Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.234
Filtrar
1.
J Nanobiotechnology ; 22(1): 234, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724978

RESUMO

Radiotherapy-induced immune activation holds great promise for optimizing cancer treatment efficacy. Here, we describe a clinically used radiosensitizer hafnium oxide (HfO2) that was core coated with a MnO2 shell followed by a glucose oxidase (GOx) doping nanoplatform (HfO2@MnO2@GOx, HMG) to trigger ferroptosis adjuvant effects by glutathione depletion and reactive oxygen species production. This ferroptosis cascade potentiation further sensitized radiotherapy by enhancing DNA damage in 4T1 breast cancer tumor cells. The combination of HMG nanoparticles and radiotherapy effectively activated the damaged DNA and Mn2+-mediated cGAS-STING immune pathway in vitro and in vivo. This process had significant inhibitory effects on cancer progression and initiating an anticancer systemic immune response to prevent distant tumor recurrence and achieve long-lasting tumor suppression of both primary and distant tumors. Furthermore, the as-prepared HMG nanoparticles "turned on" spectral computed tomography (CT)/magnetic resonance dual-modality imaging signals, and demonstrated favorable contrast enhancement capabilities activated by under the GSH tumor microenvironment. This result highlighted the potential of nanoparticles as a theranostic nanoplatform for achieving molecular imaging guided tumor radiotherapy sensitization induced by synergistic immunotherapy.


Assuntos
Ferroptose , Imunoterapia , Compostos de Manganês , Proteínas de Membrana , Camundongos Endogâmicos BALB C , Nanopartículas , Nucleotidiltransferases , Óxidos , Radiossensibilizantes , Animais , Camundongos , Imunoterapia/métodos , Óxidos/química , Óxidos/farmacologia , Feminino , Nucleotidiltransferases/metabolismo , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Linhagem Celular Tumoral , Nanopartículas/química , Radiossensibilizantes/farmacologia , Radiossensibilizantes/química , Proteínas de Membrana/metabolismo , Ferroptose/efeitos dos fármacos , Glucose Oxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Dano ao DNA , Microambiente Tumoral/efeitos dos fármacos
2.
Biosens Bioelectron ; 258: 116351, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705074

RESUMO

Multifunctional single-atom catalysts (SACs) have been extensively investigated as outstanding signal amplifiers in bioanalysis field. Herein, a type of Fe single-atom catalysts with Fe-nitrogen coordination sites in nitrogen-doped carbon (Fe-N/C SACs) was synthesized and demonstrated to possess both catalase and peroxidase-like activity. Utilizing Fe-N/C SACs as dual signal amplifier, an efficient bipolar electrode (BPE)-based electrochemiluminescence (ECL) immunoassay was presented for determination of prostate-specific antigen (PSA). The cathode pole of the BPE-ECL platform modified with Fe-N/C SACs is served as the sensing side and luminol at the anode as signal output side. Fe-N/C SACs could catalyze decomposition of H2O2 via their high catalase-like activity and then increase the Faraday current, which can boost the ECL of luminol due to the electroneutrality in a closed BPE system. Meanwhile, in the presence of the target, glucose oxidase (GOx)-Au NPs-Ab2 was introduced through specific immunoreaction, which catalyzes the formation of H2O2. Subsequently, Fe-N/C SACs with peroxidase-like activity catalyze the reaction of H2O2 and 4-chloro-1-naphthol (4-CN) to generate insoluble precipitates, which hinders electron transfer and then inhibits the ECL at the anode. Thus, dual signal amplification of Fe-N/C SACs was achieved by increasing the initial ECL and inhibiting the ECL in the presence of target. The assay exhibits sensitive detection of PSA linearly from 1.0 pg/mL to 100 ng/mL with a detection limit of 0.62 pg/mL. The work demonstrated a new ECL enhancement strategy of SACs via BPE system and expands the application of SACs in bioanalysis field.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Peróxido de Hidrogênio , Ferro , Limite de Detecção , Medições Luminescentes , Luminol , Antígeno Prostático Específico , Catálise , Medições Luminescentes/métodos , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Humanos , Luminol/química , Antígeno Prostático Específico/análise , Antígeno Prostático Específico/sangue , Ferro/química , Glucose Oxidase/química , Imunoensaio/métodos , Ouro/química , Peroxidase/química , Nanopartículas Metálicas/química , Nitrogênio/química , Carbono/química , Naftóis
3.
Biosens Bioelectron ; 258: 116358, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718634

RESUMO

Wearable sensors for sweat glucose monitoring are gaining massive interest as a patient-friendly and non-invasive way to manage diabetes. The present work offers an alternative on-body method employing an all-printed flexible electrochemical sensor to quantify the amount of glucose in human sweat. The working electrode of the glucose sensor was printed using a custom-formulated ink containing multi-walled carbon nanotube (MWCNT), poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOPT: PSS), and iron (II, III) oxide (Fe3O4) nanoparticles. This novel ink composition has good conductivity, enhanced catalytic activity, and excellent selectivity. The working electrode was modified using Prussian blue (PB) nanoparticles and glucose oxidase enzyme (GOx). The sensor displayed a linear chronoamperometric response to glucose from 1 µM to 400 µM, with a precise detection limit of ∼0.38 µM and an impressive sensitivity of ∼4.495 µAµM-1cm-2. The sensor stored at 4 °C exhibited excellent stability over 60 days, high selectivity, and greater reproducibility. The glucose detection via the standard addition method in human sweat samples acquired a high recovery rate of 96.0-98.6%. Examining human sweat during physical activity also attested to the biosensor's real-time viability. The results also show an impressive correlation between glucose levels obtained from a commercial blood glucose meter and sweat glucose concentrations. Remarkably, the present results outperform previously published printed glucose sensors in terms of detection range, low cost, ease of manufacturing, stability, selectivity, and wearability.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Glucose , Limite de Detecção , Nanocompostos , Nanotubos de Carbono , Suor , Dispositivos Eletrônicos Vestíveis , Humanos , Técnicas Biossensoriais/instrumentação , Nanotubos de Carbono/química , Suor/química , Nanocompostos/química , Glucose/análise , Glucose Oxidase/química , Tinta , Técnicas Eletroquímicas , Compostos Férricos/química , Ferrocianetos/química , Polímeros/química , Reprodutibilidade dos Testes , Compostos Bicíclicos Heterocíclicos com Pontes/química , Poliestirenos
4.
Nano Lett ; 24(15): 4691-4701, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588212

RESUMO

Tumor cells exhibit heightened glucose (Glu) consumption and increased lactic acid (LA) production, resulting in the formation of an immunosuppressive tumor microenvironment (TME) that facilitates malignant proliferation and metastasis. In this study, we meticulously engineer an antitumor nanoplatform, denoted as ZLGCR, by incorporating glucose oxidase, LA oxidase, and CpG oligodeoxynucleotide into zeolitic imidazolate framework-8 that is camouflaged with a red blood cell membrane. Significantly, ZLGCR-mediated consumption of Glu and LA not only amplifies the effectiveness of metabolic therapy but also reverses the immunosuppressive TME, thereby enhancing the therapeutic outcomes of CpG-mediated antitumor immunotherapy. It is particularly important that the synergistic effect of metabolic therapy and immunotherapy is further augmented when combined with immune checkpoint blockade therapy. Consequently, this engineered antitumor nanoplatform will achieve a cooperative tumor-suppressive outcome through the modulation of metabolism and immune responses within the TME.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Imunoterapia , Radioimunoterapia , Glucose , Glucose Oxidase , Imunossupressores , Ácido Láctico , Neoplasias/terapia , Linhagem Celular Tumoral
5.
Clin Oral Investig ; 28(5): 259, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639763

RESUMO

OBJECTIVES: Natural enzymes mouthwash has been proposed as salivary substitutes to treat xerostomia. This study aims to evaluate the efficacy of the mouthwash to treat xerostomia. MATERIALS AND METHODS: A double-blind, parallel group randomised control clinical trial involving N = 49 adult participants with xerostomia was carried out. Intervention group received natural enzymes moisturising mouthwash (with active ingredients lactoferrin, lysozyme, lactoperoxidase and glucose oxidase); while control group received benzydamine mouthwash. Mouthwashes were repacked, labelled with specific code, and were given to participants by third-party. Subjects were instructed to rinse with the mouthwash 4 times per day at a specific period, for 2 weeks. Symptoms of xerostomia were assessed using Xerostomia Inventory at day 0 and 14; together with the assessment of Clinical Oral Dryness Score (CODS), and measurement of resting and stimulated salivary flow rate. RESULTS: 48 participants completed the clinical follow-up, and n = 1 had lost of follow-up. From the 48 participants, n = 23 received natural enzymes mouthwash, while n = 25 received benzydamine mouthwash. Intervention group achieved reduction in symptoms of xerostomia from baseline. Intervention group also showed significantly better improvements in the cognitive perception of dry mouth and oromotor function such as chewing, swallowing and speech of the participants; and reduction in waking up at night to drink water (p < 0.05). The CODS and resting salivary flow rate were also significantly improved in intervention group (p < 0.05). CONCLUSION: Use of natural enzymes mouthwash improved signs and symptoms of xerostomia. CLINICAL RELEVANCE: Natural enzymes mouthwash is potentially effective to treat xerostomia, well-tolerated and safe to be used by xerostomia patients. CLINICAL TRIAL REGISTRATION NUMBER: This study was retrospectively registered in ClinicalTrials.gov ID NCT05640362 on 7 December 2022.


Assuntos
Benzidamina , Xerostomia , Adulto , Humanos , Antissépticos Bucais/uso terapêutico , Benzidamina/uso terapêutico , Xerostomia/tratamento farmacológico , Glucose Oxidase/uso terapêutico , Deglutição
6.
J Colloid Interface Sci ; 666: 244-258, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38598997

RESUMO

Starvation therapy has shown promise as a cancer treatment, but its efficacy is often limited when used alone. In this work, a multifunctional nanoscale cascade enzyme system, named CaCO3@MnO2-NH2@GOx@PVP (CMGP), was fabricated for enhanced starvation/chemodynamic combination cancer therapy. CMGP is composed of CaCO3 nanoparticles wrapped in a MnO2 shell, with glucose oxidase (GOx) adsorbed and modified with polyvinylpyrrolidone (PVP). MnO2 decomposes H2O2 in cancer cells into O2, which enhances the efficiency of GOx-mediated starvation therapy. CaCO3 can be decomposed in the acidic cancer cell environment, causing Ca2+ overload in cancer cells and inhibiting mitochondrial metabolism. This synergizes with GOx to achieve more efficient starvation therapy. Additionally, the H2O2 and gluconic acid produced during glucose consumption by GOx are utilized by MnO2 with catalase-like activity to enhance O2 production and Mn2+ release. This process accelerates glucose consumption, reactive oxygen species (ROS) generation, and CaCO3 decomposition, promoting the Ca2+ release. CMGP can alleviate tumor hypoxia by cycling the enzymatic cascade reaction, which increases enzyme activity and combines with Ca2+ overload to achieve enhanced combined starvation/chemodynamic therapy. In vitro and in vivo studies demonstrate that CMGP has effective anticancer abilities and good biosafety. It represents a new strategy with great potential for combined cancer therapy.


Assuntos
Carbonato de Cálcio , Glucose Oxidase , Compostos de Manganês , Óxidos , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Glucose Oxidase/farmacologia , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Óxidos/química , Óxidos/farmacologia , Humanos , Animais , Carbonato de Cálcio/química , Carbonato de Cálcio/farmacologia , Carbonato de Cálcio/metabolismo , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanopartículas/química , Povidona/química , Povidona/farmacologia , Hipóxia Tumoral/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Tamanho da Partícula , Linhagem Celular Tumoral , Peróxido de Hidrogênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Propriedades de Superfície , Camundongos Endogâmicos BALB C
7.
J Colloid Interface Sci ; 665: 1065-1078, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579389

RESUMO

Reactive oxygen species (ROS)-centered chemodynamic therapy (CDT) holds significant potential for tumor-specific treatment. However, insufficient endogenous H2O2 and extra glutathione within tumor microenvironment (TME) severely deteriorate the CDT's effectiveness. Herein, rich-Zn-Co3O4/N-doped porous carbon (Zn-Co3O4/NC) was fabricated by two-step pyrolysis, and applied to build high-efficiency nano-platform for synergistic cancer therapy upon combination with glucose oxidase (GOx), labeled Zn-Co3O4/NC-GOx for clarity. Specifically, the multiple enzyme-like activities of the Zn-Co3O4/NC were scrutinously investigated, including peroxidase-like activity to convert H2O2 to O2∙-, catalase-like activity to decompose H2O2 into O2, and oxidase-like activity to transform O2 to O2∙-, which achieved the CDT through the catalytic cascade reaction. Simultaneously, GOx reacted with intracellular glucose to produce gluconic acid and H2O2, realizing starvation therapy. In the acidic TME, the Zn-Co3O4/NC-GOx rapidly caused intracellular Zn2+ pool overload and disrupted cellular homeostasis for ion-intervention therapy. Additionally, the Zn-Co3O4/NC exhibited glutathione peroxidase-like activity, which consumed glutathione in tumor cells and reduced the ROS consumption for ferroptosis. The tumor treatments offer some constructive insights into the nanozyme-mediated catalytic medicine, coupled by avoiding the TME limitations.


Assuntos
Cobalto , Peróxido de Hidrogênio , Neoplasias , Óxidos , Humanos , Porosidade , Espécies Reativas de Oxigênio , Glucose Oxidase , Imidazóis , Carbono , Glutationa , Zinco , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
8.
Nat Commun ; 15(1): 3440, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653977

RESUMO

Oxidative stress from excess H2O2 activates transcription factors that restore redox balance and repair oxidative damage. Although many transcription factors are activated by H2O2, it is unclear whether they are activated at the same H2O2 concentration, or time. Dose-dependent activation is likely as oxidative stress is not a singular state and exhibits dose-dependent outcomes including cell-cycle arrest and cell death. Here, we show that transcription factor activation is both dose-dependent and coordinated over time. Low levels of H2O2 activate p53, NRF2 and JUN. Yet under high H2O2, these transcription factors are repressed, and FOXO1, NF-κB, and NFAT1 are activated. Time-lapse imaging revealed that the order in which these two groups of transcription factors are activated depends on whether H2O2 is administered acutely by bolus addition, or continuously through the glucose oxidase enzyme. Finally, we provide evidence that 2-Cys peroxiredoxins control which group of transcription factors are activated.


Assuntos
Peróxido de Hidrogênio , Estresse Oxidativo , Fatores de Transcrição , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Humanos , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Fatores de Transcrição NFATC/metabolismo , Glucose Oxidase/metabolismo , Animais
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124269, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38608561

RESUMO

A colorimetric immunoassay was built for determination of carcinoembryonic antigen (CEA) based on papain-based colorimetric catalytic sensing system through the use of glucose oxidase (GOx). In the presence of GOx, glucose was catalytically oxidized to produce H2O2. Through the assistance of papain (as a peroxide mimetic enzyme), the signal came from the oxidative color development of 3,3',5,5'-tetramethylbenzidine (TMB, from colorless to blue) catalyzed by the generated H2O2. Herein, a sandwich-type immunoassay was built based on GOx as labels. As the concentration of CEA increased, more GOx-labeled antibodies specifically associate with target, which leaded to more H2O2 generation. Immediately following this, more TMB were oxidized with the addition of papain. Accordingly, the absorbance increased further. As a result, the concentration of CEA is positively correlated with the change in absorbance of the solution. Under optimal conditions, the CEA concentration was linear in the range of 0.05-20.0 ng/mL, and the limit of detection (LOD) reached 37 pg/mL. The papain-based colorimetric immunoassay also exhibited satisfactory repeatability, stability, and selectivity.


Assuntos
Antígeno Carcinoembrionário , Colorimetria , Limite de Detecção , Papaína , Antígeno Carcinoembrionário/análise , Colorimetria/métodos , Papaína/metabolismo , Imunoensaio/métodos , Humanos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Peróxido de Hidrogênio/química , Catálise , Benzidinas/química , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes
10.
Mater Horiz ; 11(10): 2406-2419, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38440840

RESUMO

Enzymes provide a class of potential options to treat cancer, while the precise regulation of enzyme activities for effective and safe therapeutic actions has been poorly reported. Dual-enzyme decorated semiconducting polymer nanoagents for second near-infrared (NIR-II) photoactivatable ferroptosis-immunotherapy are reported in this study. Such nanoagents (termed SPHGA) consist of hemoglobin (Hb)-based semiconducting polymer (SP@Hb), adenosine deaminase (ADA) and glucose oxidase (GOx) with loadings in a thermal-responsive nanoparticle shell. NIR-II photoactivation of SPHGA results in the generation of heat to trigger on-demand releases of two enzymes (ADA and GOx) via destroying the thermal-responsive nanoparticle shells. In the tumor microenvironment, GOx oxidizes glucose to form hydrogen peroxide (H2O2), which promotes the Fenton reaction of iron in SP@Hb, resulting in an enhanced ferroptosis effect and immunogenic cell death (ICD). In addition, ADA degrades high-level adenosine to reverse the immunosuppressive microenvironment, thus amplifying antitumor immune responses. Via NIR-II photoactivatable ferroptosis-immunotherapy, SPHGA shows an improved effect to absolutely remove bilateral tumors and effectively suppress tumor metastases in subcutaneous 4T1 breast cancer models. This study presents a dual-enzyme-based nanoagent with controllable therapeutic actions for effective and precise cancer therapy.


Assuntos
Ferroptose , Imunoterapia , Raios Infravermelhos , Nanopartículas , Polímeros , Semicondutores , Ferroptose/efeitos dos fármacos , Animais , Imunoterapia/métodos , Camundongos , Polímeros/química , Polímeros/uso terapêutico , Feminino , Nanopartículas/uso terapêutico , Nanopartículas/química , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Glucose Oxidase/metabolismo , Glucose Oxidase/farmacologia , Humanos , Camundongos Endogâmicos BALB C , Hemoglobinas/farmacologia , Hemoglobinas/metabolismo
11.
Adv Sci (Weinh) ; 11(18): e2308251, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447152

RESUMO

Nanomedicine has reshaped the landscape of cancer treatment. However, its efficacy is still hampered by innate tumor defense systems that rely on adenosine triphosphate (ATP) for fuel, including damage repair, apoptosis resistance, and immune evasion. Inspired by the naturally enzymatic reaction of glucose oxidase (GOx) with glucose, here a novel "two birds with one stone" technique for amplifying enzyme-mediated tumor apoptosis and enzyme-promoted metabolic clearance is proposed and achieved using GOx-functionalized rhenium nanoclusters-doped polypyrrole (Re@ReP-G). Re@ReP-G reduces ATP production while increasing H2O2 concentrations in the tumor microenvironment through GOx-induced enzymatic oxidation, which in turn results in the downregulation of defense (HSP70 and HSP90) and anti-apoptotic Bcl-2 proteins, the upregulation of pro-apoptotic Bax, and the release of cytochrome c. These processes are further facilitated by laser-induced hyperthermia effect, ultimately leading to severe tumor apoptosis. As an enzymatic byproduct, H2O2 catalyzes the conversion of rhenium nanoclusters in Re@ReP-G nanostructures into rhenate from the outside in, which accelerates their metabolic clearance in vivo. This Re@ReP-G-based "two birds with one stone" therapeutic strategy provides an effective tool for amplifying tumor apoptosis and safe metabolic mechanisms.


Assuntos
Apoptose , Animais , Camundongos , Glucose Oxidase/metabolismo , Neoplasias/metabolismo , Humanos , Modelos Animais de Doenças , Linhagem Celular Tumoral , Nanomedicina/métodos , Microambiente Tumoral , Peróxido de Hidrogênio/metabolismo , Polímeros/química , Polímeros/metabolismo
12.
Talanta ; 273: 125863, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460424

RESUMO

The development of rapid screening sensing platforms to improve pre-screening mechanisms in community healthcare is necessary to meet the significant need for portable testing in biomarker diagnostics. Here, we designed a portable smartphone-based photoelectrochemical (PEC) immunoassay for carcinoembryonic antigen (CEA) detection using Cu-doped ultrathin porous Bi2WO6 (CuBWO) nanosheets as the photoactive material. The CuBWO nanosheets exhibit a fast photocurrent response and excellent electrical transmission rate under UV light due to their surface plasmon resonance effect (SPR). The method uses glucose oxidase-labeled secondary antibody as a signal indicator for sandwich-type immune conjugation. In the presence of the target CEA, the electrons and holes generated at the surface of the photo-excited ultrathin porous CuBWO were rapidly consumed by the production of H2O2 from glucose oxidase oxidizing glucose, resulting in a weakened photocurrent signal. The photocurrent intensity increased logarithmically and linearly with increasing CEA concentration (0.02-50 ng mL-1), with a detection limit of 15.0 pg mL-1 (S/N = 3). The system provides a broader idea for inferring the electron-hole transport mechanism in ultrathin porous nanosheet layer materials and developing efficient PEC sensors.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Técnicas Biossensoriais/métodos , Glucose Oxidase , Antígeno Carcinoembrionário , Peróxido de Hidrogênio , Porosidade , Imunoensaio/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
13.
Analyst ; 149(9): 2621-2628, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38546096

RESUMO

17ß-Estradiol (E2) is an important endogenous estrogen, which disturbs the endocrine system and poses a threat to human health because of its accumulation in the human body. Herein, a biofuel cell (BFC)-based self-powered electrochemical aptasensor was developed for E2 detection. Porous carbon nanocage/gold nanoparticle composite modified indium tin oxide (CNC/AuNP/ITO) and glucose oxidase modified CNC/AuNP/ITO were used as the biocathode and bioanode of BFCs, respectively. [Fe(CN)6]3- was selected as an electroactive probe, which was entrapped in the pores of positively charged magnetic Fe3O4 nanoparticles (PMNPs) and then capped with a negatively charged E2 aptamer to form a DNA bioconjugate. The presence of the target E2 triggered the entrapped [Fe(CN)6]3- probe release due to the removal of the aptamer via specific recognition, which resulted in the transfer of electrons produced by glucose oxidation at the bioanode to the biocathode and produced a high open-circuit voltage (EOCV). Consequently, a "signal-on" homogeneous self-powered aptasensor for E2 assay was realized. Promisingly, the BFC-based self-powered aptasensor has particularly high sensitivity for E2 detection in the concentration range of 0.5 pg mL-1 to 15 ng mL-1 with a detection limit of 0.16 pg mL-1 (S/N = 3). Therefore, the proposed BFC-based self-powered electrochemical aptasensor has great promise to be applied as a successful prototype of a portable and on-site bioassay in the field of environment monitoring and food safety.


Assuntos
Aptâmeros de Nucleotídeos , Fontes de Energia Bioelétrica , Carbono , Técnicas Eletroquímicas , Estradiol , Ouro , Nanopartículas Metálicas , Estradiol/química , Estradiol/análise , Aptâmeros de Nucleotídeos/química , Ouro/química , Nanopartículas Metálicas/química , Carbono/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Limite de Detecção , Humanos , DNA/química , Glucose Oxidase/química , Compostos de Estanho/química
14.
ACS Appl Bio Mater ; 7(3): 1862-1877, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38450575

RESUMO

Elevated levels of reactive oxygen species (ROS) have demonstrated efficacy in eliminating tumor cells by modifying the tumor microenvironment and inducing the polarization of tumor-associated macrophages (TAMs). Nevertheless, the transient nature and limited diffusion distance inherent in ROS present significant challenges in cancer treatment. In response to these limitations, we have developed a nanoparticle (MnClPc-HSA@GOx) that not only inhibits tumor energy metabolism but also facilitates the transition of TAMs from the M2 type (anti-inflammatory type) to the M1 type (proinflammatory type). MnClPc-HSA@GOx comprises a manganese phthalocyanine complex (MnClPc) enveloped in human serum albumin (HSA), with glucose oxidase (GOx) loaded onto MnClPc@HSA nanoparticles. GOx was employed to catalyze the decomposition of glucose to produce H2O2 and gluconic acid. Additionally, in the presence of MnClPc, it catalyzes the conversion of H2O2 into •O2- and 1O2. Results indicate that the nanoparticle effectively impedes the glucose supply to tumor cells and suppresses their energy metabolism. Simultaneously, the ROS-mediated polarization of TAMs induces a shift from M2 to M1 macrophages, resulting in a potent inhibitory effect on tumors. This dual-action strategy holds promising clinical inhibition applications in the treatment of cancer.


Assuntos
Isoindóis , Nanopartículas , Neoplasias , Humanos , Manganês/farmacologia , Glucose Oxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Neoplasias/metabolismo , Macrófagos , Oxigênio/metabolismo , Metabolismo Energético , Glucose , Microambiente Tumoral
15.
Biosensors (Basel) ; 14(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38534241

RESUMO

Two types of low-cost reagentless electrochemical glucose biosensors based on graphite rod (GR) electrodes were developed. The electrodes modified with electrochemically synthesized platinum nanostructures (PtNS), 1,10-phenanthroline-5,6-dione (PD), glucose oxidase (GOx) without and with a polypyrrole (Ppy) layer-(i) GR/PtNS/PD/GOx and (ii) GR/PtNS/PD/GOx/Ppy, respectively, were prepared and tested. Glucose biosensors based on GR/PtNS/PD/GOx and GR/PtNS/PD/GOx/Ppy electrodes were characterized by the sensitivity of 10.1 and 5.31 µA/(mM cm2), linear range (LR) up to 16.5 and 39.0 mM, limit of detection (LOD) of 0.198 and 0.561 mM, good reproducibility, and storage stability. The developed glucose biosensors based on GR/PtNS/PD/GOx/Ppy electrodes showed exceptional resistance to interfering compounds and proved to be highly efficient for the determination of glucose levels in blood serum.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Glucose/química , Polímeros/química , Pirróis/química , Platina , Reprodutibilidade dos Testes , Eletrodos , Glucose Oxidase/química , Enzimas Imobilizadas/química
16.
Nano Lett ; 24(12): 3801-3810, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38477714

RESUMO

The effectiveness of various cancer therapies for solid tumors is substantially limited by the highly hypoxic tumor microenvironment (TME). Here, a microalgae-integrated living hydrogel (ACG gel) is developed to concurrently enhance hypoxia-constrained tumor starvation therapy and immunotherapy. The ACG gel is formed in situ following intratumoral injection of a biohybrid fluid composed of alginate, Chlorella sorokiniana, and glucose oxidase, facilitated by the crossing-linking between divalent ions within tumors and alginate. The microalgae Chlorella sorokiniana embedded in ACG gel generate abundant oxygen through photosynthesis, enhancing glucose oxidase-catalyzed glucose consumption and shifting the TME from immunosuppressive to immunopermissive status, thus reducing the tumor cell energy supply and boosting antitumor immunity. In murine 4T1 tumor models, the ACG gel significantly suppresses tumor growth and effectively prevents postoperative tumor recurrence. This study, leveraging microalgae as natural oxygenerators, provides a versatile and universal strategy for the development of oxygen-dependent tumor therapies.


Assuntos
Chlorella , Microalgas , Neoplasias , Animais , Camundongos , Hidrogéis , Glucose Oxidase , Fotossíntese , Hipóxia , Oxigênio , Imunoterapia , Alginatos , Microambiente Tumoral
17.
ACS Appl Mater Interfaces ; 16(14): 17313-17322, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38534029

RESUMO

Glucose oxidase (Gox)-mediated starvation therapy offers a prospective advantage for malignancy treatment by interrupting the glucose supply to neoplastic cells. However, the negative charge of the Gox surface hinders its enrichment in tumor tissues. Furthermore, Gox-mediated starvation therapy infiltrates large amounts of hydrogen peroxide (H2O2) to surround normal tissues and exacerbate intracellular hypoxia. In this study, a cascade-catalyzed nanogel (A-NE) was developed to boost the antitumor effects of starvation therapy by glucose consumption and cascade reactive release of nitric oxide (NO) to relieve hypoxia. First, the surface cross-linking structure of A-NE can serve as a bioimmobilization for Gox, ensuring Gox stability while improving the encapsulation efficiency. Then, Gox-mediated starvation therapy efficiently inhibited the proliferation of tumor cells while generating large amounts of H2O2. In addition, covalent l-arginine (l-Arg) in A-NE consumed H2O2 derived from glucose decomposition to generate NO, which augmented starvation therapy on metastatic tumors by alleviating tumor hypoxia. Eventually, both in vivo and in vitro studies indicated that nanogels remarkably inhibited in situ tumor growth and hindered metastatic tumor recurrence, offering an alternative possibility for clinical intervention.


Assuntos
Neoplasias , Óxido Nítrico , Polietilenoglicóis , Polietilenoimina , Humanos , Nanogéis , Peróxido de Hidrogênio/química , Estudos Prospectivos , Neoplasias/patologia , Glucose Oxidase/química , Catálise , Glucose , Linhagem Celular Tumoral
18.
Nanoscale Horiz ; 9(4): 536-543, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38390971

RESUMO

The use of glucose oxidase (GOx) to disrupt glucose supply has been identified as a promising strategy in cancer starvation therapy. However, independent delivery of GOx is prone to degradation upon exposure to biological conditions and may cause damage to blood vessels and normal organs during transportation. Although some carriers can protect GOx from the surrounding environment, the harsh preparation conditions may compromise its activity. Moreover, the commonly used materials often exhibit poor biocompatibility and possess certain cytotoxicity. To address this issue, we developed a gentle and efficient method based on Pickering emulsion templates to synthesize protein-based microparticles using zein as the matrix material. These microparticles have high stability and can be tailored to efficiently encapsulate biomolecules while preserving their activity. Moreover, the zein-based microparticles can be triggered to release biomolecules in tumor cells under high glutathione levels, demonstrating excellent responsiveness, biocompatibility, and low cytotoxicity. Additionally, when loaded with GOx, these protein-based microparticles effectively deprive tumor cells of nutrients and induce apoptosis by generating high levels of H2O2, thereby exhibiting enhanced anticancer properties.


Assuntos
Zeína , Emulsões , Peróxido de Hidrogênio , Endocitose , Glutationa , Glucose Oxidase
19.
ACS Appl Bio Mater ; 7(5): 2781-2793, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38380497

RESUMO

A synergistic therapy agent (STA) with photothermal, photodynamic, chemodynamic, and starvation therapy (PTT, PDT, CDT, and ST) functions was developed. Hollow, mesoporous, and nearly uniform CeO2 nanoparticles (H-CeO2 NPs) were synthesized using a staged shape templating sol-gel protocol. Chlorin e6 (Ce6) was adsorbed onto H-CeO2 NPs, and a thin polydopamine (PDA) layer was formed on Ce6-adsorbed H-CeO2 NPs. Glucose oxidase (GOx) was bound onto PDA-coated Ce6-adsorbed H-CeO2 NPs to obtain the targeted STA (H-CeO2@Ce6@PDA@GOx NPs). A reversible photothermal conversion behavior with the temperature elevations up to 34 °C was observed by NIR laser irradiation at 808 nm. A cascade enzyme system based on immobilized GOx and intrinsic catalase-like activity of H-CeO2 NPs was rendered on STA for enhancing the effectiveness of PDT by elevation of ROS generation and alleviation of hypoxia in a tumor microenvironment. Glucose-mediated generation of highly toxic hydroxyl radicals (·OH) was evaluated for CDT. The effectiveness of PDT on glioblastoma T98G cells was markedly enhanced by O2 generation started by the decomposition of glucose. A similar increase in cell death was also observed when ST and CDT functions were enhanced by photothermal action. The viability of T98G cells decreased to 10.6% by in vitro synergistic action including ST, CDT, PDT, and PTT without using any antitumor agent.


Assuntos
Cério , Clorofilídeos , Indóis , Fotoquimioterapia , Fármacos Fotossensibilizantes , Polímeros , Porfirinas , Indóis/química , Indóis/farmacologia , Cério/química , Cério/farmacologia , Polímeros/química , Polímeros/farmacologia , Humanos , Porfirinas/química , Porfirinas/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Sobrevivência Celular/efeitos dos fármacos , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Teste de Materiais , Porosidade , Tamanho da Partícula , Ensaios de Seleção de Medicamentos Antitumorais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Linhagem Celular Tumoral , Nanopartículas/química
20.
Sci Rep ; 14(1): 3324, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336966

RESUMO

Enzymatic biofuel cells (EBFCs) hold tremendous potential to power biomedical devices, biosensors, and bioelectronics. Unlike conventional toxic batteries, these electrochemical devices are biocompatible, harnessing energy from physiological fluids and producing usable electrical energy. But the commercialization of EBFCs is limited by the low operational stability, limited power output and poor electron transport efficiency of the enzymatic electrodes. In this study, a novel bioanode exhibiting a high electron transfer ability and long-term stability was fabricated. For the preparation of the anode, surfactant-assisted polypyrrole (PPy) was electrochemically co-deposited on a platinum wire with the simultaneous entrapment of vitamin K3 (VK3) and GOx (glucose oxidase) in the PPy matrix. Herein, conducting PPy acts as an electron transfer enhancer and provides appropriate electrical communication between the active site of the enzyme glucose oxidase (GOx) and the electrode surface. Biocompatible redox mediator vitamin K3 was employed as an electron transfer mediator to shuttle electrons between the oxidized fuel glucose and surface of the electrode in the electrochemical cell. The electrical conductivity of PPy was measured using the four-probe technique of conductivity measurement of semiconductors. The morphological characterization of as-synthesized anode (PPy/CTAB/VK3/GOx) was performed by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical characterization was studied by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) techniques. It was observed that the room-temperature conductivity of PPy lies in the semiconducting range and it also shows good stability on exposure to laboratory air, making it a promising material to provide electrical contact. The study developed a bioanode producing a modest current density of 6.35 mA cm-2 in 20 mM glucose solution. The stability, current output and ease of manufacturing process of the electrode make it particularly suitable for employment in biofuel cell applications.


Assuntos
Fontes de Energia Bioelétrica , Polímeros/química , Pirróis/química , Glucose Oxidase/química , Oxirredução , Eletrodos , Glucose/metabolismo , Vitamina K
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA