Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.694
Filtrar
1.
Biosens Bioelectron ; 258: 116358, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718634

RESUMO

Wearable sensors for sweat glucose monitoring are gaining massive interest as a patient-friendly and non-invasive way to manage diabetes. The present work offers an alternative on-body method employing an all-printed flexible electrochemical sensor to quantify the amount of glucose in human sweat. The working electrode of the glucose sensor was printed using a custom-formulated ink containing multi-walled carbon nanotube (MWCNT), poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOPT: PSS), and iron (II, III) oxide (Fe3O4) nanoparticles. This novel ink composition has good conductivity, enhanced catalytic activity, and excellent selectivity. The working electrode was modified using Prussian blue (PB) nanoparticles and glucose oxidase enzyme (GOx). The sensor displayed a linear chronoamperometric response to glucose from 1 µM to 400 µM, with a precise detection limit of ∼0.38 µM and an impressive sensitivity of ∼4.495 µAµM-1cm-2. The sensor stored at 4 °C exhibited excellent stability over 60 days, high selectivity, and greater reproducibility. The glucose detection via the standard addition method in human sweat samples acquired a high recovery rate of 96.0-98.6%. Examining human sweat during physical activity also attested to the biosensor's real-time viability. The results also show an impressive correlation between glucose levels obtained from a commercial blood glucose meter and sweat glucose concentrations. Remarkably, the present results outperform previously published printed glucose sensors in terms of detection range, low cost, ease of manufacturing, stability, selectivity, and wearability.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Glucose , Limite de Detecção , Nanocompostos , Nanotubos de Carbono , Suor , Dispositivos Eletrônicos Vestíveis , Humanos , Técnicas Biossensoriais/instrumentação , Nanotubos de Carbono/química , Suor/química , Nanocompostos/química , Glucose/análise , Glucose Oxidase/química , Tinta , Técnicas Eletroquímicas , Compostos Férricos/química , Ferrocianetos/química , Polímeros/química , Reprodutibilidade dos Testes , Compostos Bicíclicos Heterocíclicos com Pontes/química , Poliestirenos
2.
ACS Sens ; 9(5): 2254-2274, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38636962

RESUMO

Advanced healthcare requires novel technologies capable of real-time sensing to monitor acute and long-term health. The challenge relies on converting a real-time quantitative biological and chemical signal into a desired measurable output. Given the success in detecting glucose and the commercialization of glucometers, electrochemical biosensors continue to be a mainstay of academic and industrial research activities. Despite the wealth of literature on electrochemical biosensors, reports are often specific to a particular application (e.g., pathogens, cancer markers, glucose, etc.), and most fail to convey the underlying strategy and design, and if it is transferable to detection of a different analyte. Here we present a tutorial review for those entering this research area that summarizes the basic electrochemical techniques utilized as well as discusses the designs and optimization strategies employed to improve sensitivity and maximize signal output.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Humanos , Glucose/análise
3.
Mikrochim Acta ; 191(5): 267, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627300

RESUMO

A ternary hierarchical hybrid Ni@CoxSy/poly(3,4-ethylenedioxythiophene)-reduced graphene oxide (Ni@CoxSy/PEDOT-rGO) is rationally designed and in situ facilely synthesized as electrocatalyst to construct a binder-free sensing platform for non-enzymatic glucose monitoring through traditional electrodeposition procedure. The as-prepared Ni@CoxSy/PEDOT-rGO presents unique hierarchical structure and multiple valence states as well as strong and robust adhesion between Ni@CoxSy/PEDOT-rGO and GCE. Profiting from the aforementioned merits, the sensing platform constructed under optimal conditions achieved a wide detection range (0.2 µM ~ 2.0 mM) with high sensitivity (1546.32 µA cm-2 mM-1), a rapid response time (5 s), an ultralow detection limit (0.094 µM), superior anti-interference performance, excellent reproducibility and considerable stability. Furthermore, the sensor demonstrates an acceptable accuracy and appreciable recoveries ranging from 90.0 to 102.0% with less than 3.98% RSD in human blood serum samples, indicating the prospect of the sensor for the real samples analysis. It will provide a strategy to rationally design and fabricate ternary hierarchical hybrid as nanozyme for glucose assay.


Assuntos
Glicemia , Compostos Bicíclicos Heterocíclicos com Pontes , Cobalto , Grafite , Níquel , Polímeros , Humanos , Níquel/química , Glicemia/análise , Reprodutibilidade dos Testes , Automonitorização da Glicemia , Glucose/análise
4.
Nanotechnology ; 35(17)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334120

RESUMO

Here, we demonstrate hydrothermally grown bismuth sulfide (Bi2S3) micro flowers decorated nickel foam (NF) for electrochemical detection of melamine in bottled milk samples. The orthorhombic phase of hydrothermally grown Bi2S3is confirmed by the detailed characterization of x-ray diffraction and its high surface area micro flowers-like morphology is investigated via field emission scanning electron microscope. Furthermore, the surface chemical oxidation state and binding energy of Bi2S3/NF micro flowers is analyzed by x-ray photoelectron spectroscopy studies. The sensor exhibits a wide linear range of detection from 10 ng l-1to 1 mg l-1and a superior sensitivity of 3.4 mA cm-2to melamine using differential pulse voltammetry technique, with a lower limit of detection (7.1 ng l-1). The as-fabricated sensor is highly selective against interfering species of p-phenylenediamine (PPDA), cyanuric acid (CA), aniline, ascorbic acid, glucose (Glu), and calcium ion (Ca2+). Real-time analysis done in milk by the standard addition method shows an excellent recovery percentage of Ì´ 98%. The sensor's electrochemical mechanism studies reveal that the high surface area bismuth sulfide micro flowers surface interacts strongly with melamine molecules through hydrogen bonding and van der Waals forces, resulting in a significant change in the sensor's electrical properties while 3D skeletal Nickel foam as a substrate provides stability, enhances its catalytic activity by providing a more number /of active sites and facilitates rapid electron transfer. The work presented here confirms Bi2S3/NF as a high-performance electrode that can be used for the detection of other biomolecules used in clinical diagnosis and biomedical research.


Assuntos
Bismuto , Leite , Níquel , Sulfetos , Triazinas , Animais , Níquel/química , Leite/química , Glucose/análise , Técnicas Eletroquímicas
5.
Anal Chim Acta ; 1288: 342148, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220282

RESUMO

Long-term high blood glucose levels brings extremely detrimental effect on diabetic patients, such as blindness, renal failure, and cardiovascular diseases. Therefore, there is an urgent need to develop highly flexible and sensitive sensors for precisely non-invasive and continuous monitoring glucose levels. Herein, we present a highly flexible and sensitive wearable sensor for non-enzymatic electrochemical glucose analysis with vertically aligned mushroom-like gold nanowires (v-AuNWs) chemically grown on stainless steel wire sieve (SSWS) as integrated electrode. Owing to the unique nanostructures and excellent catalysis of the v-AuNWs, the as-fabricated glucose sensors exhibit superior flexibility and excellent electro-catalytic capability. In detail, these sensors display rapid response towards glucose within 5 s, and the sensor constructed with v-AuNWs for growth time of 15 min shows the highest sensitivity of 180.1 µA mM-1 cm-2 within a wide linear range of 6.5 × 10-4 mM-12.0 mM and the lowest detection limit of 0.65 µM (S/N = 3). It is noteworthy that due to the good ductility of the v-AuNWs and their strong contact with the SSWS substrate, these glucose sensors exhibit no obvious response variation after repeated bending for 100 times at bending angle of 180°. Additionally, the glucose sensors display superior anti-interfering capability as well as desirable repeatability. More importantly, these glucose sensors can be attached on human skin to determine sweat glucose reliably and analyze glucose concentration in human serum in vitro.


Assuntos
Técnicas Biossensoriais , Nanofios , Dispositivos Eletrônicos Vestíveis , Humanos , Nanofios/química , Ouro/química , Aço Inoxidável , Glucose/análise
6.
Mol Biol (Mosk) ; 57(6): 1188-1198, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38062968

RESUMO

Metabolic stress caused by a lack of glucose significantly affects the state of red blood cells, where glycolysis is the main pathway for the production of ATP. Hypoglycemia can be both physiological (occurring during fasting and heavy physical exertion) and pathological (accompanying a number of diseases, such as diabetes mellitus). In this study, we have characterized the state of isolated erythrocytes under metabolic stress caused by the absence of glucose. It was established that 24 h of incubation of the erythrocytes in a glucose-free medium to simulate blood plasma led to a two-fold decrease in the ATP level into them. The cell size, as well as intracellular sodium concentration increased. These findings could be the result of a disruption in ion transporter functioning because of a decrease in the ATP level. The calcium level remained unchanged. With a lack of glucose in the medium of isolated erythrocytes, there was no increase in ROS and a significant change in the level of nitric oxide, while the level of the main low-molecular weight thiol of cells, glutathione (GSH) decreased by almost 2 times. It was found that the metabolic stress of isolated red blood cells induced hemoglobin glutathionylation despite the absence of ROS growth. The cause was the lack of ATP, which led to a decrease in the level of GSH because of the inhibition of its synthesis and, probably, due to a decrease in the NADPH level required for glutathione (GSSG) reduction and protein deglutathionylation. Thus, erythrocyte metabolic stress induced hemoglobin glutathionylation, which is not associated with an increase in ROS. This may have an important physiological significance, since glutathionylation of hemoglobin changes its affinity for oxygen.


Assuntos
Glutationa , Hemoglobinas , Dissulfeto de Glutationa/análise , Dissulfeto de Glutationa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Glutationa/análise , Glutationa/metabolismo , Hemoglobinas/análise , Hemoglobinas/metabolismo , Eritrócitos/química , Eritrócitos/metabolismo , Estresse Oxidativo , Glucose/análise , Glucose/metabolismo , Trifosfato de Adenosina
7.
ACS Sens ; 8(12): 4625-4635, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37992319

RESUMO

Although blood remains a gold standard diagnostic fluid for most health exams, it involves an unpleasant and relatively invasive sampling procedure (finger pricking or venous draw). Saliva contains many relevant and useful biomarkers for diagnostic purposes, and its collection, in contrast, is noninvasive and can be obtained with minimal effort. Current saliva analyses are, however, achieved using chromatography or lateral flow assays, which, despite their high accuracy and sensitivity, can demand expensive laboratory-based instruments operated by trained personnel or offer only semiquantitative results. In response, we investigated electrochemical aptamer-based (E-AB) biosensors, a reagentless sensing platform, to allow for continuous and real-time measurements directly in undiluted, unstimulated human whole saliva. As a proof-of-concept study, we developed E-AB biosensors capable of detecting low-molecular-weight analytes (glucose and adenosine monophosphate (AMP)). To our knowledge, we report the first E-AB sensor for glucose, an approach that is inherently independent of its chemical reactivity in contrast to home glucometers. For these three sensors, we evaluated their figures of merits, stability, and reusability over short- and long-term exposure directly in saliva. In doing so, we found that E-AB sensors allow rapid and convenient molecular measurements in whole saliva with unprecedented sensitivities in the pico- to nanomolar regime and could be regenerated and reused up to 7 days when washed and stored in phosphate-buffered saline at room temperature. We envision that salivary molecular measurements using E-AB sensors are a promising alternative to invasive techniques and can be used for improved point-of-care clinical diagnosis and at-home measurements.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Humanos , Saliva/química , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Glucose/análise
8.
Angew Chem Int Ed Engl ; 62(47): e202308827, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37802975

RESUMO

Enzymatic catalysis with high efficiency allows them a great prospect in metabolite monitoring in living cells. However, complex tumor microenvironments, such as acidity, H2 O2 , and hypoxia, are bound to disturb catalytic reactions for misleading results. Here, we report a spatially compartmentalized artificial organelle to correct intratumoral glucose analysis, where the zeolitic imidazolate framework-8 immobilized glucose oxidase-horseradish peroxidase cascade core and catalase-directed shell act as signal transduction and guarding rooms respectively. The acid-digested core and stable shell provide appropriate spaces to boost biocatalytic efficiency with good tolerability. Notably, the endogenous H2 O2 is in situ decomposed to O2 by catalase, which not only overcomes the interference in signal output but also alleviates the hypoxic states to maximize glucose oxidation. The marked protective effect and biocompatibility render artificial organelles to correct the signal transduction for dynamic monitoring glucose in vitro and in vivo, achieving our goal of accurate intratumoral metabolite analysis.


Assuntos
Células Artificiais , Estruturas Metalorgânicas , Estruturas Metalorgânicas/metabolismo , Glucose/análise , Catalase/metabolismo , Oxirredução , Glucose Oxidase/metabolismo
9.
Anal Methods ; 15(43): 5855-5866, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37888873

RESUMO

Sweat is a promising non-invasive biofluid that can provide valuable insights into the physiological state of the human body. However, a major obstacle to analyzing sweat in real-time is the fabrication of simple, fast-acting, accurate, and low-cost sensing constructs. To address this challenge, we introduced easily-prepared wearable hydrogel sensors that can be placed on the skin and used colorimetric techniques to assess sweat analytes without invasive procedures. Two typical sweat sensors, chloride ion (Cl-) responsive patches for cystic fibrosis (CF) analysis and glucose response patches for diabetic monitoring, were demonstrated for real sample analysis. The Cl- colorimetric sensor, with a detection limit down to 100 µM, shows a good linear response from 1.56 mM to 200 mM Cl-, and the glucose colorimetric sensor, with a detection limit down to 1 µM, exhibits an adequate linear response from 10 µM to 1 mM glucose. These colorimetric hydrogel sensors are also incorporated into a medical dressing to create wearable sensor devices for real-time sweat analysis. The acquired readings closely match the results obtained from the benchmark analyzing instrument, with a small deviation of less than 10%. Therefore, our simple colorimetric hydrogel sensing patches hold great potential to advance real-time sweat testing and contribute to the transitional development of wearable medical devices.


Assuntos
Glucose , Dispositivos Eletrônicos Vestíveis , Humanos , Glucose/análise , Cloretos , Suor/química , Colorimetria , Hidrogéis
10.
Anal Methods ; 15(38): 5071-5077, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37743796

RESUMO

This works presents a novel screen-printed carbon electrode modified with nickel hydroxide nanoparticles and chitosan (Ni(OH)2/CS/SPCE) for the non-enzymatic flow injection amperometric detection of glucose. The electrode was modified by drop-casting a suspension of the synthesised nanocomposite onto the screen-printed electrode and dried for 1 hour at room temperature. EDX analysis was used to investigate the chemical composition of the electrode before and after modifying. The electrochemical response of the unmodified SPCE and modified electrode was initially investigated by cyclic voltammetry (CV) using 0.1 M NaOH as the supporting electrolyte. CVs showed catalytic activity for glucose oxidation using the Ni(OH)2/CS/SPCE at 0.55 V. During flow injection analysis (FIA), 0.60 V and 1.5 mL min-1 were identified as the optimal potential and flow rate, respectively. A wide linear range of detection was observed (0.2 to 10.0 mM) with a sensitivity and limit of detection of 913 µA mM-1 cm-2 and 0.0174 mM, respectively. The modified electrode also displayed excellent repeatability (RSD = 0.47%, n = 20) and good reproducibility (RSD = 2.52%, n = 6). The modified electrode was shown to be very selectivity for glucose over other interferences commonly found in human blood samples. The practicality of the developed flow injection-amperometric system (FIA-Amp) was validated by the quantification of glucose in real serum samples, where results were in close agreement with those obtained from the local hospital.


Assuntos
Quitosana , Humanos , Níquel/química , Análise de Injeção de Fluxo , Reprodutibilidade dos Testes , Glucose/análise , Hidróxidos , Eletrodos
11.
Anal Chem ; 95(34): 12884-12892, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37584460

RESUMO

Glycogen is a highly branched biomacromolecule that functions as a glucose buffer. It is involved in multiple diseases such as glycogen storage disorders, diabetes, and even liver cancer, where the imbalance between biosynthetic and catabolic enzymes results in structural alterations and abnormal accumulation of glycogen that can be toxic to cells. Accurate and sensitive glycogen quantification and structural determination are prerequisites for understanding the phenotypes and biological functions of glycogen under these conditions. In this research, we furthered cell glycogen characterization by presenting a highly sensitive method to measure the glycogen content and degree of branching. The method employed a novel fructose density gradient as an alternative to the traditional sucrose gradient to fractionate glycogen from cell mixtures using ultracentrifugation. Fructose was used to avoid the large glucose background, allowing the method to be highly quantitative. The glycogen content was determined by quantifying 1-phenyl-3-methyl-5-pyrazolone (PMP)-derivatized glucose residues obtained from acid-hydrolyzed glycogen using ultra-high-performance liquid chromatography/triple quadrupole mass spectrometry (UHPLC/QqQ-MS). The degree of branching was determined through linkage analysis where the glycogen underwent permethylation, hydrolysis, PMP derivatization, and UHPLC/QqQ-MS analysis. The new approach was used to study the effect of insulin on the glycogen phenotypes of human hepatocellular carcinoma (Hep G2) cells. We observed that cells produced greater amounts of glycogen with less branching under increasing insulin levels before reaching the cell's insulin-resistant state, where the trend reversed and the cells produced less but higher-branched glycogen. The advantage of this method lies in its high sensitivity in characterizing both the glycogen level and the structure of biological samples.


Assuntos
Glicogênio , Insulinas , Humanos , Espectrometria de Massas/métodos , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Glucose/análise , Edaravone
12.
Small ; 19(52): e2304532, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649195

RESUMO

Exploring highly efficient, portable, and robust biocatalysts is a great challenge in colorimetric biosensors. To overcome the challenging states in creating single-atom biocatalysts, such as insufficient activity and stability, here, this work has engineered a unique CeO2 support as nanoglue to tightly anchor the Ru single-atom sites (CeO2 -Ru) with strong electronic coupling for achieving highly sensitive and robust H2 O2 -related biocatalytic diagnosis. The morphology and chemical/electronic structure analysis demonstrates that the Ru atoms are well-dispersed on CeO2 surface to form high-density active sites. Benefiting from the unique structure, the prepared CeO2 -Ru exhibits outstanding peroxidase (POD) like catalytic activity and selectivity to H2 O2 . Steady-state kinetic study results show that the CeO2 -Ru presents the highest Vmax and turnover number than the state-of-the-art POD-like biocatalysts. Consequently, the CeO2 -Ru discloses a high efficiency, good selectivity, and robust stability in the colorimetric detection of L-cysteine, glucose, and uric acid. Notably, the limit of detection (LOD) can reach 0.176 × 10-3 m for the L-cysteine, 0.095 × 10-3 m for the glucose, and 0.088 × 10-3 m for the uric acid via cascade reaction. This work suggests that the proposed unique CeO2 nanoglue will offer a new path to create single-atom noble metal biocatalysts and take a step closer to future biotherapeutic and biocatalytic applications.


Assuntos
Cisteína , Ácido Úrico , Peroxidase , Peroxidases , Corantes , Glucose/análise
13.
Anal Bioanal Chem ; 415(23): 5671-5680, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37442843

RESUMO

Islets of Langerhans release peptide hormones in controlled amounts and patterns to ensure proper maintenance of blood glucose levels. The overall release of the hormones is shaped by external factors and by autocrine and paracrine interactions occurring within the islets. To better understand what controls the secretion of islet-secreted peptides, and how these processes go awry in diabetes, methods to monitor the release of multiple hormones simultaneously are needed. While antibody-based assays are typically used, they are most often applied to quantification of a single hormone. Mass spectrometry (MS), on the other hand, is well suited for quantifying multiple hormones simultaneously but typically requires time-consuming separation steps with biological samples. In this report, response surface methodology was used to identify a set of optimal solid-phase extraction (SPE) conditions for the islet-secreted peptides, insulin, C-peptide, glucagon, and somatostatin. The optimized SPE method was used with multiple reaction monitoring and isotopically labeled standards to quantify secretion levels. Calibrations were linear from 0.5 to 50 nM with < 15% RSD peak area ratios. A microfluidic system was used to perfuse 30 human islets with different glucose conditions, and fractions were collected every 2 min for SPE-MS analysis. Results showed the release dynamics of the individual peptides, as well as patterns, such as positively and negatively correlated release and oscillations. This rapid SPE-MS method is expected to be useful for examining other peptide and small-molecule secretions from islets and could be applied to a number of other biological systems for investigating cellular communication.


Assuntos
Ilhotas Pancreáticas , Humanos , Insulina/análise , Glucagon , Peptídeos/análise , Espectrometria de Massas , Glucose/análise
14.
Anal Methods ; 15(30): 3692-3699, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37469272

RESUMO

Cholesterol is an important steroid and hormone precursor, and its levels in the blood are associated with risk factors for cardiovascular diseases. In this work, a non-enzymatic methodology for cholesterol determination in serum samples is described. First, a working electrode was constructed using homemade ink and a plastic substrate by a simple dunking process. Next, the dunked electrode (DWE) was modified with nickel ions (Ni-DWE) and combined with a low-cost microfluidic platform, resulting in a thread-based electroanalytical device (µTED). The arrangement of µTED consists of two coupled electrodes (one reference in the inlet reservoir and an auxiliary electrode against the outlet reservoir) and a mobile support for facile working electrode exchange. After optimization of construction parameters, the system was applied for non-enzymatic determination of cholesterol under alkaline conditions using the redox pair Ni(II)/Ni(III) as a mediator. Under the best analytical conditions, a calibration curve was constructed with a linear dynamic range (LDR) from 0.25 to 25.0 µmol L-1, and the calculated limits of detection (LOD) and quantification (LOQ) were 0.074 and 0.24 µmol L-1, respectively. No effects of possible interferents on electrochemical response were found in the presence of ascorbic acid, uric acid, dopamine, cysteine, and glucose, suggesting that the proposed device can be used for the determination of cholesterol without significant matrix effects of human plasma. Finally, cholesterol analysis was carried out using spiked plasma samples, and good recovery values were achieved.


Assuntos
Técnicas Eletroquímicas , Glucose , Humanos , Técnicas Eletroquímicas/métodos , Glucose/análise , Eletrodos , Dispositivos Lab-On-A-Chip , Colesterol
15.
Molecules ; 28(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375170

RESUMO

Glucose oxidase (GOD) is an oxidoreductase that catalyzes the aerobic oxidation of glucose into hydrogen peroxide (H2O2) and gluconic acid, which has been widely used in industrial raw materials production, biosensors and cancer treatment. However, natural GOD bears intrinsic disadvantages, such as poor stability and a complex purification process, which undoubtedly restricts its biomedical applications. Fortunately, several artificial nanomaterials have been recently discovered with a GOD-like activity and their catalytic efficiency toward glucose oxidation can be finely optimized for diverse biomedical applications in biosensing and disease treatments. In view of the notable progress of GOD-mimicking nanozymes, this review systematically summarizes the representative GOD-mimicking nanomaterials for the first time and depicts their proposed catalytic mechanisms. We then introduce the efficient modulation strategy to improve the catalytic activity of existing GOD-mimicking nanomaterials. Finally, the potential biomedical applications in glucose detection, DNA bioanalysis and cancer treatment are highlighted. We believe that the development of nanomaterials with a GOD-like activity will expand the application range of GOD-based systems and lead to new opportunities of GOD-mimicking nanomaterials for various biomedical applications.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Glucose Oxidase , Peróxido de Hidrogênio/análise , Oxirredução , Glucose/análise
16.
Anal Sci ; 39(8): 1257-1267, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37067770

RESUMO

In recent years, the development of nanomaterials-based peroxidase mimics as enzyme sensors has been attracting considerable interest due to their outstanding features, including potent stability, and cost-effectiveness toward natural enzymes. In this work, mesoporous silica nanoparticles functionalized by copper (Cu-MSN) were prepared as a new artificial enzyme for the first time through the sol-gel procedure. A comprehensive investigation of the catalytic activity of Cu-MSN was done through the oxidation of chromogenic peroxidase substrates, 3,3',5,5'-tetramethylbenzidine (TMB), and (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), in the presence of H2O2. The results indicate that the peroxidase-like activity of the as-prepared sample is significantly higher than other nanoparticles. Additionally, for the study, a facile and rapid sensing method based on the enzyme-like activity of Cu-MSN to detect H2O2 and glutathione (GSH) was developed to examine the potency of the proposed biosensor. Preliminary analysis revealed that the limit of detection (LOD) of H2O2 and GSH is 0.2 and 0.0126 µM, in the range of 0.9-100 and 0.042-1 µM, respectively. These findings support the claims for the efficiency of the sensor in detection fields. Also, human serum was utilized as the real sample to obtain additional evidence.


Assuntos
Nanopartículas , Peroxidase , Humanos , Cobre , Peróxido de Hidrogênio/análise , Glucose/análise , Colorimetria/métodos , Dióxido de Silício , Peroxidases , Glutationa
17.
Inorg Chem ; 62(10): 4136-4146, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36862998

RESUMO

To date, the fabrication of multifunctional nanoplatforms based on a porous organic polymer for electrochemical sensing of biorelevant molecules has received considerable attention in the search for a more active, robust, and sensitive electrocatalyst. Here, in this report, we have developed a new porous organic polymer based on porphyrin (TEG-POR) from a polycondensation reaction between a triethylene glycol-linked dialdehyde and pyrrole. The Cu(II) complex of the polymer Cu-TEG-POR shows high sensitivity and a low detection limit for glucose electro-oxidation in an alkaline medium. The characterization of the as-synthesized polymer was done by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and 13C CP-MAS solid-state NMR. The N2 adsorption/desorption isotherm was carried out at 77 K to analyze the porous property. TEG-POR and Cu-TEG-POR both show excellent thermal stability. The Cu-TEG-POR-modified GC electrode shows a low detection limit (LOD) value of 0.9 µM and a wide linear range (0.001-1.3 mM) with a sensitivity of 415.8 µA mM-1 cm-2 toward electrochemical glucose sensing. The interference of the modified electrode from ascorbic acid, dopamine, NaCl, uric acid, fructose, sucrose, and cysteine was insignificant. Cu-TEG-POR exhibits acceptable recovery for blood glucose detection (97.25-104%), suggesting its scope in the future for selective and sensitive nonenzymatic glucose detection in human blood.


Assuntos
Cobre , Porfirinas , Humanos , Cobre/química , Porosidade , Polímeros , Técnicas Eletroquímicas , Glucose/análise , Eletrodos
18.
Sci Total Environ ; 859(Pt 2): 160364, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36427733

RESUMO

BACKGROUND: Evidence on the associations of fine particulate matter (PM2.5) constituents and glucose metabolism is limited in resource-limited areas. This study aimed to explore the associations of PM2.5 constituents with glucose metabolism in rural areas, and to further specify the most responsible constituent. METHODS: A total of 38,442 adults were recruited from the Henan Rural Cohort Study during 2015-2017. Three-year averaged concentrations of PM2.5 mass and its constituents (black carbon (BC), ammonium (NH4+), nitrate (NO3-), organic matter (OM), inorganic sulfate (SO42-), soil particles (SOIL) and sea salt (SS)) were estimated by a hybrid satellite-based model. Generalized linear model was applied to explore the associations of PM2.5 mass and its constituents with type 2 diabetes mellitus (T2DM), fasting blood glucose (FBG), insulin, and HOMA-ß. Proportion and residual analyses were employed to specify the most responsible constituent. RESULTS: The adjusted odds ratio (OR) for T2DM associated with 1 µg/m3 increase was 1.02 for PM2.5 mass, 1.28 for BC, 1.15 for NH4+, 1.08 for NO3-, 1.10 for OM, 1.11 for SO42-, and 1.12 for SOIL. Significant associations of PM2.5 mass and its constituents with elevated FBG, decreased insulin and HOMA-ß were also observed. Proportion and residual analyses indicated that BC was the most responsible constituent, in which 1 percentage increment in the proportion of BC in PM2.5 corresponded with 1.51-fold risk for T2DM, 0.17 mmol/L increase in FBG, 2.18 µU/mL decrease in insulin, and 38.26 % decrease in HOMA-ß; and 1 µg/m3 increment in the PM2.5-adjusted BC corresponded with 1.59-fold risk for T2DM, 0.53 mmol/L increase in FBG, 4.79 µU/mL decrease in insulin, and 91.32 % decrease in HOMA-ß. CONCLUSIONS: PM2.5 mass and its constituents (BC, NH4+, NO3-, OM, SO42-, SOIL) were associated with T2DM, increased FBG, decreased insulin and HOMA-ß, of which BC was most responsible for these associations. TRIAL REGISTRATION: The Henan Rural Cohort Study has been registered at Chinese Clinical Trial Register (Registration number: ChiCTR-OOC-15006699). Date of registration: 06 July 2015. http://www.chictr.org.cn/showproj.aspx?proj=11375.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Diabetes Mellitus Tipo 2 , Adulto , Humanos , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Estudos de Coortes , Diabetes Mellitus Tipo 2/epidemiologia , População Rural , População do Leste Asiático , Material Particulado/análise , Fuligem/análise , Insulina , Glucose/análise , Poluição do Ar/análise , China/epidemiologia
19.
Food Chem ; 402: 134141, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36155292

RESUMO

The formation and mitigation of furan in pumpkin puree (PP) were studied during the complete process of producing PP. The content of furan was determined using headspace solid-phase microextraction combined by GC-MS analysis. Various PP samples added with precursors (glucose, fructose, linoleic acid, linolenic acid, ß-carotene, ascorbic acid, glutamic acid, alanine, and serine) showed increased furan formation (30.81 âˆ¼ 94.45 µg/kg) compared with the control (30.81 µg/kg), with ß-carotene resulting in the formation of the largest amount of furan. The effects of antioxidants, such as caffeic acid, chlorogenic acid, quercetin, and butylated hydroxytoluene, on the reduction of furan in PP containing ß-carotene were also investigated. All antioxidants showed significant reduction of furan. During sterilizing, the content of furan was considerably affected by temperature but not heating time. Reheating PP samples using a microwave oven, water bath, or open pot, revealed that open-pot reheating was the most effective for reducing furan (10.28 âˆ¼ 11.72 µg/kg).


Assuntos
Antioxidantes , Cucurbita , Antioxidantes/análise , Ácido Linoleico , Ácido alfa-Linolênico , Ácido Glutâmico , beta Caroteno , Hidroxitolueno Butilado , Quercetina , Ácido Clorogênico , Furanos/análise , Ácido Ascórbico/análise , Esterilização , Frutose/análise , Glucose/análise , Alanina , Serina , Água
20.
Molecules ; 27(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36235272

RESUMO

This study aimed to evaluate the antiglycation effects of adlay on protein glycation using in vitro glycation assays. Adlay seed was divided into the following four parts: the hull (AH), testa (AT), bran (AB), and polished adlay (PA). A solvent extraction technique and column chromatography were utilized to investigate the active fractions and components of adlay. Based on a BSA-glucose assay, the ethanolic extracts of AT (ATE) and AB (ABE) revealed a greater capacity to inhibit protein glycation. ATE was further consecutively partitioned into four solvent fractions with n-hexane, ethyl acetate (ATE-Ea), 1-butanol (ATE-BuOH), and water. ATE-BuOH and -Ea show marked inhibition of glucose-mediated glycation. Medium-high polarity subfractions eluted from ATE-BuOH below 50% methanol with Diaion HP-20, ATE-BuOH-c to -f, exhibited superior antiglycation activity, with a maximum inhibitory percentage of 88%. Two phenolic compounds, chlorogenic acid and ferulic acid, identified in ATE-BuOH with HPLC, exhibited potent inhibition of the individual stage of protein glycation and its subsequent crosslinking, as evaluated by the BSA-glucose assay, BS-methylglyoxal (MGO) assay, and G.K. peptide-ribose assay. In conclusion, this study demonstrated the antiglycation properties of ATE in vitro that suggest a beneficial effect in targeting hyperglycemia-mediated protein modification.


Assuntos
Coix , Polifenóis , 1-Butanol , Antioxidantes/farmacologia , Ácido Clorogênico/análise , Coix/química , Glucose/análise , Óxido de Magnésio , Metanol/análise , Extratos Vegetais/química , Polifenóis/análise , Polifenóis/farmacologia , Aldeído Pirúvico/análise , Ribose , Sementes/química , Solventes/análise , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA