Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.456
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nutrients ; 16(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39203757

RESUMO

Morphine is an important pain reliever employed in pain management, its extended utilize is hindered by the onset of analgesic tolerance and oxidative stress. Long-term morphine administration causes elevated production of reactive oxygen species (ROS), disrupting mitochondrial function and inducing oxidation. Sirtuin 3 (SIRT3), a mitochondrial protein, is essential in modulating ROS levels by regulating mitochondrial antioxidant enzymes as manganese superoxide dismutase (MnSOD). Our investigation focused on the impact of SIRT3 on hyperalgesia and morphine tolerance in mice, as evaluating the antioxidant effect of the polyphenolic fraction of bergamot (BPF). Mice were administered morphine twice daily for four consecutive days (20 mg/kg). On the fifth day, mice received an acute dose of morphine (3 mg/kg), either alone or in conjunction with BPF or Mn (III)tetrakis (4-benzoic acid) porphyrin (MnTBAP). We evaluated levels of malondialdehyde (MDA), nitration, and the activity of SIRT3, MnSOD, glutamine synthetase (GS), and glutamate 1 transporter (GLT1) in the spinal cord. Our findings demonstrate that administering repeated doses of morphine led to the development of antinociceptive tolerance in mice, accompanied by increased superoxide production, nitration, and inactivation of mitochondrial SIRT3, MnSOD, GS, and GLT1. The combined administration of morphine with either BPF or MnTBAP prevented these effects.


Assuntos
Tolerância a Medicamentos , Hiperalgesia , Mitocôndrias , Morfina , Estresse Oxidativo , Polifenóis , Sirtuína 3 , Animais , Morfina/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Polifenóis/farmacologia , Sirtuína 3/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Antioxidantes/farmacologia , Analgésicos Opioides/farmacologia , Malondialdeído/metabolismo , Glutamato-Amônia Ligase/metabolismo , Metaloporfirinas/farmacologia
2.
J Gastroenterol Hepatol ; 39(9): 1788-1808, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38763916

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) affects over 30% of the global population, with a significant risk of advancing to liver cirrhosis and hepatocellular carcinoma. The roles of ammonia and glutamine in MASLD's pathogenesis are increasingly recognized, prompting this systematic review. This systematic review was conducted through a meticulous search of literature on December 21, 2023, across five major databases, focusing on studies that addressed the relationship between ammonia or glutamine and MASLD. The quality of the included studies was evaluated using CASP checklists. This study is officially registered in the PROSPERO database (CRD42023495619) and was conducted without external funding or sponsorship. Following PRISMA guidelines, 13 studies were included in this review. The studies were conducted globally, with varying sample sizes and study designs. The appraisal indicated a mainly low bias, confirming the reliability of the evidence. Glutamine's involvement in MASLD emerged as multifaceted, with its metabolic role being critical for liver function and disease progression. Variable expressions of glutamine synthetase and glutaminase enzymes highlight metabolic complexity whereas ammonia's impact through urea cycle dysfunction suggests avenues for therapeutic intervention. However, human clinical trials are lacking. This review emphasizes the necessity of glutamine and ammonia in understanding MASLD and identifies potential therapeutic targets. The current evidence, while robust, points to the need for human studies to corroborate preclinical findings. A personalized approach to treatment, informed by metabolic differences in MASLD patients, is advocated, alongside future large-scale clinical trials for a deeper exploration into these metabolic pathways.


Assuntos
Amônia , Fígado Gorduroso , Glutamato-Amônia Ligase , Glutaminase , Glutamina , Humanos , Amônia/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Progressão da Doença , Fígado Gorduroso/metabolismo , Fígado Gorduroso/etiologia , Glutamato-Amônia Ligase/metabolismo , Glutaminase/metabolismo , Glutamina/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia
3.
Nat Commun ; 15(1): 3534, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670989

RESUMO

Glutamine synthetase (GS) is vital in maintaining ammonia and glutamate (Glu) homeostasis in living organisms. However, the natural enzyme relies on adenosine triphosphate (ATP) to activate Glu, resulting in impaired GS function during ATP-deficient neurotoxic events. To date, no reports demonstrate using artificial nanostructures to mimic GS function. In this study, we synthesize aggregation-induced emission active polyP-Mn nanosheets (STPE-PMNSs) based on end-labeled polyphosphate (polyP), exhibiting remarkable GS-like activity independent of ATP presence. Further investigation reveals polyP in STPE-PMNSs serves as phosphate source to activate Glu at low ATP levels. This self-feeding mechanism offers a significant advantage in regulating Glu homeostasis at reduced ATP levels in nerve cells during excitotoxic conditions. STPE-PMNSs can effectively promote the conversion of Glu to glutamine (Gln) in excitatory neurotoxic human neuroblastoma cells (SH-SY5Y) and alleviate Glu-induced neurotoxicity. Additionally, the fluorescence signal of nanosheets enables precise monitoring of the subcellular distribution of STPE-PMNSs. More importantly, the intracellular fluorescence signal is enhanced in a conversion-responsive manner, allowing real-time tracking of reaction progression. This study presents a self-sustaining strategy to address GS functional impairment caused by ATP deficiency in nerve cells during neurotoxic events. Furthermore, it offers a fresh perspective on the potential biological applications of polyP-based nanostructures.


Assuntos
Trifosfato de Adenosina , Glutamato-Amônia Ligase , Ácido Glutâmico , Glutamina , Manganês , Nanoestruturas , Neurônios , Polifosfatos , Glutamato-Amônia Ligase/metabolismo , Humanos , Polifosfatos/química , Polifosfatos/metabolismo , Polifosfatos/farmacologia , Nanoestruturas/química , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Glutamina/metabolismo , Manganês/metabolismo , Manganês/química , Materiais Biocompatíveis/química
4.
Curr Med Imaging ; 20(1): e15734056287859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544393

RESUMO

BACKGROUND: Glutamine Synthetase (GS) could induce vascular sprouting through the improvement of endothelial cell migration in inflammatory diseases. MR vessel-size imaging has been proposed as a valuable approach for visualizing the underlying angiogenic processes in the brain. OBJECTIVE: This study aims to investigate the role of GS in the neovascularization of gliomas through the utilization of MR vessel-size imaging and histopathological techniques. METHODS: In this exploratory animal study, we randomly divided the C6 glioma rat models into a control group and an L-methionine sulfoximine (MSO) treatment group. Daily intraperitoneal injections were administered for three consecutive days, starting from day 10 following the implantation of C6 glioma cells in rats. Subsequently, MR vessel size imaging was conducted using a BRUKER 7 T/200 mm MRI scanner, and the MRI results were validated through histopathological examination. RESULTS: A significant decrease in microvessel density was observed in both the tumor periphery and center areas in the MSO treatment group compared to that in the control group. The mean vessel diameter (mVD) and vessel size index (VSI) did not exhibit significant changes compared to the control group. Moreover, the staining intensity of platelet endothelial cell adhesion molecule-1 (CD31) and GS in the tumor periphery was significantly decreased in the MSO treatment group. Additionally, the MSO treatment demonstrated a substantial inhibition of tumor growth. CONCLUSION: GS inhibitors significantly reduced angiogenesis in the periphery area of C6 glioma, exerting an inhibitory effect on tumor progression. Thus, GS inhibitors could be potential therapeutic agents for treating glioma. Additionally, in vivo MR vessel size imaging detects changes in vascularrelated parameters after tumor treatment, making it a promising method for detecting neovascularization in glioma.

.


Assuntos
Glioma , Glutamato-Amônia Ligase , Imageamento por Ressonância Magnética , Neovascularização Patológica , Animais , Glioma/diagnóstico por imagem , Glioma/irrigação sanguínea , Glioma/tratamento farmacológico , Neovascularização Patológica/diagnóstico por imagem , Ratos , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Masculino , Linhagem Celular Tumoral
5.
Hepatol Int ; 18(3): 1011-1019, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38536628

RESUMO

AIM: Idiopathic non-cirrhotic portal hypertension (INCPH) is a vascular disorder of uncertain origin. Diagnosis can be challenging on liver biopsy. Despite diverse histomorphologic findings documented in literature, studies on the frequency of these findings are lacking. This study aims to assess both the histomorphologic features and the immunoexpression patterns of CD34 and glutamine synthetase (GS) in liver biopsies and searched for their contribution to the pathologic diagnosis of INCPH. MATERIALS AND METHODS: Hematoxylin-eosin, CD34, and GS-stained liver needle biopsy sections of 16 patients clinically diagnosed with INCPH were retrospectively analyzed. Histologic findings such as portal vein narrowing, obliteration, or loss were grouped as major findings, while portal vein herniation, hypervascularized portal tracts, and periportal abnormal vessels were grouped as minor findings, and their frequency were evaluated. Periportal endothelial CD34 stained areas were measured via ocular micrometer. The distribution of GS immunoexpression was evaluated. Eighteen healthy liver donor biopsies were evaluated as controls. RESULTS: In INCPH cases, 58% of portal tracts showed major findings, compared to 15% in the control group (p < 0.001). Minor findings were observed in 16% of INCPH cases and 7% of controls (p = 0.014). The number of portal tracts with histologic findings is significantly higher in INCPH than in control liver biopsies. Abnormal portal tract distribution, like being close to each other, was seen in 75% of INCPH cases but not in controls (p < 0.001). Nodular regenerative hyperplasia (NRH) was present in 31% of cases. Periportal CD34 expression was higher in INCPH, and affected areas were larger than in controls (p < 0.001). Irregular GS staining, i.e. GS staining with patchy distribution in zone 3, and/or periportal and zone 2 hepatocytes, was found in 62% of INCPH cases, while controls showed the usual pattern (p < 0.001). CONCLUSION: In the biopsy diagnosis of INCPH, in addition to the presence of major histologic findings and the amount of portal tracts displaying these features, the expression of endothelial CD34 in periportal areas, and irregular hepatocellular GS expression can also be considered as supporting feature.


Assuntos
Antígenos CD34 , Glutamato-Amônia Ligase , Hipertensão Portal , Imuno-Histoquímica , Fígado , Humanos , Glutamato-Amônia Ligase/metabolismo , Glutamato-Amônia Ligase/análise , Antígenos CD34/metabolismo , Antígenos CD34/análise , Hipertensão Portal/patologia , Hipertensão Portal/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Fígado/patologia , Idoso , Veia Porta/patologia , Biópsia por Agulha
7.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542274

RESUMO

In adult fish, neurogenesis occurs in many areas of the brain, including the cerebellum, with the ratio of newly formed cells relative to the total number of brain cells being several orders of magnitude greater than in mammals. Our study aimed to compare the expressions of aromatase B (AroB), glutamine synthetase (GS), and cystathionine-beta-synthase (CBS) in the cerebellum of intact juvenile chum salmon, Oncorhynchus keta. To identify the dynamics that determine the involvement of AroB, GS, and CBS in the cellular mechanisms of regeneration, we performed a comprehensive assessment of the expressions of these molecular markers during a long-term primary traumatic brain injury (TBI) and after a repeated acute TBI to the cerebellum of O. keta juveniles. As a result, in intact juveniles, weak or moderate expressions of AroB, GS, and CBS were detected in four cell types, including cells of the neuroepithelial type, migrating, and differentiated cells (graphic abstract, A). At 90 days post injury, local hypercellular areas were found in the molecular layer containing moderately labeled AroB+, GS+, and CBS+ cells of the neuroepithelial type and larger AroB+, GS+, and CBS+ cells (possibly analogous to the reactive glia of mammals); patterns of cells migration and neovascularization were also observed. A repeated TBI caused the number of AroB+, GS+, and CBS+ cells to further increase; an increased intensity of immunolabeling was recorded from all cell types (graphic abstract, C). Thus, the results of this study provide a better understanding of adult neurogenesis in teleost fishes, which is expected to clarify the issue of the reactivation of adult neurogenesis in mammalian species.


Assuntos
Oncorhynchus keta , Animais , Glutamato-Amônia Ligase , Cistationina , Aromatase , Cistationina beta-Sintase , Cerebelo , Mamíferos
8.
Epilepsy Res ; 199: 107258, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086219

RESUMO

BACKGROUND: Drug-resistant epilepsy is a common condition in patients with brain neoplasms. The pathogenesis of tumor-associated seizures is poorly understood. Among the possible pathogenetic mechanisms, the increase in glutamate concentration has been proposed. Glutamate transporters, glutamine synthetase and pyruvate carboxylase are involved in maintaining the physiological concentration of glutamate in the intersynaptic spaces. In our previous research on angiocentric gliomas, we demonstrated that all tumors lacked the expression of the main glutamate transporter EAAT2, while the expression of glutamine synthetase and pyruvate carboxylase was mostly preserved. METHODS: In the present study, we evaluated the immunohistochemical expression of EAAT2, glutamine synthetase and pyruvate carboxylase in a heterogeneous series of 25 long-term epilepsy-associated tumors (10 dysembryoplastic neuroepithelial tumors, 7 gangliogliomas, 3 subependymal giant cell astrocytomas, 3 rosette forming glioneuronal tumors, 1 diffuse astrocytoma MYB- or MYBL1-altered and 1 angiocentric glioma). In order to evaluate the incidence of variants in the SLC1A2 gene, encoding EAAT2, in a large number of central nervous system tumors we also queried the PedcBioPortal. RESULTS: EAAT2 protein expression was lost in 9 tumors (36 %: 3 dysembryoplastic neuroepithelial tumors, 1 ganglioglioma, 3 subependymal giant cell astrocytomas, 1 diffuse astrocytoma MYB- or MYBL1-altered and 1 angiocentric glioma). Glutamine synthetase protein expression was completely lost in 2 tumors (8 %; 1 ganglioglioma and 1 diffuse astrocytoma MYB- or MYBL1-altered). All tumors of our series but rosette forming glioneuronal tumors (in which neurocytic cells were negative) were diffusely positive for pyruvate carboxylase. Consultation of the PedcBioPortal revealed that of 2307 pediatric brain tumors of different histotype and grade, 20 (< 1%) had variants in the SLC1A2 gene. Among the SLC1A2-mutated tumors, there were no angiocentric gliomas or other LEATs CONCLUSIONS: In conclusion, unlike angiocentric gliomas where the EAAT2 loss is typical and constant, the current study shows the loss of EAAT2 expression only in a fraction of the LEATs. In these cases, we may hypothesize some possible epileptogenic role of the EAAT2 loss. The retained expression of pyruvate carboxylase may contribute to determining a pathological glutamate excess unopposed by glutamine synthetase that resulted expressed to a variable extent in the majority of the tumors. Furthermore, we can assume that the EAAT2 loss in brain tumors in general and in LEATs in particular is more conceivably epigenetic.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Epilepsia , Ganglioglioma , Glioma , Neoplasias Neuroepiteliomatosas , Criança , Humanos , Astrocitoma/complicações , Astrocitoma/metabolismo , Astrocitoma/patologia , Neoplasias Encefálicas/metabolismo , Epilepsia/etiologia , Ganglioglioma/metabolismo , Glioma/genética , Glutamato-Amônia Ligase , Glutamatos , Piruvato Carboxilase , Convulsões/complicações
9.
Med Oncol ; 41(1): 38, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157146

RESUMO

The glutamine synthetase (GS) facilitates cancer cell growth by catalyzing de novo glutamine synthesis. This enzyme removes ammonia waste from the liver following the urea cycle. Since cancer development is associated with dysregulated urea cycles, there has been no investigation of GS's role in ammonia clearance. Here, we demonstrate that, although GS expression is increased in the setting of ß-catenin oncogenic activation, it is insufficient to clear the ammonia waste burden due to the dysregulated urea cycle and may thus be unable to prevent cancer formation. In vivo study, a total of 165 male Swiss albino mice allocated in 11 groups were used, and liver cancer was induced by p-DAB. The activity of GS was evaluated along with the relative expression of mTOR, ß-catenin, MMP-14, and GS genes in liver samples and HepG2 cells using qRT-PCR. Moreover, the cytotoxicity of the NH3 scavenger phenyl acetate (PA) and/or GS-inhibitor L-methionine sulfoximine (MSO) and the migratory potential of cells was assessed by MTT and wound healing assays, respectively. The Swiss target prediction algorithm was used to screen the mentioned compounds for probable targets. The treatment of the HepG2 cell line with PA plus MSO demonstrated strong cytotoxicity. The post-scratch remaining wound area (%) in the untreated HepG2 cells was 2.0%. In contrast, the remaining wound area (%) in the cells treated with PA, MSO, and PA + MSO for 48 h was 61.1, 55.8, and 78.5%, respectively. The combination of the two drugs had the greatest effect, resulting in the greatest decrease in the GS activity, ß-catenin, and mTOR expression. MSO and PA are both capable of suppressing mTOR, a key player in the development of HCC, and MMP-14, a key player in the development of HCC. PA inhibited the MMP-14 enzyme more effectively than MSO, implying that PA might be a better way to target HCC as it inhibited MMP-14 more effectively than MSO. A large number of abnormal hepatocytes (5%) were found to be present in the HCC mice compared to mice in the control group as determined by the histopathological lesions scores. In contrast, PA, MSO, and PA + MSO showed a significant reduction in the hepatic lesions score either when protecting the liver or when treating the liver. The molecular docking study indicated that PA and MSO form a three-dimensional structure with NF-κB and COX-II, blocking their ability to promote cancer and cause gene mutations. PA and MSO could be used to manipulate GS activities to modulate ammonia levels, thus providing a potential treatment for ammonia homeostasis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Camundongos , Animais , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , beta Catenina/metabolismo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Amônia/metabolismo , Amônia/uso terapêutico , Nitrogênio/uso terapêutico , Metaloproteinase 14 da Matriz , Simulação de Acoplamento Molecular , Serina-Treonina Quinases TOR , Homeostase , Ureia/uso terapêutico
10.
Braz J Biol ; 83: e276264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37937632

RESUMO

The water deficit in particular, reduces the productivity of vegetable crops. To minimize these harmful effects on agriculture, several agronomic and physiological practices are being studied, such as the use of bacteria and water stress attenuators, such as brassinosteroids. Considering the socioeconomic relevance of corn culture and its sensitivity when exposed to water deficit, the objective of the present study was to evaluate the action of brassinosteroids and azospirillum on nitrogen metabolism in corn plants subjected to water stress conditions. The experiment was carried out in a greenhouse, in a period of 47 days, with corn plants, using the hybrid K9606 VIP3. The design was completely randomized, in a 2x2x3 factorial scheme, with six replications. The first factor corresponds to two water regimes (presence and absence of water deficit). The second corresponds to inoculation via seed of Azospirillum brasiliense and absence of inoculation. And the third corresponds to the application of three concentrations of brassinosteroids (0, 0.3 and 0.6 µM). Were determined Nitrate; nitrate reductase; free ammonium; total soluble aminoacids; soluble proteins; proline; glycine betaine and glutamine synthetase. The lack of water in plants provided a reduction in the protein and nitrate reductase contents, in leaves and roots. For ammonium, plants with water deficit inoculated at a concentration of 0.3 µM, obtained an increase of 7.16 (70.26%) and 13.89 (77.04%) mmol NH4 + .Kg-1. DM (Dry mass) on the leaf and root respectively. The water deficit in the soil provided significant increases in the concentrations of glycine betaine, nitrate, proline and aminoacids, both in the leaves and in the roots of the corn plants. On the other hand, the contents of glutamine synthetase had a reduction in both leaves and roots.


Assuntos
Compostos de Amônio , Azospirillum brasilense , Zea mays , Brassinosteroides/metabolismo , Nitratos , Raízes de Plantas/metabolismo , Secas , Desidratação/metabolismo , Betaína/metabolismo , Glutamato-Amônia Ligase , Aminoácidos/metabolismo , Prolina/metabolismo , Nitrato Redutases/metabolismo , Nitrogênio/metabolismo
11.
Clin Res Hepatol Gastroenterol ; 47(10): 102248, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979911

RESUMO

Glutamine synthetase (GS) is an enzyme that converts ammonia and glutamate to glutamine using adenosine triphosphate. GS is expressed in the brain, kidney, and liver tissues under normal physiological conditions. GS is involved in abnormal lipid metabolism of the liver by catalyzing de novo synthesis of glutamine, thereby inducing liver inflammation. Metabolic dysfunction-associated steatotic liver diseases (MASLD), such as Metabolic Associated Fatty Liver Disease and Metabolic Associated Steato Hepatitis, are considered risk factors for HCC. GS may also be involved in the development and progression of hepatocellular carcinoma (HCC) through other signaling pathways, including the rapamycin (mTOR) and Wnt/ß-catenin signaling pathways. Furthermore, the correct combination of HSP70, GPC3, and GS can improve the accuracy and precision of HCC diagnosis. However, the prognostic value of GS in different HCC populations remains controversial. The expression of GS affects the sensitivity of HCC cells to radiotherapy and chemotherapy. In addition, immunotherapy has been approved for the treatment of advanced HCC. This article delves into the development and application of GS in HCC, laying a theoretical foundation for the subsequent exploration of GS as a potential target for treating HCC.


Assuntos
Carcinoma Hepatocelular , Glutamato-Amônia Ligase , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Glutamina/uso terapêutico , Glipicanas/metabolismo , Glipicanas/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Via de Sinalização Wnt
12.
Environ Sci Pollut Res Int ; 30(54): 115461-115479, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37882925

RESUMO

Cadmium (Cd) is a toxic substance that is uptake by plants from soils, Cd easily transfers into the food chain. Considering global food security, eco-friendly, cost-effective, and metal detoxification strategies are highly demandable for sustainable food crop production. The purpose of this study was to investigate how citric acid (CA) alleviates or tolerates Cd toxicity in Brassica using a proteome approach. In this study, the global proteome level was significantly altered under Cd toxicity with or without CA supplementation in Brassica. A total of 4947 proteins were identified using the gel-free proteome approach. Out of these, 476 proteins showed differential abundance between the treatment groups, wherein 316 were upregulated and 160 were downregulated. The gene ontology analysis reveals that differentially abundant proteins were involved in different biological processes including energy and carbohydrate metabolism, CO2 assimilation and photosynthesis, signal transduction and protein metabolism, antioxidant defense, heavy metal detoxification, plant development, and cytoskeleton and cell wall structure in Brassica leaves. Interestingly, several candidate proteins such as superoxide dismutase (A0A078GZ68) L-ascorbate peroxidase 3 (A0A078HSG4), glutamine synthetase (A0A078HLB2), glutathione S-transferase DHAR1 (A0A078HPN8), glutamine synthetase (A0A078HLB2), cysteine synthase (A0A078GAD3), S-adenosylmethionine synthase 2 (A0A078JDL6), and thiosulfate/3-mercaptopyruvate sulfur transferase 2 (A0A078H905) were involved in antioxidant defense system and sulfur assimilation-involving Cd-detoxification process in Brassica. These findings provide new proteome insights into CA-mediated Cd-toxicity alleviation in Brassica, which might be useful to oilseed crop breeders for enhancing heavy metal tolerance in Brassica using the breeding program, with sustainable and smart Brassica production in a metal-toxic environment.


Assuntos
Brassica napus , Brassica , Metais Pesados , Cádmio/análise , Antioxidantes/metabolismo , Brassica napus/metabolismo , Proteoma/metabolismo , Ácido Cítrico/metabolismo , Glutamato-Amônia Ligase/metabolismo , Melhoramento Vegetal , Metais Pesados/metabolismo , Brassica/metabolismo , Enxofre/metabolismo
13.
Pathol Res Pract ; 249: 154741, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37586217

RESUMO

Histologic markers of increased risk for hepatocellular carcinoma can provide useful information for the management of patients with chronic hepatitis B. The expression of epithelial cell adhesion molecule (EpCAM, a marker of hepatic progenitor cells), p21 (a marker of hepatocyte senescence), glutamine synthetase (a marker of perivenular hepatocytes) and CD34 (a marker of sinusoidal capillarization) were assessed by immunohistochemistry in 52 liver biopsy specimens from patients with advanced stage chronic hepatitis B. Nineteen patients developed hepatocellular carcinoma during a follow-up period of 133 months. The findings were compared with those of 18 liver biopsy specimens from patients with early-stage chronic hepatitis B and 6 liver biopsy specimens without significant pathologic findings. EpCAM expression in hepatocytes was significantly increased in specimens with advanced stage, as compared with all other specimens. EpCAM positivity in over 30 % of hepatocytes was only seen in 3 specimens from patients who subsequently developed hepatocellular carcinoma. The expression of p21, glutamine synthetase and CD34 was not associated with hepatocellular carcinoma development. Nevertheless, glutamine synthetase immunostains highlighted zonality abnormalities that were useful in chronic hepatitis B staging. In conclusion, extensive immunopositivity of hepatocytes for EpCAM in chronic hepatitis B may represent a marker of increased hepatocellular carcinoma risk. Glutamine synthetase immunostaining represents a useful adjunct in determining the stage of chronic hepatitis B in diagnostic practice.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Hepatite B Crônica/complicações , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias Hepáticas/patologia , Glutamato-Amônia Ligase/metabolismo , Hepatócitos/metabolismo , Moléculas de Adesão Celular/metabolismo , Fatores de Risco
14.
Sci Adv ; 9(31): eadf3566, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531433

RESUMO

For clear cell renal cell carcinoma (ccRCC), lipid deposition plays important roles in the development, metastasis, and drug resistance. However, the molecular mechanisms underlying lipid deposition in ccRCC remain largely unknown. By conducting an unbiased CRISPR-Cas9 screening, we identified the epigenetic regulator plant homeodomain finger protein 8 (PHF8) as an important regulator in ccRCC lipid deposition. Moreover, PHF8 is regulated by von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF) axis and essential for VHL deficiency-induced lipid deposition. PHF8 transcriptionally up-regulates glutamate-ammonia ligase (GLUL), which promotes the lipid deposition and ccRCC progression. Mechanistically, by forming a complex with c-MYC, PHF8 up-regulates TEA domain transcription factor 1 (TEAD1) in a histone demethylation-dependent manner. Subsequently, TEAD1 up-regulates GLUL transcriptionally. Pharmacological inhibition of GLUL by l-methionine sulfoximine not only repressed ccRCC lipid deposition and tumor growth but also enhanced the anticancer effects of everolimus. Thus, the PHF8-GLUL axis represents a potential therapeutic target for ccRCC treatment.


Assuntos
Carcinoma de Células Renais , Glutamato-Amônia Ligase , Histona Desmetilases , Neoplasias Renais , Fatores de Transcrição , Humanos , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases/metabolismo , Neoplasias Renais/metabolismo , Lipídeos , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Glutamato-Amônia Ligase/metabolismo
15.
Biomed Pharmacother ; 165: 115204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37499456

RESUMO

AIMS: The manipulation of macrophage recruitment and their shift in the M1/M2 ratio is a promising approach to mitigate osteoarthritis (OA). Nevertheless, the current clinical medication available for OA is only palliative and may result in undesirable outcomes. Hence, it is urgent to explore alternative disease-modifying drug supplement that are both safer and more effective in OA treatment, like probiotic and probiotic-derived membrane vesicles. METHODS: The synovial inflammation and cartilage damage in collagenase-induced OA (CIOA) mice were observed using haematoxylin and eosin, saffron O-solid green and immunohistochemical staining. Bipedal balance test and open field test were conducted to determine the effectiveness of L. johnsonii-derived membrane vesicles (LJ-MVs) in reducing joint pain of CIOA mice. Additionally, Transwell, western blot, and immunological testing were used to examine the effect of LJ-MVs on macrophage migration and reprogramming. Furthermore, a 4D label-free proteomic analysis of LJ-MVs and their parent bacterium was performed, and the glutamine synthetase (GS)/mTORC1 axis in macrophage was verified by western blot. RESULTS: L. johnsonii and its membrane vesicles, LJ-MVs, exhibit a novel ability to mitigate inflammation, cartilage damage, and pain associated with OA. This is achieved by their ability to impede macrophage migration, M1-like polarization, and inflammatory mediators secretion, while simultaneously promoting the M2/M1 ratio in synovial macrophages. The mechanism underlying this effect involves the modulation of macrophage GS/mTORC1 pathway, at least partially. SIGNIFICANCE: Owing to their probiotic derivation, LJ-MVs will be a more dependable and potent disease-modifying drugs for the prevention and therapy of OA in the long run.


Assuntos
Lactobacillus johnsonii , Osteoartrite , Camundongos , Animais , Glutamato-Amônia Ligase/metabolismo , Membrana Sinovial/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteômica , Osteoartrite/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo
16.
Chin Med J (Engl) ; 136(17): 2066-2076, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37249521

RESUMO

BACKGROUND: Glutamine synthetase (GS) and arginase 1 (Arg1) are widely used pathological markers that discriminate hepatocellular carcinoma (HCC) from intrahepatic cholangiocarcinoma; however, their clinical significance in HCC remains unclear. METHODS: We retrospectively analyzed 431 HCC patients: 251 received hepatectomy alone, and the other 180 received sorafenib as adjuvant treatment after hepatectomy. Expression of GS and Arg1 in tumor specimens was evaluated using immunostaining. mRNA sequencing and immunostaining to detect progenitor markers (cytokeratin 19 [CK19] and epithelial cell adhesion molecule [EpCAM]) and mutant TP53 were also conducted. RESULTS: Up to 72.4% (312/431) of HCC tumors were GS positive (GS+). Of the patients receiving hepatectomy alone, GS negative (GS-) patients had significantly better overall survival (OS) and recurrence-free survival (RFS) than GS+ patients; negative expression of Arg1, which is exclusively expressed in GS- hepatocytes in the healthy liver, had a negative effect on prognosis. Of the patients with a high risk of recurrence who received additional sorafenib treatment, GS- patients tended to have better RFS than GS+ patients, regardless of the expression status of Arg1. GS+ HCC tumors exhibit many features of the established proliferation molecular stratification subtype, including poor differentiation, high alpha-fetoprotein levels, increased progenitor tumor cells, TP53 mutation, and upregulation of multiple tumor-related signaling pathways. CONCLUSIONS: GS- HCC patients have a better prognosis and are more likely to benefit from sorafenib treatment after hepatectomy. Immunostaining of GS may provide a simple and applicable approach for HCC molecular stratification to predict prognosis and guide targeted therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/metabolismo , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/metabolismo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Hepatectomia , Estudos Retrospectivos , Prognóstico , Recidiva Local de Neoplasia/cirurgia
17.
Pestic Biochem Physiol ; 193: 105446, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248015

RESUMO

The use of herbicides is believed to have an impact on the metabolism, physiology and biochemistry of fish. In this study, we studied the effects of metamifop on the production and metabolism of Monopterus. albus living in the water. According to the semi-lethal concentration of metamifop for 96 h, four MET concentration groups (0.2-, 0.4-, 0.6- and 0.8 mg L-1) were set up for 96 h exposure test. The ammonia discharge rate decreased, hemolymph ammonia content increased significantly, and hemolymph urea nitrogen content decreased at all time periods of metamifop exposure. In liver, the protein content decreased, the neutral protease content increased significantly (p < 0.01), amino acid content increased, and ATP content increased significantly (p < 0.01). In brain, the protein content increased, the activity of acid protease, neutral protease and alkaline protease all decreased, amino acid content decreased significantly (p < 0.01), and the content of ATP decreased. Glutamic-pyruvic transaminase (GPT) activity did not change in liver but decreased in brain. Glutamine synthetase (GS) activity decreased in liver and increased in brain. Glutaminase (GLS) activity decreased in liver and increased in brain. In conclusion, the liver and brain tissues of M. albus react differently to MET exposure. The liver mainly synthesizes energy through hydrolyzed protein, while the brain mainly synthesizes protein. Amino acids produced by protein hydrolysis cannot be converted to alanine for storage, and the degraded amino acids lead to the elevation of endogenous ammonia. MET inhibits the removal of ammonia from M. albus. Only liver tissue can detoxify the eel by converting ammonia into glutamine. Brain should have to tolerate high levels of endogenous ammonia.


Assuntos
Amônia , Smegmamorpha , Animais , Amônia/metabolismo , Aminoácidos/metabolismo , Glutamina/metabolismo , Fígado/metabolismo , Smegmamorpha/metabolismo , Trifosfato de Adenosina/metabolismo , Glutamato-Amônia Ligase/metabolismo , Ureia/metabolismo
18.
Exp Cell Res ; 426(2): 113568, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36967104

RESUMO

l-Asparaginase is a cornerstone of acute lymphoblastic leukemia (ALL) therapy since lymphoblasts lack asparagine synthetase (ASNS) and rely on extracellular asparagine availability for survival. Resistance mechanisms are associated with increased ASNS expression in ALL. However, the association between ASNS and l-Asparaginase efficacy in solid tumors remains unclear, thus limiting clinical development. Interestingly, l-Asparaginase also has a glutaminase co-activity that is crucial in pancreatic cancer where KRAS mutations activate glutamine metabolism. By developing l-Asparaginase-resistant pancreatic cancer cells and using OMICS approaches, we identified glutamine synthetase (GS) as a marker of resistance to l-Asparaginase. GS is the only enzyme able to synthesize glutamine, and its expression also correlates with l-Asparaginase efficacy in 27 human cell lines from 11 cancer indications. Finally, we further demonstrated that GS inhibition prevents cancer cell adaptation to l-Asparaginase-induced glutamine starvation. These findings could pave the way to the development of promising drug combinations to overcome l-Asparaginase resistance.


Assuntos
Neoplasias Pancreáticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Asparaginase/farmacologia , Glutamato-Amônia Ligase/genética , Glutaminase/genética , Glutamina/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Neoplasias Pancreáticas
20.
J Med Virol ; 95(2): e28555, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36738235

RESUMO

Hepatic lobular architecture distortion is a deleterious turning point and a crucial histological feature of advanced liver fibrosis in chronic liver diseases. Regression of fibrosis has been documented in chronic hepatitis B (CHB) patients. However, whether lobular architecture could be restored following fibrosis regression after antiviral therapy is still unclear. Glutamine synthetase (GS) is generally expressed by perivenular hepatocytes around hepatic veins (HV). In this study, we defined abnormal lobular architecture (GSPT ) as GS expressing in the vicinity of portal tracts (PT), which denotes parenchymal extinction and lobular collapse. We defined normal lobular architecture (GSHV ) as GS positivity area not approximating PTs. Therefore, we propose a new GS-index, defined as the percentage of GSHV /(GSHV + GSPT ), to evaluate the extent of architectural disruption and restoration. We evaluated 43 CHB patients with advanced fibrosis (Ishak stage ≥4). Posttreatment liver biopsy was performed after 78 weeks of anti-HBV therapy. The median GS-index improved from 7% (interquartile range [IQR]: 0%-23%) at baseline to 36% (IQR: 20%-57%) at Week 78 (p < 0.001). Totals of 22 patients (51%) had significant GS-index improvement from 0% (IQR: 0%-13%) to 55% (IQR: 44%-81%), while the other half had almost no change between 17% (IQR: 0%-33%) to 20% (IQR: 12%-31%). When GS-index78w ≥ 50% was used to define hepatic lobular restoration, 37% of patients (16/43) achieved lobular restoration, with much improvement in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels (median value of ∆/Baseline in ALT: restored vs. nonrestored was 79.1% vs. 48.8%, p = 0.018; median value of ∆/Baseline in AST: restored vs. nonrestored was 69.1% vs. 32.5%, p = 0.005). More importantly, lobular restoration correlated with fibrosis regression (median value of ∆/Baseline in Ishak stage: restored vs. nonrestored was 25.0% vs. 0%, p = 0.008). Therefore, in the era of antiviral therapy for CHB, restoration of hepatic lobular architecture is achievable in patients with advanced fibrosis. GS-index provides additional insight into fibrosis regression that goes beyond collagen degradation.


Assuntos
Glutamato-Amônia Ligase , Hepatite B Crônica , Humanos , Hepatite B Crônica/tratamento farmacológico , Fígado/patologia , Fibrose , Cirrose Hepática/patologia , Alanina Transaminase , Biópsia , Antivirais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA