Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Med Genet A ; 188(10): 2861-2868, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36097642

RESUMO

Spondylo-epi-metaphyseal dysplasias (SEMDs) are a clinically and genetically heterogeneous group of skeletal dysplasias characterized by short stature and abnormal modeling of the spine and long bones. A novel form of rhizomelic skeletal dysplasia, Ain-Naz type, associated with a homozygous variant in GNPNAT1 was recently identified. Herein, we report an Egyptian patient, offspring of consanguineous parents, who presented with a severe form of unclassified SEMD. Whole exome sequencing identified a novel homozygous variant in exon 3, c.77T>G, (p.Phe26Cys) in GNPNAT1, that was confirmed by Sanger sequencing and both parents were found to be heterozygous for the identified variant. Main features included severe short stature, rhizomelic limb shortening, and wide flared metaphysis. Short broad long bones, brachydactyly, delayed epiphyseal ossification of long bones, advanced bone age, and immunodeficiency were additional findings expanding the clinical phenotype described in the previously reported family. We conclude that variants in the GNPNAT1 gene cause an autosomal recessive form of SEMD resembling Desbuquois like dysplasia caused by PGM3, which is involved in the same pathway as GNPNAT1.


Assuntos
Nanismo , Osteocondrodisplasias , Nanismo/diagnóstico por imagem , Nanismo/genética , Glucosamina 6-Fosfato N-Acetiltransferase/genética , Heterozigoto , Humanos , Hiperplasia , Osteocondrodisplasias/genética , Fosfoglucomutase/genética , Sequenciamento do Exoma
2.
Eur J Med Genet ; 65(6): 104495, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35427807

RESUMO

Spondyloepimetaphyseal dysplasias (SEMDs) belong to a clinically and genetically heterogeneous group of inherited skeletal disorders defined by a defect in the growth and shape of vertebrae, epiphyses and metaphyses. Rhizomelic SEMD is characterized by a disproportionate small stature caused by severe shortening and deformation of the limbs' proximal bones, with the cranio-facial sphere unaffected. We report a second individual, an 8-year-old girl, with autosomal recessive rhizomelic SEMD associated with a homozygous exonic missense variant, c.226G > A p.(Glu76Lys), in GNPNAT1 identified by trio genome sequencing. Our data corroborate the recent findings of Ain et al. and further delineate the clinical and radiographic features of this form of SEMD associated with rhizomelic dysplasia while outlining a potential hotspot in this newly described genetic disorder.


Assuntos
Nanismo , Osteocondrodisplasias , Osso e Ossos , Criança , Nanismo/diagnóstico por imagem , Nanismo/genética , Feminino , Glucosamina 6-Fosfato N-Acetiltransferase/genética , Homozigoto , Humanos , Mutação de Sentido Incorreto , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/genética , Doenças Raras
3.
Aging (Albany NY) ; 13(5): 7430-7453, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33686019

RESUMO

Glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1) is a key enzyme associated with glucose metabolism and uridine diphosphate-N-acetylglucosamine biosynthesis. Abnormal GNPNAT1 expression might be associated with carcinogenesis. We analyzed multiple lung adenocarcinoma (LUAD) gene expression databases and verified GNPNAT1 higher expression in LUAD tumor tissues than in normal tissues. Moreover, we analyzed the survival relationship between LUAD patients' clinical status and GNPNAT1 expression, and found higher GNPNAT1 expression in LUAD patients with unfavorable prognosis. We built GNPNAT1 gene co-expression networks and further annotated the co-expressed genes' Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and various associated regulatory factors. These co-expression genes' functional networks mainly participate in chromosome segregation, RNA metabolic process, and RNA transport. We analyzed GNPNAT1 genetic alterations and co-occurrence networks, and the functional networks of these genes showed that GNPNAT1 participates in multiple steps of cell cycle transition and in the development of some cancers. We assessed the correlation between GNPNAT1 expression and cancer immune infiltrates and showed that GNPNAT1 expression is correlated with several immune cells, chemokines, and immunomodulators in LUAD. We found that GNPNAT1 correlates with LUAD development and prognosis, laying a foundation for further research, especially in immunotherapy.


Assuntos
Adenocarcinoma de Pulmão/enzimologia , Glucosamina 6-Fosfato N-Acetiltransferase/metabolismo , Neoplasias Pulmonares/enzimologia , Adenocarcinoma de Pulmão/etiologia , Adenocarcinoma de Pulmão/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Variação Genética/genética , Glucosamina 6-Fosfato N-Acetiltransferase/genética , Humanos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/mortalidade , Linfócitos do Interstício Tumoral , Masculino , Pessoa de Meia-Idade , Análise de Sobrevida , Transcriptoma , Adulto Jovem
4.
J Med Genet ; 58(5): 351-356, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32591345

RESUMO

BACKGROUND: Studies exploring molecular mechanisms underlying congenital skeletal disorders have revealed novel regulators of skeletal homeostasis and shown protein glycosylation to play an important role. OBJECTIVE: To identify the genetic cause of rhizomelic skeletal dysplasia in a consanguineous Pakistani family. METHODS: Clinical investigations were carried out for four affected individuals in the recruited family. Whole genome sequencing (WGS) was completed using DNA from two affected and two unaffected individuals from the family. Sequencing data were processed, filtered and analysed. In silico analyses were performed to predict the effects of the candidate variant on the protein structure and function. Small interfering RNAs (siRNAs) were used to study the effect of Gnpnat1 gene knockdown in primary rat chondrocytes. RESULTS: The patients presented with short stature due to extreme shortening of the proximal segments of the limbs. Radiographs of one individual showed hip dysplasia and severe platyspondyly. WGS data analyses identified a homozygous missense variant c.226G>A; p.(Glu76Lys) in GNPNAT1, segregating with the disease. Glucosamine 6-phosphate N-acetyltransferase, encoded by the highly conserved gene GNPNAT1, is one of the enzymes required for synthesis of uridine diphosphate N-acetylglucosamine, which participates in protein glycosylation. Knockdown of Gnpnat1 by siRNAs decreased cellular proliferation and expression of chondrocyte differentiation markers collagen type 2 and alkaline phosphatase, indicating that Gnpnat1 is important for growth plate chondrocyte proliferation and differentiation. CONCLUSIONS: This study describes a novel severe skeletal dysplasia associated with a biallelic, variant in GNPNAT1. Our data suggest that GNPNAT1 is important for growth plate chondrogenesis.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Fêmur/anormalidades , Glucosamina 6-Fosfato N-Acetiltransferase/genética , Úmero/anormalidades , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Doenças do Desenvolvimento Ósseo/diagnóstico por imagem , Doenças do Desenvolvimento Ósseo/patologia , Células Cultivadas , Consanguinidade , Feminino , Fêmur/diagnóstico por imagem , Fêmur/patologia , Homozigoto , Humanos , Úmero/diagnóstico por imagem , Úmero/patologia , Masculino , Pessoa de Meia-Idade , Linhagem , Radiografia , Ratos Sprague-Dawley
5.
J Comput Biol ; 27(10): 1532-1543, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32298601

RESUMO

Metabolic genes have been reported to act as crucial roles in tumor progression. Lung adenocarcinoma (LUAD) is one of the most common cancers worldwide. This study aimed to predict the potential mechanism and novel markers of metabolic signature in LUAD. The gene expression profiles and the clinical parameters were obtained from The Cancer Genome Atlas-Lung adenocarcinoma (TCGA-LUAD) and Gene Expression Omnibus data set (GSE72094). A total of 105 differentially expressed metabolic genes of intersect expression in TCGA-LUAD and GSE72094 were screened by R language. Univariate Cox regression model found 18 survival-related genes and then the least absolute shrinkage and selection operator model was successfully constructed. Six significant genes prognostic model was validated though independent prognosis analysis. The model revealed high values for prognostic biomarkers by time-dependent receiver operating characteristic (ROC) analysis, risk score, Heatmap, and nomogram. In addition, Gene Set Enrichment Analysis showed that multiplex metabolism pathways correlated with LUAD. Furthermore, we found the six genes aberrantly expressed in LUAD samples. Our study showed that metabolism pathways play important roles in LUAD progression. The six metabolic genes could predict potential prognostic and diagnostic biomarkers in LUAD.


Assuntos
Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Neoplasias Pulmonares/genética , Aciltransferases/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/mortalidade , Aldeído-Desidrogenase Mitocondrial/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional , Bases de Dados Genéticas , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Glucosamina 6-Fosfato N-Acetiltransferase/genética , Humanos , Estimativa de Kaplan-Meier , L-Lactato Desidrogenase/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Redes e Vias Metabólicas/genética , Prognóstico , Modelos de Riscos Proporcionais , Prostaglandina-E Sintases/genética , Curva ROC , Timidilato Sintase/genética
6.
J Neurosci ; 39(36): 7195-7205, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31320448

RESUMO

Clinical and experimental data indicate striatal cholinergic dysfunction in dystonia, a movement disorder typically resulting in twisted postures via abnormal muscle contraction. Three forms of isolated human dystonia result from mutations in the TOR1A (DYT1), THAP1 (DYT6), and GNAL (DYT25) genes. Experimental models carrying these mutations facilitate identification of possible shared cellular mechanisms. Recently, we reported elevated extracellular striatal acetylcholine by in vivo microdialysis and paradoxical excitation of cholinergic interneurons (ChIs) by dopamine D2 receptor (D2R) agonism using ex vivo slice electrophysiology in Dyt1ΔGAG/+ mice. The paradoxical excitation was caused by overactive muscarinic receptors (mAChRs), leading to a switch in D2R coupling from canonical Gi/o to noncanonical ß-arrestin signaling. We sought to determine whether these mechanisms in Dyt1ΔGAG/+ mice are shared with Thap1C54Y/+ knock-in and Gnal+/- knock-out dystonia models and to determine the impact of sex. We found Thap1C54Y/+ mice of both sexes have elevated extracellular striatal acetylcholine and D2R-induced paradoxical ChI excitation, which was reversed by mAChR inhibition. Elevated extracellular acetylcholine was absent in male and female Gnal+/- mice, but the paradoxical D2R-mediated ChI excitation was retained and only reversed by inhibition of adenosine A2ARs. The Gi/o-preferring D2R agonist failed to increase ChI excitability, suggesting a possible switch in coupling of D2Rs to ß-arrestin, as seen previously in a DYT1 model. These data show that, whereas elevated extracellular acetylcholine levels are not always detected across these genetic models of human dystonia, the D2R-mediated paradoxical excitation of ChIs is shared and is caused by altered function of distinct G-protein-coupled receptors.SIGNIFICANCE STATEMENT Dystonia is a common and often disabling movement disorder. The usual medical treatment of dystonia is pharmacotherapy with nonselective antagonists of muscarinic acetylcholine receptors, which have many undesirable side effects. Development of new therapeutics is a top priority for dystonia research. The current findings, considered in context with our previous investigations, establish a role for cholinergic dysfunction across three mouse models of human genetic dystonia: DYT1, DYT6, and DYT25. The commonality of cholinergic dysfunction in these models arising from diverse molecular etiologies points the way to new approaches for cholinergic modulation that may be broadly applicable in dystonia.


Assuntos
Neurônios Colinérgicos/metabolismo , Corpo Estriado/metabolismo , Proteínas de Ligação a DNA/genética , Distonia/genética , Glucosamina 6-Fosfato N-Acetiltransferase/genética , Chaperonas Moleculares/genética , Acetilcolina/metabolismo , Animais , Neurônios Colinérgicos/fisiologia , Corpo Estriado/fisiopatologia , Distonia/metabolismo , Distonia/fisiopatologia , Espaço Extracelular/metabolismo , Feminino , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Dopamina D2/metabolismo , Receptores Muscarínicos/metabolismo , Potenciais Sinápticos , beta-Arrestinas/metabolismo
7.
Protein Expr Purif ; 86(2): 120-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23036358

RESUMO

Glucosamine 6-phosphate N-acetyltransferase (GNA1; EC 2.3.1.4) is required for the de novo synthesis of N-acetyl-d-glucosamine-6-phosphate (GlcNAc-6P), which is an essential precursor in Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) biosynthesis pathway. Therefore, GNA1 is indispensable for the viability of organisms. Here, a novel cell-free expression strategy was developed to efficiently produce large amounts of human GNA1(HsGNA1) and HsGNA1-sGFP for throughput inhibitor screening. The binding site of inhibitor glucose-6-phosphate (G6P) to hGNA was identified by simulated annealing. Subtle differences to the binding site of Aspergillius GNA1(AfGNA1) can be harnessed for inhibitor design. HsGNA1 may be also useful as an antimicrobial and chemotherapeutic target against cancer. Additionally HsGNA1 inhibitors/modulators can possibly be administered with other drugs in the next generation of personalized medicine.


Assuntos
Sistema Livre de Células/metabolismo , Glucosamina 6-Fosfato N-Acetiltransferase/antagonistas & inibidores , Glucosamina 6-Fosfato N-Acetiltransferase/biossíntese , Sequência de Aminoácidos , Sítios de Ligação , Biotecnologia/métodos , Glucosamina 6-Fosfato N-Acetiltransferase/química , Glucosamina 6-Fosfato N-Acetiltransferase/genética , Glucose-6-Fosfato/metabolismo , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência
8.
Biochim Biophys Acta ; 1822(9): 1501-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22659211

RESUMO

Ether-phospholipids represent an important group of phospholipids characterized by an alkyl or an alkenyl bond at the sn-1 position of the glycerol backbone. Plasmalogens are the most abundant form of alkenyl-glycerophospholipids, and their synthesis requires functional peroxisomes. Defects in the biosynthesis of plasmalogens are the biochemical hallmark of the human peroxisomal disorder Rhizomelic Chondrodysplasia Punctata (RCDP), which is characterized by defects in eye, bone and nervous tissue. The generation and characterization of mouse models with defects in plasmalogen levels have significantly advanced our understanding of the role and importance of plasmalogens as well as pathogenetic mechanisms underlying RCDP. A review of the current mouse models and the description of the combined knowledge gathered from the histopathological and biochemical studies is presented and discussed. Further characterization of the role and functions of plasmalogens will contribute to the elucidation of disease pathogenesis in peroxisomal and non-peroxisomal disorders. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.


Assuntos
Condrodisplasia Punctata Rizomélica/metabolismo , Modelos Animais de Doenças , Plasmalogênios/fisiologia , Animais , Condrodisplasia Punctata Rizomélica/genética , Condrodisplasia Punctata Rizomélica/patologia , Glucosamina 6-Fosfato N-Acetiltransferase/deficiência , Glucosamina 6-Fosfato N-Acetiltransferase/genética , Humanos , Camundongos , Camundongos Knockout , Receptor 2 de Sinal de Orientação para Peroxissomos , Plasmalogênios/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA