas/química , Matriz Extracelular/metabolismo , Cartilagem Hialina/química , Técnicas In Vitro , Masculino , Teste de Materiais , Metacrilatos/química , Fotoquímica , Coelhos , Reologia , Células-Tronco/citologia , Estresse Mecânico , Engenharia Tecidual , Alicerces Teciduais
12.
Colloids Surf B Biointerfaces ; 186: 110712, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31846894

RESUMO

Free polymer graphene aerogel nanoparticles (GA NPs) were synthesized by using reduction/aggregation of graphene oxide (GO) sheets in the presence of vitamin C (as a biocompatible reductant agent) at a low temperature (40 °C), followed by an effective sonication. Synthesis of GA NPs in doxorubicin hydrochloride (DOX)-containing solution results in the simultaneous synthesis and drug loading with higher performance (than that of the separately synthesized and loaded samples). To investigate the mechanism of loading and the capability of GA NPs in the loading of other drug structures, two groups of ionized (DOX, Amikacin sulfate and, d-glucosamine hydrochloride) and non-ionized (Paclitaxel (PTX)) drugs were examined. Furthermore, the relationship between the bipolar level of DOX solution (contributing to H-bonding of DOX and GO) and the amount of DOX loading was investigated. The DOX showed higher loading (>3 times) than PTX, as anticancer drugs. Since both DOX and PTX possess aromatic structures, the higher loading of DOX was assigned to its positive partial charge and ionized nature. Accordingly, other drugs (having positive partial charge and ionized nature, but no aromatic structure) such as Amikacin sulfate and d-glucosamine hydrochloride presented higher loading than PTX. These results indicated that although the π-π interactions induced by aromatic structures are important in drug loading, the electrostatic interaction of ionized drugs with GO (especially through H-bonding) is the dominant mechanism. DOX-loaded GANPs showed high pH-sensitive release (equivalent to the carrier weight) after 5 days, which can indicate benefits in tumor cell acidic microenvironments in-vivo.


Assuntos
Antineoplásicos/química , Doxorrubicina/química , Grafite/química , Nanopartículas/química , Paclitaxel/química , Amicacina/química , Liberação Controlada de Fármacos , Géis/química , Glucosamina/química , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Propriedades de Superfície
13.
Bioorg Med Chem Lett ; 30(2): 126796, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31757669

RESUMO

Dysregulation of the ceramide transport protein CERT is associated to diseases such as cancer. In search for new CERT START domain ligands, N-dodecyl-deoxynojirimycin (N-dodecyl-DNJ) iminosugar was found to display, as a ceramide mimic, significant protein recognition. To reinforce the lipophilic interactions and strengthen this protein binding, a docking study was carried out in order to select the optimal position on which to introduce an additional O-alkyl chain on N-dodecyl-DNJ. Analysis of the calculated poses for three different regioisomers indicated an optimal calculated interaction pattern for N,O3-didodecyl-DNJ. The two most promising regioisomers were prepared by a divergent route and their binding to the CERT START domain was evaluated with fluorescence intensity (FLINT) binding assay. N,O3-didodecyl-DNJ was confirmed to be a new binder prototype with level of protein recognition in the FLINT assay comparable to the best known ligands from the alkylated HPA-12 series. This work opens promising perspectives for the development of new inhibitors of CERT-mediated ceramide trafficking.


Assuntos
Glucosamina/análogos & derivados , Proteínas Serina-Treonina Quinases/química , 1-Desoxinojirimicina/química , 1-Desoxinojirimicina/metabolismo , Sítios de Ligação , Ceramidas/metabolismo , Glucosamina/química , Glucosamina/metabolismo , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/metabolismo , Estereoisomerismo , Termodinâmica
14.
Protein Sci ; 29(4): 1035-1039, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31867856

RESUMO

Many gram-positive bacteria produce bacillithiol to aid in the maintenance of redox homeostasis and degradation of toxic compounds, including the antibiotic fosfomycin. Bacillithiol is produced via a three-enzyme pathway that includes the action of the zinc-dependent deacetylase BshB. Previous studies identified conserved aspartate and histidine residues within the active site that are involved in metal binding and catalysis, but the enzymatic mechanism is not fully understood. Here we report two X-ray crystallographic structures of BshB from Bacillus subtilis that provide insight into the BshB catalytic mechanism.


Assuntos
Amidoidrolases/química , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Zinco/metabolismo , Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Biocatálise , Cristalografia por Raios X , Cisteína/biossíntese , Cisteína/química , Glucosamina/biossíntese , Glucosamina/química , Modelos Moleculares , Conformação Proteica , Zinco/química
15.
AAPS PharmSciTech ; 21(1): 24, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31845106

RESUMO

Conjugation of D-glucosamine with lipophilic moiety can ease its application in surface modification of liposomes. Interestingly, although D-glucosamine is safe, studies have shed light on "toxic effect" of its conjugates on cancer cells and highlighted its application in targeting glioma. However, understanding the safety of such conjugates for local delivery to the brain is unavailable. Herein, after successful synthesis of D-glucosamine conjugate (GC), the toxicity of functionalized liposome was evaluated both in vitro and in vivo. The study revealed a significant effect on cytotoxicity and apoptosis in vitro as assessed on grade IV-resistant glioma cell lines, SF268, U87MG, using MTT assay and PI staining. Additionally, this effect was not observed on normal human erythrocytes in the hemolysis assay. Furthermore, we demonstrated that GC liposomes were non-toxic to the normal brain tissues of healthy Sprague-Dawley rats. Successful functionalization yielded liposome with uniform particle size, stability, and cellular uptake. With < 10% hemolysis, all the liposomal formulations demonstrated hemato-compatibility but led to high glioma cytotoxicity. The surface density of conjugate played an important role in tumor toxicity (0.5 < 1.0 ≤ 2.0% molar ratio). PI staining revealed that compared to control cell, functionalization led 26-fold increase in induction of apoptosis in glioma cells. Absence of histological and behavioral changes along with the absence of caspase-3 in brain tissue confirmed the suitability of the system for direct infusion in the brain. Thus, this study will aid the future development of clinically useful local chemotherapeutic without "add-in" side effects.


Assuntos
Encéfalo/metabolismo , Glucosamina/administração & dosagem , Lipossomos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Glucosamina/química , Humanos , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley
16.
Arthritis Res Ther ; 21(1): 254, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779692

RESUMO

BACKGROUND: Osteoarthritis is increasingly recognized as the result of a complex interplay between inflammation, chrondrodegeneration, and pain. Joint mast cells are considered to play a key role in orchestrating this detrimental triad. ALIAmides down-modulate mast cells and more generally hyperactive cells. Here we investigated the safety and effectiveness of the ALIAmide N-palmitoyl-D-glucosamine (PGA) in inflammation and osteoarthritis pain. METHODS: Acute toxicity of micronized PGA (m-PGA) was assessed in rats following OECD Guideline No.425. PGA and m-PGA (30 mg/kg and 100 mg/kg) were orally administered to carrageenan (CAR)-injected rats. Dexamethasone 0.1 mg/kg was used as reference. Paw edema and thermal hyperalgesia were measured up to 6 h post-injection, when also myeloperoxidase activity and histological inflammation score were assessed. Rats subjected to intra-articular injection of sodium monoiodoacetate (MIA) were treated three times per week for 21 days with PGA or m-PGA (30 mg/kg). Mechanical allodynia and motor function were evaluated at different post-injection time points. Joint histological and radiographic damage was scored, articular mast cells were counted, and macrophages were immunohistochemically investigated. Levels of TNF-α, IL-1ß, NGF, and MMP-1, MMP-3, and MMP-9 were measured in serum using commercial colorimetric ELISA kits. One- or two-way ANOVA followed by a Bonferroni post hoc test for multiple comparisons was used. RESULTS: Acute oral toxicity of m-PGA resulted in LD50 values in excess of 2000 mg/kg. A single oral administration of PGA and m-PGA significantly reduced CAR-induced inflammatory signs (edema, inflammatory infiltrate, and hyperalgesia), and m-PGA also reduced the histological score. Micronized PGA resulted in a superior activity to PGA on MIA-induced mechanical allodynia, locomotor disability, and histologic and radiographic damage. The MIA-induced increase in mast cell count and serum level of the investigated markers was also counteracted by PGA and to a significantly greater extent by m-PGA. CONCLUSIONS: The results of the present study showed that PGA is endorsed with anti-inflammatory, pain-relieving, and joint-protective effects. Moreover, it proved that particle size reduction greatly enhances the activity of PGA, particularly on joint pain and disability. Given these results, m-PGA could be considered a valuable option in the management of osteoarthritis.


Assuntos
Analgésicos/farmacologia , Glucosamina/farmacologia , Inflamação/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Dor/prevenção & controle , Analgésicos/química , Animais , Carragenina , Feminino , Glucosamina/química , Hiperalgesia/induzido quimicamente , Hiperalgesia/prevenção & controle , Inflamação/fisiopatologia , Ácido Iodoacético , Masculino , Mastócitos/citologia , Mastócitos/efeitos dos fármacos , Metaloproteinase 1 da Matriz/sangue , Osteoartrite/fisiopatologia , Dor/induzido quimicamente , Dor/fisiopatologia , Medição da Dor/métodos , Tamanho da Partícula , Ratos Sprague-Dawley , Testes de Toxicidade , Fator de Necrose Tumoral alfa/sangue
17.
Anticancer Agents Med Chem ; 19(14): 1695-1702, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31272360

RESUMO

BACKGROUND AND OBJECTIVE: Glucosamine is a widely prescribed dietary supplement used in the treatment of osteoarthritis. In the present study, the chemoprotectant ability of glucosamine was evaluated against cisplatin-induced genotoxicity and cytotoxicity in rat bone marrow cells. METHODS: Glucosamine was orally administrated to rats at doses of 75 and 150 mg/kg body weight for seven consecutive days. On the seventh day, the rats were treated with a single injection of cisplatin (5 mg/kg, i.p.) at 1h after the last oral administration. The cisplatin antagonistic potential of glucosamine was assessed by micronucleus assay, Reactive Oxygen Species (ROS) level analysis, hematological analysis, and flow cytometry. RESULTS: Glucosamine administration to cisplatin-treated rats significantly decreased the frequencies of Micronucleated Polychromatic Erythrocytes (MnPCEs) and Micronucleated Normchromatic Erythrocytes (MnNCEs), and also increased PCE/(PCE+NCE) ratio in bone marrow cells. Furthermore, treatment of rats with glucosamine before cisplatin significantly inhibited apoptosis, necrosis and ROS generation in bone marrow cells, and also increased red blood cells count in peripheral blood. CONCLUSION: This study shows glucosamine to be a new effective chemoprotector against cisplatin-induced DNA damage and apoptosis in rat bone marrow cells. The results of this study may be helpful in reducing the harmful effects of cisplatin-based chemotherapy in the future.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Cisplatino/antagonistas & inibidores , DNA/efeitos dos fármacos , Glucosamina/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , DNA/genética , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glucosamina/química , Masculino , Testes para Micronúcleos , Substâncias Protetoras/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
18.
Protein Sci ; 28(6): 1083-1094, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30968475

RESUMO

Bacillithiol is a glucosamine-derived antioxidant found in several pathogenic Gram-positive bacteria. The compound is involved in maintaining the appropriate redox state within the cell as well as detoxifying foreign agents like the antibiotic fosfomycin. Bacillithiol is produced via the action of three enzymes, including BshA, a retaining GT-B glycosyltransferase that utilizes UDP-N-acetylglucosamine and l-malate to produce N-acetylglucosaminyl-malate. Recent studies suggest that retaining GT-B glycosyltransferases like BshA utilize a substrate-assisted mechanism that goes through an SN i-like transition state. In a previous study, we relied on X-ray crystallography as well as computational simulations to hypothesize the manner in which substrates would bind the enzyme, but several questions about substrate binding and the role of one of the amino acid residues persisted. Another study demonstrated that BshA might be subject to feedback inhibition by bacillithiol, but this phenomenon was not analyzed further to determine the exact mechanism of inhibition. Here we present X-ray crystallographic structures and steady-state kinetics results that help elucidate both of these issues. Our ligand-bound crystal structures demonstrate that the active site provides an appropriate steric and geometric arrangement of ligands to facilitate the substrate-assisted mechanism. Finally, we show that bacillithiol is competitive for UDP-N-acetylglucosamine with a Ki value near 120-130 µM and likely binds within the BshA active site, suggesting that bacillithiol modulates BshA activity via feedback inhibition. The work presented here furthers our understanding of bacillithiol metabolism and can aid in the development of inhibitors to counteract resistance to antibiotics such as fosfomycin.


Assuntos
Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Glicosiltransferases , Staphylococcus aureus/enzimologia , Configuração de Carboidratos , Cristalografia por Raios X , Cisteína/biossíntese , Cisteína/química , Cisteína/metabolismo , Glucosamina/biossíntese , Glucosamina/química , Glucosamina/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Cinética , Modelos Moleculares
19.
Biochemistry ; 58(16): 2152-2159, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30810306

RESUMO

The N-methyltransferase TylM1 from Streptomyces fradiae catalyzes the final step in the biosynthesis of the deoxyamino sugar mycaminose, a substituent of the antibiotic tylosin. The high-resolution crystal structure of TylM1 bound to the methyl donor S-adenosylmethionine (AdoMet) illustrates a network of carbon-oxygen (CH···O) hydrogen bonds between the substrate's sulfonium cation and residues within the active site. These interactions include hydrogen bonds between the methyl and methylene groups of the AdoMet sulfonium cation and the hydroxyl groups of Tyr14 and Ser120 in the enzyme. To examine the functions of these interactions, we generated Tyr14 to phenylalanine (Y14F) and Ser120 to alanine (S120A) mutations to selectively ablate the CH···O hydrogen bonding to AdoMet. The TylM1 S120A mutant exhibited a modest decrease in its catalytic efficiency relative to that of the wild type (WT) enzyme, whereas the Y14F mutation resulted in an approximately 30-fold decrease in catalytic efficiency. In contrast, site-specific substitution of Tyr14 by the noncanonical amino acid p-aminophenylalanine partially restored activity comparable to that of the WT enzyme. Correlatively, quantum mechanical calculations of the activation barrier energies of WT TylM1 and the Tyr14 mutants suggest that substitutions that abrogate hydrogen bonding with the AdoMet methyl group impair methyl transfer. Together, these results offer insights into roles of CH···O hydrogen bonding in modulating the catalytic efficiency of TylM1.


Assuntos
Proteínas de Bactérias/química , Ligação de Hidrogênio , Metiltransferases/química , S-Adenosilmetionina/química , Compostos de Sulfônio/química , Amino Açúcares/química , Amino Açúcares/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Carbono/química , Carbono/metabolismo , Cristalografia por Raios X , Glucosamina/análogos & derivados , Glucosamina/química , Glucosamina/metabolismo , Cinética , Metiltransferases/genética , Metiltransferases/metabolismo , Mutação , Oxigênio/química , Oxigênio/metabolismo , Ligação Proteica , Domínios Proteicos , S-Adenosilmetionina/metabolismo , Streptomyces/enzimologia , Streptomyces/genética , Especificidade por Substrato , Compostos de Sulfônio/metabolismo
20.
Chem Biol Interact ; 300: 63-72, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30641060

RESUMO

Mammary serine protease inhibitor or Maspin has been characterized as a class II tumor suppressor gene in several cancer types, among them prostate cancer (CaP). Androgen ablation is an effective therapy for CaP, but with short-term effectiveness, thus new therapeutic strategies are actively sought. The present study is aimed to explore the effects of a glucosamine derivative, 2-(N-Carbobenzyloxy)l-phenylalanylamido-2-deoxy-ß-d-glucose (NCPA), on two CaP cell lines, PC3 and LNCaP. In particular we analyzed the impact of NCPA on Maspin production, cell viability and cell cycle progression and apoptosis/necrosis pathway activation in PC3 and LNCaP cell lines. NCPA is able to stimulate Maspin production in PC3 and not in LNCaP cell lines. NCPA blocks the PC3 cell cycle in G1 phase, by inhibiting Cyclin D1 production and induces the apoptosis, therefore interfering with aggressiveness of this androgen-insensitive cell line. Moreover, NCPA is able to induce the expression of Maspin in LNCaP cell line treated with androgen receptor inhibitor, Bicalutamide, and in turn to stimulate the apoptosis of these cells. These findings suggest that NCPA, stimulating the endogenous production of a tumor suppressor protein, could be useful in the design of new therapeutic strategies for treatment of CaP.


Assuntos
Proliferação de Células/efeitos dos fármacos , Glucosamina/análogos & derivados , Glucosamina/farmacologia , Serpinas/metabolismo , Anilidas/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/genética , Ciclina D1/metabolismo , Glucosamina/química , Humanos , Masculino , Nitrilas/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo , Serpinas/genética , Compostos de Tosil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA