Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 31(5): e4304, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481643

RESUMO

Escherichia coli glutamine synthetase (EcGS) spontaneously forms a dodecamer that catalytically converts glutamate to glutamine. EcGS stacks with other dodecamers to create a filament-like polymer visible under transmission electron microscopy. Filamentous EcGS is induced by environmental metal ions. We used cryo-electron microscopy (cryo-EM) to decipher the structure of metal ion (nickel)-induced EcGS helical filament at a sub-3Å resolution. EcGS filament formation involves stacking of native dodecamers by chelating nickel ions to residues His5 and His13 in the first N-terminal helix (H1). His5 and His13 from paired parallel H1 helices provide salt bridges and hydrogen bonds to tightly stack two dodecamers. One subunit of the EcGS filament hosts two nickel ions, whereas the dodecameric interface and the ATP/Mg-binding site both host a nickel ion each. We reveal that upon adding glutamate or ATP for catalytic reactions, nickel-induced EcGS filament reverts to individual dodecamers. Such tunable filament formation is often associated with stress responses. Our results provide detailed structural information on the mechanism underlying reversible and tunable EcGS filament formation.


Assuntos
Escherichia coli , Glutamato-Amônia Ligase , Trifosfato de Adenosina , Microscopia Crioeletrônica , Glutamato-Amônia Ligase/química , Glutamatos , Substâncias Macromoleculares , Metais , Níquel
2.
Nitric Oxide ; 88: 73-86, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026500

RESUMO

The identification of S-nitrosated substrates and their target cysteine residues is a crucial step to understand the signaling functions of nitric oxide (NO) inside the cells. Here, we show that the key nitrogen metabolic enzyme glutamine synthetase (GS) is a S-nitrosation target in Medicago truncatula and characterize the molecular determinants and the effects of this NO-induced modification on different GS isoenzymes. We found that all the four M. truncatula GS isoforms are S-nitrosated, but despite the high percentage of amino acid identity between the four proteins, S-nitrosation only affects the activity of the plastid-located enzymes, leading to inactivation. A biotin-switch/mass spectrometry approach revealed that cytosolic and plastid-located GSs share an S-nitrosation site at a conserved cysteine residue, but the plastidic enzymes contain additional S-nitrosation sites at non-conserved cysteines, which are accountable for enzyme inactivation. By site-directed mutagenesis, we identified Cys369 as the regulatory S-nitrosation site relevant for the catalytic function of the plastid-located GS and an analysis of the structural environment of the SNO-targeted cysteines in cytosolic and plastid-located isoenzymes explains their differential regulation by S-nitrosation and elucidates the mechanistic by which S-nitrosation of Cys369 leads to enzyme inactivation. We also provide evidence that both the cytosolic and plastid-located GSs are endogenously S-nitrosated in leaves and root nodules of M. truncatula, supporting a physiological meaning for S-nitrosation. Taken together, these results provide new insights into the molecular details of the differential regulation of individual GS isoenzymes by NO-derived molecules and open new paths to explore the biological significance of the NO-mediated regulation of this essential metabolic enzyme.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Cisteína/química , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/isolamento & purificação , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Medicago truncatula/enzimologia , Medicago truncatula/metabolismo , Mutagênese Sítio-Dirigida , Nitrosação , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Processamento de Proteína Pós-Traducional , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/metabolismo , Alinhamento de Sequência
3.
Appl Microbiol Biotechnol ; 101(9): 3653-3661, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28175947

RESUMO

A glutamine synthetase (GS; 1341 bp) gene with potent L-phosphinothricin (PPT) resistance was isolated and characterized from a marine bacterium Exiguobacterium sp. Molecular docking analysis indicated that the substitution of residues Glu60 and Arg64 may lead to significant changes in binding pocket. To enhance the enzymatic property of GS, variants E60A and R64G were obtained by site-directed mutagenesis. The results revealed a noteworthy change in the thermostability and activity in comparison to the wild type (WT). WT exhibited optimum activity at 35 °C, while E60A and R64G exhibited optimum activity at 45 and 40 °C, respectively. The mutant R64G was 4.3 times more stable at 70 °C in comparison to WT, while E60A was 5.7 times more stable. Kinetic analysis revealed that the k cat value of R64G mutant was 8.10-, 7.25- and 7.63-fold that of WT for ADP, glutamine and hydroxylamine, respectively. The kinetic inhibition (K i, 4.91 ± 0.42 mM) of R64G was 2.02-fold that of WT (2.43 ± 0.14 mM) for L-phosphinothricin. The analysis of structure and function relationship showed that the binding pocket underwent dramatic changes when Arg site of 64 was substituted by Gly, thus promoting the rapid capture of substrates and leading to increase in activity and PPT-resistance of mutant R64G. The rearrangements of the residues at the molecular level formed new hydrogen bonds around the active site, which contributed to the increase of thermostability of enzymes. This study provides new insights into substrate binding mechanism of glutamine synthetase and the improved GS gene also has a potential for application in transgenic crops with L-phosphinothricin tolerance.


Assuntos
Aminobutiratos/metabolismo , Bacillales/enzimologia , Inibidores Enzimáticos/metabolismo , Glutamato-Amônia Ligase/isolamento & purificação , Glutamato-Amônia Ligase/metabolismo , Difosfato de Adenosina/metabolismo , Bacillales/genética , Sítios de Ligação , Estabilidade Enzimática , Glutamato-Amônia Ligase/antagonistas & inibidores , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/genética , Glutamina/metabolismo , Ligação de Hidrogênio , Hidroxilamina/metabolismo , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Temperatura
4.
Plant Physiol Biochem ; 111: 226-233, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27951492

RESUMO

Glutamine synthetase (GS), a key enzyme in plant nitrogen metabolism, is encoded by a small family of highly homologous nuclear genes that produce cytosolic (GS1) and plastidic (GS2) isoforms. Compared to GS1, GS2 proteins have two extension peptides, one at the N- and the other at the C-terminus, which show a high degree of conservation among plant species. It has long been known that the N-terminal peptide acts as a transit peptide, targeting the protein to the plastids however, the function of the C-terminal extension is still unknown. To investigate whether the C-terminal extension influences the activity of the enzyme, we produced a C-terminal truncated version of Medicago truncatula GS2a in Escherechia coli and studied its catalytic properties. The activity of the truncated protein was found to be lower than that of MtGS2a and with less affinity for glutamate. The importance of the C-terminal extension for the protein import into the chloroplast was also assessed by transient expression of fluorescently-tagged MtGS2a truncated at the C-terminus, which was correctly detected in the chloroplast. The results obtained in this work demonstrate that the C-terminal extension of M. truncatula GS2a is important for the activity of the enzyme and does not contain crucial information for the import process.


Assuntos
Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/metabolismo , Medicago truncatula/enzimologia , Peptídeos/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plastídeos/enzimologia , Sequência de Aminoácidos , Isoenzimas/química , Isoenzimas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico , Alinhamento de Sequência , Análise de Sequência de Proteína , Relação Estrutura-Atividade , Frações Subcelulares/metabolismo , Especificidade por Substrato , Nicotiana/genética
5.
PLoS Comput Biol ; 12(2): e1004693, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26836257

RESUMO

Glutamine synthetase (GS) catalyzes ATP-dependent ligation of ammonia and glutamate to glutamine. Two mutations of human GS (R324C and R341C) were connected to congenital glutamine deficiency with severe brain malformations resulting in neonatal death. Another GS mutation (R324S) was identified in a neurologically compromised patient. However, the molecular mechanisms underlying the impairment of GS activity by these mutations have remained elusive. Molecular dynamics simulations, free energy calculations, and rigidity analyses suggest that all three mutations influence the first step of GS catalytic cycle. The R324S and R324C mutations deteriorate GS catalytic activity due to loss of direct interactions with ATP. As to R324S, indirect, water-mediated interactions reduce this effect, which may explain the suggested higher GS residual activity. The R341C mutation weakens ATP binding by destabilizing the interacting residue R340 in the apo state of GS. Additionally, the mutation is predicted to result in a significant destabilization of helix H8, which should negatively affect glutamate binding. This prediction was tested in HEK293 cells overexpressing GS by dot-blot analysis: Structural stability of H8 was impaired through mutation of amino acids interacting with R341, as indicated by a loss of masking of an epitope in the glutamate binding pocket for a monoclonal anti-GS antibody by L-methionine-S-sulfoximine; in contrast, cells transfected with wild type GS showed the masking. Our analyses reveal complex molecular effects underlying impaired GS catalytic activity in three clinically relevant mutants. Our findings could stimulate the development of ATP binding-enhancing molecules by which the R324S mutant can be repaired extrinsically.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/deficiência , Glutamato-Amônia Ligase/genética , Mutação/genética , Trifosfato de Adenosina/metabolismo , Glutamato-Amônia Ligase/metabolismo , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica/genética
6.
J Biol Chem ; 291(7): 3483-95, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26635369

RESUMO

TnrA is a master regulator of nitrogen assimilation in Bacillus subtilis. This study focuses on the mechanism of how glutamine synthetase (GS) inhibits TnrA function in response to key metabolites ATP, AMP, glutamine, and glutamate. We suggest a model of two mutually exclusive GS conformations governing the interaction with TnrA. In the ATP-bound state (A-state), GS is catalytically active but unable to interact with TnrA. This conformation was stabilized by phosphorylated L-methionine sulfoximine (MSX), fixing the enzyme in the transition state. When occupied by glutamine (or its analogue MSX), GS resides in a conformation that has high affinity for TnrA (Q-state). The A- and Q-state are mutually exclusive, and in agreement, ATP and glutamine bind to GS in a competitive manner. At elevated concentrations of glutamine, ATP is no longer able to bind GS and to bring it into the A-state. AMP efficiently competes with ATP and prevents formation of the A-state, thereby favoring GS-TnrA interaction. Surface plasmon resonance analysis shows that TnrA bound to a positively regulated promoter fragment binds GS in the Q-state, whereas it rapidly dissociates from a negatively regulated promoter fragment. These data imply that GS controls TnrA activity at positively controlled promoters by shielding the transcription factor in the DNA-bound state. According to size exclusion and multiangle light scattering analysis, the dodecameric GS can bind three TnrA dimers. The highly interdependent ligand binding properties of GS reveal this enzyme as a sophisticated sensor of the nitrogen and energy state of the cell to control the activity of DNA-bound TnrA.


Assuntos
Trifosfato de Adenosina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glutamina/metabolismo , Modelos Moleculares , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Bacillus subtilis/enzimologia , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Ligação Competitiva , Estabilidade Enzimática , Deleção de Genes , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/genética , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Glutamina/química , Cinética , Ligantes , Metionina Sulfoximina/análogos & derivados , Metionina Sulfoximina/química , Metionina Sulfoximina/metabolismo , Peso Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/agonistas , Proteínas Repressoras/química , Proteínas Repressoras/genética , Ressonância de Plasmônio de Superfície
7.
FEBS J ; 282(24): 4797-809, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26433003

RESUMO

Nitrogen metabolism in Proteobacteria is controlled by the Ntr system, in which PII proteins play a pivotal role, controlling the activity of target proteins in response to the metabolic state of the cell. Characterization of the binding of molecular effectors to these proteins can provide information about their regulation. Here, the binding of ATP, ADP and 2-oxoglutarate (2-OG) to the Herbaspirillum seropedicae PII proteins, GlnB and GlnK, was characterized using isothermal titration calorimetry. Results show that these proteins can bind three molecules of ATP, ADP and 2-OG with homotropic negative cooperativity, and 2-OG binding stabilizes the binding of ATP. Results also show that the affinity of uridylylated forms of GlnB and GlnK for nucleotides is significantly lower than that of the nonuridylylated proteins. Furthermore, fluctuations in the intracellular concentration of 2-OG in response to nitrogen availability are shown. Results suggest that under nitrogen-limiting conditions, PII proteins tend to bind ATP and 2-OG. By contrast, after an ammonium shock, a decrease in the 2-OG concentration is observed causing a decrease in the affinity of PII proteins for ATP. This phenomenon may facilitate the exchange of ATP for ADP on the ligand-binding pocket of PII proteins, thus it is likely that under low ammonium, low 2-OG levels would favor the ADP-bound state.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Herbaspirillum/enzimologia , Ácidos Cetoglutáricos/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Calorimetria , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Herbaspirillum/fisiologia , Cinética , Ligantes , Fixação de Nitrogênio , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Proteínas PII Reguladoras de Nitrogênio/química , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estresse Fisiológico , Titulometria
8.
Mol Biosyst ; 10(4): 851-861, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24488121

RESUMO

Many normally cytosolic yeast proteins form insoluble intracellular bodies in response to nutrient depletion, suggesting the potential for widespread protein aggregation in stressed cells. Nearly 200 such bodies have been found in yeast by screening libraries of fluorescently tagged proteins. In order to more broadly characterize the formation of these bodies in response to stress, we employed a proteome-wide shotgun mass spectrometry assay in order to measure shifts in the intracellular solubilities of endogenous proteins following heat stress. As quantified by mass spectrometry, heat stress tended to shift the same proteins into insoluble form as did nutrient depletion; many of these proteins were also known to form foci in response to arsenic stress. Affinity purification of several foci-forming proteins showed enrichment for co-purifying chaperones, including Hsp90 chaperones. Tests of induction conditions and co-localization of metabolic enzymes participating in the same metabolic pathways suggested those foci did not correspond to multi-enzyme organizing centers. Thus, in yeast, the formation of stress bodies appears common across diverse, normally diffuse cytoplasmic proteins and is induced by multiple types of cell stress, including thermal, chemical, and nutrient stress.


Assuntos
Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP90/química , Resposta ao Choque Térmico , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Arsênio/farmacologia , Degradação Associada com o Retículo Endoplasmático , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Proteínas de Fluorescência Verde , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Fosfoglicerato Mutase/química , Fosfoglicerato Mutase/genética , Fosfoglicerato Mutase/metabolismo , Dobramento de Proteína , Proteômica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Solubilidade
9.
Methods Enzymol ; 527: 145-67, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23830630

RESUMO

Peroxiredoxins (Prdxs) are a family of proteins which catalyze the reduction of H2O2 through the interaction of active site cysteine residues. Conserved within all plant and animal kingdoms, the function of these proteins is related to protection from oxidation or participation of signaling through degradation of H2O2. Peroxiredoxin 6 (Prdx6), a protein belonging to the class of 1-cys Prdxs, was identified in polymorphonuclear leukocytes or neutrophils, defined by amino acid sequence and activity, and found associated with a component of the NADPH oxidase (Nox2), p67(phox). Prdx6 plays an important role in neutrophil function and supports the optimal activity of Nox2. In this chapter, methods are described for determining the Prdx activity of Prdx6. In addition, the approach for assessing the effect of Prdx6 on Nox2 in the SDS-activated, cell-free system of NADPH oxidase activity is presented. Finally, the techniques for suppressing Prdx6 expression in phox-competent K562 cells and cultured myeloid cells with siRNA and shRNA methods are described. With these approaches, the role of Prdx6 in Nox2 activity can be explored with intact cells. The biochemical mechanisms of the Prdx6 effect on the NADPH oxidase can be investigated with the experimental strategies described.


Assuntos
Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Peroxirredoxina VI/metabolismo , Sistema Livre de Células , Ensaios Enzimáticos , Técnicas de Silenciamento de Genes , Glutamato-Amônia Ligase/química , Humanos , Peróxido de Hidrogênio/química , Células K562 , Cinética , Glicoproteínas de Membrana/química , NADPH Oxidase 2 , NADPH Oxidases/química , Neutrófilos/enzimologia , Neutrófilos/fisiologia , Oxirredução , Peroxirredoxina VI/química , Peroxirredoxina VI/genética , RNA Interferente Pequeno/genética , Explosão Respiratória , Superóxidos/metabolismo
10.
Toxicol In Vitro ; 27(7): 2041-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23880158

RESUMO

Astrocytes play an essential role in the central nervous system (CNS) homeostasis. They providing metabolic support and protecting against oxidative stress and glutamatergic excitotoxicity. Glutamate uptake, an electrogenic function, is driven by cation gradients and the Na⁺-K⁺-Cl⁻ co-transporter (NKCC1) carries these ions into and out of the cell. Elevated concentrations of ammonia in the brain lead to cerebral dysfunction. Ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and ion discharged. Astrocytes also convert excess ammonia and glutamate into glutamine, via glutamine synthetase (GS). Lipoic acid (LA) is a modulator of the cellular redox status potentially beneficial in neurodegenerative diseases. In this study, we investigated the effect of LA on glial parameters, in C6 cells exposed to ammonia. Ammonia increased S100B secretion and decreased glutamate uptake, GS activity and glutathione (GSH) content. LA was able to prevent these effects. LA exerts its protective effect on glutamate uptake and S100B secretion via mechanisms dependent of NKCC1 and PKC. These findings show that LA is able to modulate glial function impairments by ammonia in vitro, indicating a potential therapeutic agent to improve glutamatergic metabolism and oxidative stress against hyperammonemia.


Assuntos
Astrócitos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteína Quinase C/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/metabolismo , Ácido Tióctico/farmacologia , Amônia/antagonistas & inibidores , Amônia/toxicidade , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Astrócitos/metabolismo , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/química , Antagonistas de Aminoácidos Excitatórios/toxicidade , Glutamato-Amônia Ligase/antagonistas & inibidores , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/metabolismo , Ácido Glutâmico/metabolismo , Glutationa/agonistas , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Fármacos Neuroprotetores/agonistas , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/química , Ratos , Subunidade beta da Proteína Ligante de Cálcio S100/agonistas , Subunidade beta da Proteína Ligante de Cálcio S100/antagonistas & inibidores , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Membro 2 da Família 12 de Carreador de Soluto/agonistas , Membro 2 da Família 12 de Carreador de Soluto/química , Ácido Tióctico/agonistas
11.
Biochemistry ; 51(51): 10121-3, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23234431

RESUMO

The structure of PA5508 from Pseudomonas aeruginosa, a glutamine synthetase (GS) homologue, has been determined at 2.5 Å. Surprisingly, PA5508 forms single hexameric rings rather than the stacked double rings that are characteristic of GS. The C-terminal helical thong motif that links GS rings is present in PA5508; however, it is folded back toward the core of its own polypeptide, preventing it from interacting with a second ring. Interestingly, PA5508 displays a clear preference for aromatic amine substrates. Unique aspects of the structure illustrate how the enzyme is able to catalyze reactions involving bulky amines rather than ammonia.


Assuntos
Proteínas de Bactérias/química , Glutamato-Amônia Ligase/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glutamato-Amônia Ligase/metabolismo , Modelos Moleculares , Poliaminas/metabolismo , Multimerização Proteica , Pseudomonas aeruginosa/enzimologia , Especificidade por Substrato
12.
J Sci Food Agric ; 92(11): 2274-80, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22351440

RESUMO

BACKGROUND: Theanine synthesis is of interest because of the physiological and pharmacological benefits of theanine. Glutamine synthetase (GS, EC 6.3.1.2) from Pseudomonas taetrolens can be used for theanine biosynthesis. In this study, GS was immobilised in polyvinyl alcohol electrospun nanofibres, and the properties of immobilised GS with different solidifying modifications were studied. RESULTS: Electrospinning is a good method for enzyme immobilisation. When carbon nanotubes were used as an adsorbent, the activity retention of immobilised GS was 92.3%. With glutaraldehyde as a crosslinker, the enzyme activity retention was only 50.7%; however, by adding collagen or peptide to the electrospinning solution with glutaraldehyde, the activity retention could be improved to 85.9 or 59.6% respectively. Scanning electron micrographs showed that the modifiers induced morphological changes in the nanofibres. The optimum pH and temperature of immobilised GS also changed. In addition, the reusability and storage stability of immobilised GS with glutaraldehyde were much better than those of immobilised GS with carbon nanotubes. CONCLUSION: A novel method has been established in this study for the immobilisation of GS in electrospun nanofibrous membranes. Carbon nanotubes and glutaraldehyde enhanced the immobilisation, while collagen or peptide inclusion could recover the activity loss caused by glutaraldehyde. The obtained immobilised enzyme achieved high reusability and storage stability.


Assuntos
Proteínas de Bactérias/metabolismo , Enzimas Imobilizadas/metabolismo , Aditivos Alimentares/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glutamatos/metabolismo , Nanofibras/química , Álcool de Polivinil/química , Proteínas de Bactérias/química , Colágeno/química , Colágeno/ultraestrutura , Reagentes de Ligações Cruzadas/química , Técnicas Eletroquímicas , Estabilidade Enzimática , Enzimas Imobilizadas/química , Glutamato-Amônia Ligase/química , Glutaral/química , Concentração de Íons de Hidrogênio , Indicadores e Reagentes/química , Microscopia Eletrônica de Varredura , Nanofibras/ultraestrutura , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Peptídeos/química , Pseudomonas/enzimologia , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
13.
Biochem J ; 443(2): 417-26, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22280445

RESUMO

Glutamine-dependent NAD+ synthetase is an essential enzyme and a validated drug target in Mycobacterium tuberculosis (mtuNadE). It catalyses the ATP-dependent formation of NAD+ from NaAD+ (nicotinic acid-adenine dinucleotide) at the synthetase active site and glutamine hydrolysis at the glutaminase active site. An ammonia tunnel 40 Å (1 Å=0.1 nm) long allows transfer of ammonia from one active site to the other. The enzyme displays stringent kinetic synergism; however, its regulatory mechanism is unclear. In the present paper, we report the structures of the inactive glutaminase C176A variant in an apo form and in three synthetase-ligand complexes with substrates (NaAD+/ATP), substrate analogue {NaAD+/AMP-CPP (adenosine 5'-[α,ß-methylene]triphosphate)} and intermediate analogues (NaAD+/AMP/PPi), as well as the structure of wild-type mtuNadE in a product complex (NAD+/AMP/PPi/glutamate). This series of structures provides snapshots of the ammonia tunnel during the catalytic cycle supported also by kinetics and mutagenesis studies. Three major constriction sites are observed in the tunnel: (i) at the entrance near the glutaminase active site; (ii) in the middle of the tunnel; and (iii) at the end near the synthetase active site. Variation in the number and radius of the tunnel constrictions is apparent in the crystal structures and is related to ligand binding at the synthetase domain. These results provide new insight into the regulation of ammonia transport in the intermolecular tunnel of mtuNadE.


Assuntos
Amônia/metabolismo , Glutamato-Amônia Ligase/metabolismo , Mycobacterium tuberculosis/enzimologia , Sítios de Ligação , Biocatálise , Glutamato-Amônia Ligase/química , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Cinética , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
14.
Planta ; 231(5): 1101-11, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20237895

RESUMO

We have studied the possible role, in a plant glutamine synthetase (GS), of the different cysteinyl residues present in this enzyme. For this purpose we carried out the site-directed mutagenesis of the cDNA for alpha-GS polypeptide from Phaseolus vulgaris in the positions corresponding to Cys-92, Cys-159, and Cys-179, followed by heterologous expression in E. coli and enzymatic characterisation of WT and mutant proteins. The results show that neither Cys-92 nor Cys-179 residues were essential for enzyme activity, but the replacement of Cys-159 by alanine or serine strongly affects the quaternary structure and function of the GS enzyme molecule, resulting in a complete loss of enzymatic activity. Other studies using sulfhydryl specific reagents such as pHMB (p-hydroxymercuribenzoate) or DTNB (5,5'-dithiobis-2-nitrobenzoate) confirmed that the profound inhibition produced is associated with an important alteration of the quaternary structure of GS, and suggest that Cys-159 might be the residue responsible for the enzyme inhibition. All these results suggest that the Cys-159 residue is essential for the enzyme structure. The results are also consistent with previous reports based on classical biochemistry studies indicating the presence of essential cysteinyl residues for the enzyme activity of higher plant GS.


Assuntos
Cisteína/metabolismo , Glutamato-Amônia Ligase/química , Phaseolus/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Biocatálise/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/efeitos dos fármacos , Escherichia coli , Glutamato-Amônia Ligase/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Phaseolus/efeitos dos fármacos , Estrutura Secundária de Proteína , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Reagentes de Sulfidrila/farmacologia , Fatores de Tempo
15.
Structure ; 17(9): 1235-43, 2009 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-19748344

RESUMO

Protein interaction networks are becoming an increasingly important area of research within structural genomics. Here we present an ion mobility-mass spectrometry approach capable of distinguishing the overall subunit architecture of protein complexes. The approach relies on the simultaneous measurement in the gas phase of the mass and size of intact assemblies and subcomplexes. These data are then used as restraints to generate topological models of protein complexes. To test and develop our method, we have chosen two well-characterized homo-dodecameric protein complexes: ornithine carbamoyl transferase and glutamine synthetase. By forming subcomplexes related to the comparative strength of the subunit interfaces, acquiring ion mobility data, and subsequent modeling, we show that these "building blocks" retain their native interactions and do not undergo major rearrangement in either solution or gas phases. We apply this approach to study two subcomplexes of the human eukaryotic initiation factor 3, for which there is no high-resolution structure.


Assuntos
Gases , Proteínas/química , Glutamato-Amônia Ligase/química , Espectrometria de Massas , Ornitina Carbamoiltransferase/química
16.
Pest Manag Sci ; 65(2): 216-22, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19097025

RESUMO

BACKGROUND: Glufosinate-resistant soybean cells were achieved through direct selection of diploid cells in the suspension culture. Here, the mutations in the glutamine synthetase (GS) gene are described to understand the evidence pointing to the functional role of the GS gene in the herbicide sensitivity of the mutant cells. RESULTS: Based on the I(50) values, dose-response experiments at the cell level showed that the resistance ratio of the resistant cell was 50-fold, whereas the in vitro inhibition of GS activity required a 4.56-fold greater concentration of glufosinate in the resistant cell than in the untreated control. Comparison of the nucleotide sequences identified nine point differences in the GS gene between the resistant and untreated cells, leading to eight amino acid substitutions in the deduced polypeptide sequence. Northern hybridization of the GS mRNA showed that the accumulation of GS gene mRNA transcript in resistant cells was higher than that in the untreated cells. CONCLUSION: Changes in sensitivity to glufosinate have been related to mutations at the binding site of the herbicide on the glutamine synthetase. His(249) is one of the residues implicated in the binding domain for the substrate and inhibitor, and hence the exchange of this residue with tyrosine plays a role in lowering the sensitivity of the mutated enzyme.


Assuntos
Aminobutiratos/farmacologia , Resistência a Medicamentos , Glutamato-Amônia Ligase/genética , Glycine max/enzimologia , Mutação , Proteínas de Plantas/genética , Sequência de Aminoácidos , Células Cultivadas , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/metabolismo , Herbicidas/farmacologia , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Glycine max/química , Glycine max/efeitos dos fármacos , Glycine max/genética
17.
Appl Biochem Biotechnol ; 157(3): 395-406, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18931950

RESUMO

Anthracnose is a major disease in Florida hybrid bunch grapes, caused by a fungus viz. Elsinoe ampelina. Florida hybrid bunch grapes are grown in southeastern USA for their superior wine characteristics. However, the effect of anthracnose on grape productivity and wine quality is a major concern to grape growers. Our research is aimed at determining biochemical basis of anthracnose tolerance in Florida hybrid bunch grape. Leaf samples were collected from the plants infected with E. ampelina at different periods and analyzed for differential protein expression using high throughput two-dimensional gel electrophoresis. Among the 32 differentially expressed leaf proteins, two were uniquely expressed in tolerant genotypes in response to E. ampelina infection. These proteins were identified as mitochondrial adenosine triphosphate synthase and glutamine synthetase, which are known to play a major role in carbohydrate metabolism and defense. Several proteins including ribulose 1-5 bisphosphate-carboxylase involved in photosynthesis were found to be suppressed in susceptible genotypes compared to tolerant genotypes following E. ampelina infection. The results indicate that the anthracnose-tolerant genotypes have the ability to up-regulate and induce new proteins upon infection to defend the invasion of the pathogen as well as maintain the normal regulatory processes.


Assuntos
Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Vitis/microbiologia , Sequência de Aminoácidos , Ascomicetos/patogenicidade , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/metabolismo , ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/química , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas em Tandem
18.
J Biochem ; 144(6): 709-15, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18826970

RESUMO

Acetoxy Drug: Protein Transacetylase (TAase) mediating the transfer of acetyl group(s) from polyphenolic acetates (PA) to certain functional proteins in mammalian cells was identified by our earlier investigations. TAase activity was characterized in the cell lysates of Mycobacterium smegmatis and the purified protein was found to have M(r) 58,000. TAase catalysed protein acetylation by a model acetoxy drug 7,8-diacetoxy-4-methylcoumarin (DAMC) was established by the demonstration of immunoreactivity of the acetylated target protein with an anti-acetyllysine antibody. The specificity of the TAase of M. smegmatis (MTAase) to various acetoxycoumarins was found to be in the order DAMC > 7-AMC > 6-AMC > 4-AC > 3-AC > ABP. Also, the N-terminal sequence of purified MTAase was found to perfectly match with glutamine synthetase (GS) of M. smegmatis. The identity of MTAase with GS was confirmed by the observation that the purified MTAase as well as the purified recombinant GS exhibited all the properties of GS. The finding that purified Escherichia coli GS was found to have substantial TAase activity highlighted the TAase function of GS in other bacteria. These results conclusively established for the first time the protein acetyltransferase function of GS of M. smegmatis.


Assuntos
Acetatos/metabolismo , Acetiltransferases/química , Flavonoides/metabolismo , Glutamato-Amônia Ligase/química , Mycobacterium smegmatis/enzimologia , Fenóis/metabolismo , Acetilação , Acetiltransferases/metabolismo , Catálise , Cumarínicos/metabolismo , Glutamato-Amônia Ligase/metabolismo , Mycobacterium smegmatis/metabolismo , Polifenóis , Relação Estrutura-Atividade
19.
Mol Biotechnol ; 39(1): 49-56, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18074244

RESUMO

A cDNA encoding glutamine synthetase, one of the enzymes of the GS/GOGAT pathway, was cloned from Camellia sinensis (CsGS). The isolated cDNA consists of 1,071 nucleotides encoding a polypeptide of 356 amino acids with an estimated isoelectric point of 6.13. The recombinant protein purified from Escherichia coli using Ni-NTA affinity chromatography showed molecular mass of 39.2 kDa. The purified protein was confirmed by blotting with anti-His antibodies. Catalytic parameters of the protein were determined using glutamate and ATP as substrates. The observed Km was 9 mM and Vmax was 93 U/mg protein with glutamate as substrate, while with ATP Km and Vmax values were 6 mM and 70 U/mg protein, respectively. Purified enzyme showed pH optima at 8. Cations were found to be showing enhancing effect on the activity of GS enzyme and Mg2+ ion exhibited maximum enhancing effect among the various ions used in this study. This enzyme activity increased by 25% in presence of DTT and decreased by 18% when incubated with PMSF. Transcript analysis in tea bud, youngest leaf, showed that CsGS gene expression is stimulated in response to abscisic acid (ABA), salicylic acid (SA), and hydrogen peroxide (H2O2), while gibberellic acid (GA3) has no influence on its expression levels.


Assuntos
Ácido Abscísico/farmacologia , Camellia sinensis/enzimologia , Citosol/enzimologia , Glutamato-Amônia Ligase/genética , Peróxido de Hidrogênio/farmacologia , Ácido Salicílico/farmacologia , Regulação para Cima/efeitos dos fármacos , Sequência de Aminoácidos , Camellia sinensis/efeitos dos fármacos , Camellia sinensis/genética , Clonagem Molecular , Citosol/efeitos dos fármacos , Bases de Dados de Proteínas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/metabolismo , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Cinética , Dados de Sequência Molecular , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
20.
J Mol Biol ; 375(1): 217-28, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-18005987

RESUMO

Glutamine synthetase (GS) catalyzes the ligation of glutamate and ammonia to form glutamine, with concomitant hydrolysis of ATP. In mammals, the activity eliminates cytotoxic ammonia, at the same time converting neurotoxic glutamate to harmless glutamine; there are a number of links between changes in GS activity and neurodegenerative disorders, such as Alzheimer's disease. In plants, because of its importance in the assimilation and re-assimilation of ammonia, the enzyme is a target of some herbicides. GS is also a central component of bacterial nitrogen metabolism and a potential drug target. Previous studies had investigated the structures of bacterial and plant GSs. In the present publication, we report the first structures of mammalian GSs. The apo form of the canine enzyme was solved by molecular replacement and refined at a resolution of 3 A. Two structures of human glutamine synthetase represent complexes with: a) phosphate, ADP, and manganese, and b) a phosphorylated form of the inhibitor methionine sulfoximine, ADP and manganese; these structures were refined to resolutions of 2.05 A and 2.6 A, respectively. Loop movements near the active site generate more closed forms of the eukaryotic enzymes when substrates are bound; the largest changes are associated with the binding of the nucleotide. Comparisons with earlier structures provide a basis for the design of drugs that are specifically directed at either human or bacterial enzymes. The site of binding the amino acid substrate is highly conserved in bacterial and eukaryotic GSs, whereas the nucleotide binding site varies to a much larger degree. Thus, the latter site offers the best target for specific drug design. Differences between mammalian and plant enzymes are much more subtle, suggesting that herbicides targeting GS must be designed with caution.


Assuntos
Desenho de Fármacos , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/metabolismo , Herbicidas/síntese química , Preparações Farmacêuticas/síntese química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Animais , Apoenzimas/química , Sítios de Ligação , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Cães , Interações Medicamentosas , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/isolamento & purificação , Herbicidas/química , Humanos , Ligação de Hidrogênio , Cinética , Ligantes , Magnésio/metabolismo , Magnésio/farmacologia , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Preparações Farmacêuticas/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA