Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 254(Pt 2): 127756, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37907177

RESUMO

Aminoacyl-tRNA synthetases (aaRSs), essential components of the protein synthesizing machinery, have been often chosen for devising therapeutics against parasitic diseases. Due to their relevance in drug development, the current study was designed to explore functional and structural aspects of Leishmania donovani glutamyl-tRNA synthetase (LdGluRS). Hence, LdGluRS was cloned into an expression vector and purified to homogeneity using chromatographic techniques. Purified protein showed maximum enzymatic activity at physiological pH, with more binding capacity towards its cofactor (Adenosine triphosphate, 0.06 ± 0.01 mM) than the cognate substrate (L-glutamate, 9.5 ± 0.5 mM). Remarkably, salicylate inhibited LdGluRS competitively with respect to L-glutamate and exhibited druglikeness with negligible effect on human macrophages. The protein possessed more α-helices (43 %) than ß-sheets (12 %), whereas reductions in thermal stability and cofactor-binding affinity, along with variation in mode of inhibition after mutation signified the role of histidine (H60) as a catalytic residue. LdGluRS could also generate a pro-inflammatory milieu in human macrophages by upregulating cytokines. The docking study demonstrated the placement of salicylate into LdGluRS substrate-binding site, and the complex was found to be stable during molecular dynamics (MD) simulation. Altogether, our study highlights the understanding of molecular inhibition and structural features of glutamyl-tRNA synthetase from kinetoplastid parasites.


Assuntos
Aminoacil-tRNA Sintetases , Leishmania donovani , Humanos , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Ácido Glutâmico , Aminoacil-tRNA Sintetases/química , Trifosfato de Adenosina , Leishmania donovani/metabolismo , Salicilatos
2.
Mol Biochem Parasitol ; 253: 111530, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36370911

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein translation machinery that provide the charged tRNAs needed for protein synthesis. Over the past decades, aaRSs have been studied as anti-parasitic, anti-bacterial, and anti-fungal drug targets. This study focused on the cytoplasmic glutamyl-tRNA synthetase (GluRS) from Plasmodium falciparum, which belongs to class Ib in aaRSs. GluRS unlike most other aaRSs requires tRNA to activate its cognate amino acid substrate L-Glutamate (L-Glu), and fails to form an intermediate adenylate complex in the absence of tRNA. The crystal structures of the Apo, ATP, and ADP-bound forms of Plasmodium falciparum glutamyl-tRNA synthetase (PfGluRS) were solved at 2.1 Å, 2.2 Å, and 2.8 Å respectively. The structural comparison of the Apo- and ATP-bound holo-forms of PfGluRS showed considerable conformational changes in the loop regions around the ATP-binding pocket of the enzyme. Biophysical characterization of the PfGluRS showed binding of the enzyme substrates L-Gluand ATP.. The sequence and structural conservation were evident across GluRS compared to other species. The structural dissection of the PfGluRS gives insight into the critical residues involved in the binding of ATP substrate, which can be harvested to develop new antimalarial drugs.


Assuntos
Aminoacil-tRNA Sintetases , Glutamato-tRNA Ligase , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , RNA de Transferência/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Nat Commun ; 13(1): 6732, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347866

RESUMO

Aminoacyl-tRNA synthetases (ARSs) have evolved to acquire various additional domains. These domains allow ARSs to communicate with other cellular proteins in order to promote non-translational functions. Vertebrate cytoplasmic isoleucyl-tRNA synthetases (IARS1s) have an uncharacterized unique domain, UNE-I. Here, we present the crystal structure of the chicken IARS1 UNE-I complexed with glutamyl-tRNA synthetase 1 (EARS1). UNE-I consists of tandem ubiquitin regulatory X (UBX) domains that interact with a distinct hairpin loop on EARS1 and protect its neighboring proteins in the multi-synthetase complex from degradation. Phosphomimetic mutation of the two serine residues in the hairpin loop releases IARS1 from the complex. IARS1 interacts with BRCA1 in the nucleus, regulates its stability by inhibiting ubiquitylation via the UBX domains, and controls DNA repair function.


Assuntos
Aminoacil-tRNA Sintetases , Isoleucina-tRNA Ligase , Isoleucina-tRNA Ligase/química , Aminoacil-tRNA Sintetases/metabolismo , Glutamato-tRNA Ligase/química , RNA de Transferência/metabolismo
4.
J Biomol Struct Dyn ; 40(18): 8538-8559, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-33896406

RESUMO

Aminoacylation reaction is the first step of protein biosynthesis. Transfer RNA (tRNA) is charged with an amino acid in this reaction and the reaction is catalyzed by aminoacyl tRNA synthetase enzyme (aaRS). In the present work, we use classical molecular dynamics simulation to show that the tRNA bound Mg2+ ions significantly influence the charging step of class I TtGluRS: Glu-AMP: tRNAGlu and class II dimeric TtSerRS: Ser-AMP: tRNASer. The CCA end of the acceptor terminal is disordered in the absence of coordinated Mg2+ ions and the CCA end can freely explore beyond the specific conformational space of the tRNA in its precharging state. A balance between the conformational disorder of the tRNA and the restriction imposed on the CCA terminal via coordination with the Mg2+ ions is needed for the placement of the CCA terminal in a precharging state organization. This result provides a molecular-level explanation of the experimental observation that the presence of Mg2+ ions is a necessary condition for a successful aminoacylation reaction.Communicated by Ramaswamy H. Sarma.


Assuntos
Aminoacil-tRNA Sintetases , Serina-tRNA Ligase , Monofosfato de Adenosina/metabolismo , Aminoácidos/química , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Íons , Ligases/metabolismo , Magnésio , RNA de Transferência/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , RNA de Transferência de Serina/metabolismo , Serina-tRNA Ligase/química
5.
Protein J ; 33(2): 143-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24505021

RESUMO

Glutamyl-queuosine-tRNA(Asp) synthetase (Glu-Q-RS) and glutamyl-tRNA synthetase (GluRS), differ widely by their function although they share close structural resemblance within their catalytic core of GluRS. In particular both Escherichia coli GluRS and Glu-Q-RS contain a single zinc-binding site in their putative tRNA acceptor stem-binding domain. It has been shown that the zinc is crucial for correct positioning of the tRNA(Glu) acceptor-end in the active site of E. coli GluRS. To address the role of zinc ion in Glu-Q-RS, the C101S/C103S Glu-Q-RS variant is constructed. Energy dispersive X-ray fluorescence show that the zinc ion still remained coordinated but the variant became structurally labile and acquired aggregation capacity. The extent of aggregation of the protein is significantly decreased in presence of the small substrates and more particularly by adenosine triphosphate. Addition of zinc increased significantly the solubility of the variant. The aminoacylation assay reveals a decrease in activity of the variant even after addition of zinc as compared to the wild-type, although the secondary structure of the protein is not altered as shown by the Fourier transform infrared spectroscopy study.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Zinco/metabolismo , Aminoacil-tRNA Sintetases/química , Sítios de Ligação , Escherichia coli/química , Proteínas de Escherichia coli/química , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/metabolismo , Conformação Proteica , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco/química
6.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 2136-45, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24100331

RESUMO

Aminoacyl-tRNA synthetases recognize cognate amino acids and tRNAs from their noncognate counterparts and catalyze the formation of aminoacyl-tRNAs. Halofuginone (HF), a coccidiostat used in veterinary medicine, exerts its effects by acting as a high-affinity inhibitor of the enzyme glutamyl-prolyl-tRNA synthetase (EPRS). In order to elucidate the precise molecular basis of this inhibition mechanism of human EPRS, the crystal structures of the prolyl-tRNA synthetase domain of human EPRS (hPRS) at 2.4 Šresolution (hPRS-apo), of hPRS complexed with ATP and the substrate proline at 2.3 Šresolution (hPRS-sub) and of hPRS complexed with HF at 2.62 Šresolution (hPRS-HF) are presented. These structures show plainly that motif 1 functions as a cap in hPRS, which is loosely opened in hPRS-apo, tightly closed in hPRS-sub and incorrectly closed in hPRS-HF. In addition, the structural analyses are consistent with more effective binding of hPRS to HF with ATP. Mutagenesis and biochemical analysis confirmed the key roles of two residues, Phe1097 and Arg1152, in the HF inhibition mechanism. These structures will lead to the development of more potent and selective hPRS inhibitors for promoting inflammatory resolution.


Assuntos
Trifosfato de Adenosina/química , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/química , Piperidinas/farmacologia , Prolina/química , Quinazolinonas/farmacologia , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/genética , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/genética , Cristalografia por Raios X , Glutamato-tRNA Ligase/antagonistas & inibidores , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Humanos , Mutagênese , Piperidinas/química , Prolina/antagonistas & inibidores , Prolina/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Conformação Proteica/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , Inibidores da Síntese de Proteínas/farmacologia , Quinazolinonas/química , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/genética
7.
Mol Cell ; 52(2): 248-54, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24095282

RESUMO

HipA of Escherichia coli is a eukaryote-like serine-threonine kinase that inhibits cell growth and induces persistence (multidrug tolerance). Previously, it was proposed that HipA inhibits cell growth by the phosphorylation of the essential translation factor EF-Tu. Here, we provide evidence that EF-Tu is not a target of HipA. Instead, a genetic screen reveals that the overexpression of glutamyl-tRNA synthetase (GltX) suppresses the toxicity of HipA. We show that HipA phosphorylates conserved Ser(239) near the active center of GltX and inhibits aminoacylation, a unique example of an aminoacyl-tRNA synthetase being inhibited by a toxin encoded by a toxin-antitoxin locus. HipA only phosphorylates tRNA(Glu)-bound GltX, which is consistent with the earlier finding that the regulatory motif containing Ser(239) changes configuration upon tRNA binding. These results indicate that HipA mediates persistence by the generation of "hungry" codons at the ribosomal A site that trigger the synthesis of (p)ppGpp, a hypothesis that we verify experimentally.


Assuntos
Tolerância a Medicamentos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Trifosfato de Adenosina/metabolismo , Aminoacilação , Antibacterianos/farmacologia , Sítios de Ligação/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Guanosina Pentafosfato/metabolismo , Modelos Genéticos , Modelos Moleculares , Mutação , Fator Tu de Elongação de Peptídeos/genética , Fator Tu de Elongação de Peptídeos/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , RNA de Transferência de Ácido Glutâmico/genética , RNA de Transferência de Ácido Glutâmico/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Serina/química , Serina/genética , Serina/metabolismo
8.
Nucleic Acids Res ; 40(16): 7967-74, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22661575

RESUMO

Protein biosynthesis requires aminoacyl-transfer RNA (tRNA) synthetases to provide aminoacyl-tRNA substrates for the ribosome. Most bacteria and all archaea lack a glutaminyl-tRNA synthetase (GlnRS); instead, Gln-tRNA(Gln) is produced via an indirect pathway: a glutamyl-tRNA synthetase (GluRS) first attaches glutamate (Glu) to tRNA(Gln), and an amidotransferase converts Glu-tRNA(Gln) to Gln-tRNA(Gln). The human pathogen Helicobacter pylori encodes two GluRS enzymes, with GluRS2 specifically aminoacylating Glu onto tRNA(Gln). It was proposed that GluRS2 is evolving into a bacterial-type GlnRS. Herein, we have combined rational design and directed evolution approaches to test this hypothesis. We show that, in contrast to wild-type (WT) GlnRS2, an engineered enzyme variant (M110) with seven amino acid changes is able to rescue growth of the temperature-sensitive Escherichia coli glnS strain UT172 at its non-permissive temperature. In vitro kinetic analyses reveal that WT GluRS2 selectively acylates Glu over Gln, whereas M110 acylates Gln 4-fold more efficiently than Glu. In addition, M110 hydrolyzes adenosine triphosphate 2.5-fold faster in the presence of Glu than Gln, suggesting that an editing activity has evolved in this variant to discriminate against Glu. These data imply that GluRS2 is a few steps away from evolving into a GlnRS and provides a paradigm for studying aminoacyl-tRNA synthetase evolution using directed engineering approaches.


Assuntos
Aminoacil-tRNA Sintetases/química , Glutamato-tRNA Ligase/química , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Domínio Catalítico , Evolução Molecular Direcionada , Escherichia coli/enzimologia , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Ácido Glutâmico/metabolismo , Helicobacter pylori/enzimologia , Dados de Sequência Molecular , Engenharia de Proteínas , RNA de Transferência de Glutamina/metabolismo , Alinhamento de Sequência , Temperatura , Aminoacilação de RNA de Transferência
9.
Biochem Biophys Res Commun ; 398(1): 51-5, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20541532

RESUMO

Glutamyl-tRNA synthetases (GluRS) provide Glu-tRNA for different processes including protein synthesis, glutamine transamidation and tetrapyrrole biosynthesis. Many organisms contain multiple GluRSs, but whether these duplications solely broaden tRNA specificity or also play additional roles in tetrapyrrole biosynthesis is not known. Previous studies have shown that GluRS1, one of two GluRSs from the extremophile Acidithiobacillus ferrooxidans, is inactivated when intracellular heme is elevated suggesting a specific role for GluRS1 in the regulation of tetrapyrrole biosynthesis. We now show that, in vitro, GluRS1 activity is reversibly inactivated upon oxidation by hemin and hydrogen peroxide. The targets for oxidation-based inhibition were found to be cysteines from a SWIM zinc-binding motif located in the tRNA acceptor helix-binding domain. tRNA(Glu) was able to protect GluRS1 against oxidative inactivation by hemin plus hydrogen peroxide. The sensitivity to oxidation of A. ferrooxidans GluRS1 might provide a means to regulate tetrapyrrole and protein biosynthesis in response to extreme changes in both the redox and heme status of the cell via a single enzyme.


Assuntos
Acidithiobacillus/enzimologia , Glutamato-tRNA Ligase/metabolismo , Catálise , Cisteína/química , Cisteína/metabolismo , Glutamato-tRNA Ligase/biossíntese , Glutamato-tRNA Ligase/química , Heme/química , Heme/metabolismo , Oxirredução , Zinco/química , Zinco/metabolismo
10.
FEBS J ; 276(5): 1398-417, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19187240

RESUMO

Mycobacterium tuberculosis glutamyl-tRNA synthetase (Mt-GluRS), encoded by Rv2992c, was overproduced in Escherichia coli cells, and purified to homogeneity. It was found to be similar to the other well-characterized GluRS, especially the E. coli enzyme, with respect to the requirement for bound tRNA(Glu) to produce the glutamyl-AMP intermediate, and the steady-state kinetic parameters k(cat) (130 min(-1)) and K(M) for tRNA (0.7 microm) and ATP (78 microm), but to differ by a one order of magnitude higher K(M) value for L-Glu (2.7 mm). At variance with the E. coli enzyme, among the several compounds tested as inhibitors, only pyrophosphate and the glutamyl-AMP analog glutamol-AMP were effective, with K(i) values in the mum range. The observed inhibition patterns are consistent with a random binding of ATP and L-Glu to the enzyme-tRNA complex. Mt-GluRS, which is predicted by genome analysis to be of the non-discriminating type, was not toxic when overproduced in E. coli cells indicating that it does not catalyse the mischarging of E. coli tRNA(Gln) with L-Glu and that GluRS/tRNA(Gln) recognition is species specific. Mt-GluRS was significantly more sensitive than the E. coli form to tryptic and chymotryptic limited proteolysis. For both enzymes chymotrypsin-sensitive sites were found in the predicted tRNA stem contact domain next to the ATP binding site. Mt-GluRS, but not Ec-GluRS, was fully protected from proteolysis by ATP and glutamol-AMP. Small-angle X-ray scattering showed that, at variance with the E. coli enzyme that is strictly monomeric, the Mt-GluRS monomer is present in solution in equilibrium with the homodimer. The monomer prevails at low protein concentrations and is stabilized by ATP but not by glutamol-AMP. Inspection of small-angle X-ray scattering-based models of Mt-GluRS reveals that both the monomer and the dimer are catalytically active. By using affinity chromatography and His(6)-tagged forms of either GluRS or glutamyl-tRNA reductase as the bait it was shown that the M. tuberculosis proteins can form a complex, which may control the flux of Glu-tRNA(Glu) toward protein or tetrapyrrole biosynthesis.


Assuntos
Proteínas de Bactérias/química , Glutamato-tRNA Ligase/química , Mycobacterium tuberculosis/enzimologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Glutamato-tRNA Ligase/metabolismo , Cinética , Dados de Sequência Molecular , RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/metabolismo , Soluções
11.
J Mol Biol ; 374(4): 1077-90, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17976650

RESUMO

Eukaryotic aminoacyl-tRNA synthetases are usually organized into high-molecular-weight complexes, the structure and function of which are poorly understood. We have previously described a yeast complex containing two aminoacyl-tRNA synthetases, methionyl-tRNA synthetase and glutamyl-tRNA synthetase, and one noncatalytic protein, Arc1p, which can stimulate the catalytic efficiency of the two synthetases. To understand the complex assembly mechanism and its relevance to the function of its components, we have generated specific mutations in residues predicted by a recent structural model to be located at the interaction interfaces of the N-terminal domains of all three proteins. Recombinant wild-type or mutant forms of the proteins, as well as the isolated N-terminal domains of the two synthetases, were overexpressed in bacteria, purified and used for complex formation in vitro and for determination of binding affinities using surface plasmon resonance. Moreover, mutant proteins were expressed as PtA or green fluorescent protein fusion polypeptides in yeast strains lacking the endogenous proteins in order to monitor in vivo complex assembly and their subcellular localization. Our results show that the assembly of the Arc1p-synthetase complex is mediated exclusively by the N-terminal domains of the synthetases and that the two enzymes bind to largely independent sites on Arc1p. Analysis of single-amino-acid substitutions identified residues that are directly involved in the formation of the complex in yeast cells and suggested that complex assembly is mediated predominantly by van der Waals and hydrophobic interactions, rather than by electrostatic forces. Furthermore, mutations that abolish the interaction of methionyl-tRNA synthetase with Arc1p cause entry of the enzyme into the nucleus, proving that complex association regulates its subcellular distribution. The relevance of these findings to the evolution and function of the multienzyme complexes of eukaryotic aminoacyl-tRNA synthetases is discussed.


Assuntos
Glutamato-tRNA Ligase/metabolismo , Metionina tRNA Ligase/metabolismo , Modelos Moleculares , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Metionina tRNA Ligase/química , Metionina tRNA Ligase/genética , Dados de Sequência Molecular , Mutação , Ligação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
12.
Biochimie ; 87(9-10): 847-61, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16164993

RESUMO

Analysis of the completed genome sequences revealed presence in various bacteria of an open reading frame (ORF) encoding a polypeptide chain presenting important similarities with the catalytic domain of glutamyl-tRNA synthetases but deprived of the C-terminal anticodon-binding domain. This paralog of glutamyl-tRNA synthetases, the YadB protein, activates glutamate in the absence of tRNA and transfers the activated glutamate not on tRNA(Glu) but instead on tRNA(Asp). It has been shown that tRNA(Asp) is able to accept two amino acids: aspartate charged by aspartyl-tRNA synthetase and glutamate charged by YadB. The functional properties of YadB contrast with those of the canonical glutamyl-tRNA synthetases, which activate Glu only in presence of the cognate tRNA before aminoacylation of the 3'-end of tRNA. Biochemical approaches and mass spectrometry investigations revealed that YadB transfers the activated glutamate on the cyclopenthene-diol ring of the modified nucleoside queuosine posttranscriptionally inserted at the wobble position of the anticodon-loop to form glutamyl-queuosine. Unstability of the ester bond between the glutamate residue and the cyclopenthene-diol (half-life 7.5 min) explains why until now this modification escaped detection. Among Escherichia coli tRNAs containing queuosine in the wobble position, only tRNA(Asp) is substrate of YadB. Sequence comparison reveals a structural mimicry between the anticodon-stem and loop of tRNA(Asp) and the amino acid acceptor-stem of tRNA(Glu). YadB, renamed glutamyl-Q-tRNA(Asp) synthetase, constitutes the first enzyme structurally related to aminoacyl-tRNA synthetases which catalyzes a hypermodification in tRNA, and whose function seems to be conserved among prokaryotes. The discovery of glutamyl-Q-tRNA(Asp) synthetase breaks down the current paradigm according to which the catalytic domain of aminoacyl-tRNA synthetases recognizes the amino acid acceptor-stem of tRNA and aminoacylates the 3'-terminal ribose. The evolutionary significance of the existence of an aminoacyl-tRNA synthetase paralog dedicated to the hypermodification of a tRNA anticodon will be discussed.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Escherichia coli/metabolismo , Glutamato-tRNA Ligase/metabolismo , RNA de Transferência de Ácido Aspártico/metabolismo , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Aminoacilação , Anticódon , Cristalografia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolução Molecular , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Dados de Sequência Molecular , Conformação Proteica , RNA de Transferência de Ácido Aspártico/química , Aminoacilação de RNA de Transferência
13.
J Biol Chem ; 279(41): 42445-52, 2004 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-15272000

RESUMO

Biotin is an essential cofactor of cell metabolism serving as a protein-bound coenzyme in ATP-dependent carboxylation, in transcarboxylation, and certain decarboxylation reactions. The involvement of biotinylated proteins in other cellular functions has been suggested occasionally, but available data on this are limited. In the present study, a Saccharomyces cerevisiae protein was identified that reacts with streptavidin on Western blots and is not identical to one of the known biotinylated yeast proteins. After affinity purification on monomeric avidin, the biotinylated protein was identified as Arc1p. Using 14C-labeled biotin, the cofactor was shown to be incorporated into Arc1p by covalent and alkali-stable linkage. Similar to the known carboxylases, Arc1p biotinylation is mediated by the yeast biotin:protein ligase, Bpl1p. Mutational studies revealed that biotinylation occurs at lysine 86 within the N-terminal domain of Arc1p. In contrast to the known carboxylases, however, in vitro biotinylation of Arc1p is incomplete and increases with BPL1 overexpression. In accordance to this fact, Arc1p lacks the canonical consensus sequence of known biotin binding domains, and the bacterial biotin:protein ligase, BirA, is unable to use Arc1p as a substrate. Arc1p was shown previously to organize the association of MetRS and GluRS tRNA synthetases with their cognate tRNAs thereby increasing the substrate affinity and catalytic efficiency of these enzymes. Remarkably, not only biotinylated but also the biotin-free Arc1p obtained by replacement of lysine 86 with arginine were capable of restoring Arc1p function in both arc1Delta and arc1Deltalos1Delta mutants, indicating that biotinylation of Arc1p is not essential for activity.


Assuntos
Proteínas de Ligação a RNA/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/química , Sítios de Ligação , Biotina/química , Biotinilação , Western Blotting , Análise Mutacional de DNA , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Teste de Complementação Genética , Vetores Genéticos , Genótipo , Glutamato-tRNA Ligase/química , Heterozigoto , Lisina/química , Metionina tRNA Ligase/química , Mutagênese Sítio-Dirigida , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sefarose/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estreptavidina/química , Frações Subcelulares/química
14.
J Mol Biol ; 337(2): 273-83, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-15003446

RESUMO

In the course of a structural genomics program aiming at solving the structures of Escherichia coli open reading frame products of unknown function, we have determined the structure of YadB at 1.5A using molecular replacement. The YadB protein is 298 amino acid residues long and displays 34% sequence identity with E.coli glutamyl-tRNA synthetase (GluRS). It is much shorter than GluRS, which contains 468 residues, and lacks the complete domain interacting with the tRNA anticodon loop. As E.coli GluRS, YadB possesses a Zn2+ located in the putative tRNA acceptor stem-binding domain. The YadB cluster uses cysteine residues as the first three zinc ligands, but has a weaker tyrosine ligand at the fourth position. It shares with canonical amino acid RNA synthetases a major functional feature, namely activation of the amino acid (here glutamate). It differs, however, from GluRSs by the fact that the activation step is tRNA-independent and that it does not catalyze attachment of the activated glutamate to E.coli tRNAGlu, but to another, as yet unknown tRNA. These results suggest thus a novel function, distinct from that of GluRSs, for the yadB gene family.


Assuntos
Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Genes Bacterianos , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/metabolismo , Ácido Glutâmico/metabolismo , Cinética , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Conformação Proteica , RNA de Transferência de Ácido Glutâmico/metabolismo , Homologia de Sequência de Aminoácidos , Thermus thermophilus/enzimologia , Thermus thermophilus/genética , Zinco/metabolismo
15.
Protein Sci ; 12(10): 2282-90, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14500886

RESUMO

In this study, the human multienzyme aminoacyl-tRNA synthetase "core" complex has been isolated from the nuclear and cytosolic compartments of human cells and purified to near homogeneity. It is clear from the polypeptide compositions, stoichiometries, and three-dimensional structures that the cytosolic and nuclear particles are very similar to each other and to the particle obtained from rabbit reticulocytes. The most significant difference observed via aminoacylation activity assays and densitometric analysis of electrophoretic band patterns is a lower amount of glutaminyl-tRNA synthetase in the human particles. However, this is not enough to cause major changes in the three-dimensional structures calculated from samples negatively stained with either uranyl acetate or methylamine vanadate. Indeed, the latter samples produce volumes that are highly similar to an initial structure previously calculated from a frozen hydrated sample of the rabbit multisynthetase complex. New structures in this study reveal that the three major structural domains have discrete subsections. This information is an important step toward determination of specific protein interactions and arrangements within the multisynthetase core complex and understanding of the particle's cellular function(s). Finally, gel filtration and immunoblot analysis demonstrate that a major biological role for the cytokine precursor p43 is as an integral part of the multisynthetase complex.


Assuntos
Aminoacil-tRNA Sintetases/química , Núcleo Celular/química , Citocinas/química , Citoplasma/química , Proteínas de Neoplasias/química , Proteínas de Ligação a RNA/química , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/ultraestrutura , Animais , Fracionamento Celular , Cromatografia Líquida de Alta Pressão , Citocinas/isolamento & purificação , Citocinas/metabolismo , Eletroforese em Gel de Poliacrilamida , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Immunoblotting , Células K562/química , Células K562/enzimologia , Cinética , Microscopia Eletrônica , Modelos Moleculares , Proteínas de Neoplasias/isolamento & purificação , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Coelhos , Homologia Estrutural de Proteína
16.
EMBO J ; 22(3): 676-88, 2003 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-12554668

RESUMO

Aminoacyl-tRNA synthetases catalyze the formation of an aminoacyl-AMP from an amino acid and ATP, prior to the aminoacyl transfer to tRNA. A subset of aminoacyl-tRNA synthetases, including glutamyl-tRNA synthetase (GluRS), have a regulation mechanism to avoid aminoacyl-AMP formation in the absence of tRNA. In this study, we determined the crystal structure of the 'non-productive' complex of Thermus thermophilus GluRS, ATP and L-glutamate, together with those of the GluRS.ATP, GluRS.tRNA.ATP and GluRS.tRNA.GoA (a glutamyl-AMP analog) complexes. In the absence of tRNA(Glu), ATP is accommodated in a 'non-productive' subsite within the ATP-binding site, so that the ATP alpha-phosphate and the glutamate alpha-carboxyl groups in GluRS. ATP.Glu are too far from each other (6.2 A) to react. In contrast, the ATP-binding mode in GluRS.tRNA. ATP is dramatically different from those in GluRS.ATP.Glu and GluRS.ATP, but corresponds to the AMP moiety binding mode in GluRS.tRNA.GoA (the 'productive' subsite). Therefore, tRNA binding to GluRS switches the ATP-binding mode. The interactions of the three tRNA(Glu) regions with GluRS cause conformational changes around the ATP-binding site, and allow ATP to bind to the 'productive' subsite.


Assuntos
Trifosfato de Adenosina/metabolismo , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/metabolismo , Estrutura Terciária de Proteína , RNA de Transferência/metabolismo , Thermus thermophilus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Genes Bacterianos , Glutamato-tRNA Ligase/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Ligação Proteica , RNA Bacteriano/metabolismo , Alinhamento de Sequência , Thermus thermophilus/genética
17.
Biochemistry ; 39(23): 6791-8, 2000 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-10841758

RESUMO

The conformation of a tRNA in its initial contact with its cognate aminoacyl-tRNA synthetase was investigated with the Escherichia coli glutamyl-tRNA synthetase-tRNA(Glu) complex. Covalent complexes between the periodate-oxidized tRNA(Glu) and its synthetase were obtained. These complexes are specific since none were formed with any other oxidized E. coli tRNA. The three major residues cross-linked to the 3'-terminal adenosine of oxidized tRNA(Glu) are Lys115, Arg209, and Arg48. Modeling of the tRNA(Glu)-glutamyl-tRNA synthetase based on the known crystal structures of Thermus thermophilus GluRS and of the E. coli tRNA(Gln)-glutaminyl-tRNA synthetase complex shows that these three residues are located in the pocket that binds the acceptor stem, and that Lys115, located in a 26 residue loop closed by coordination to a zinc atom in the tRNA acceptor stem-binding domain, is the first contact point of the 3'-terminal adenosine of tRNA(Glu). In our model, we assume that the 3'-terminal GCCA single-stranded segment of tRNA(Glu) is helical and extends the stacking of the acceptor stem. This assumption is supported by the fact that the 3' CCA sequence of tRNA(Glu) is not readily circularized in the presence of T4 RNA ligase under conditions where several other tRNAs are circularized. The two other cross-linked sites are interpreted as the contact sites of the 3'-terminal ribose on the enzyme during the unfolding and movement of the 3'-terminal GCCA segment to position the acceptor ribose in the catalytic site for aminoacylation.


Assuntos
Escherichia coli/enzimologia , Glutamato-tRNA Ligase/química , Conformação de Ácido Nucleico , RNA de Transferência de Ácido Glutâmico/química , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Sítios de Ligação , Eletroforese em Gel Bidimensional , Escherichia coli/química , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/análise , Ácido Periódico/química , RNA Ligase (ATP)/metabolismo , RNA de Transferência de Glutamina/química , Alinhamento de Sequência , Thermus thermophilus/química , Thermus thermophilus/enzimologia , Tripsina
18.
FEBS Lett ; 470(3): 300-4, 2000 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-10745085

RESUMO

The genes of glutamyl- and prolyl-tRNA synthetases (GluRS and ProRS) are organized differently in the three kingdoms of the tree of life. In bacteria and archaea, distinct genes encode the two proteins. In several organisms from the eukaryotic phylum of coelomate metazoans, the two polypeptides are carried by a single polypeptide chain to form a bifunctional protein. The linker region is made of imperfectly repeated units also recovered as singular or plural elements connected as N-terminal or C-terminal polypeptide extensions in various eukaryotic aminoacyl-tRNA synthetases. Phylogenetic analysis points to the monophyletic origin of this polypeptide motif appended to six different members of the synthetase family, belonging to either of the two classes of aminoacyl-tRNA synthetases. In particular, the monospecific GluRS and ProRS from Caenorhabditis elegans, an acoelomate metazoan, exhibit this recurrent motif as a C-terminal or N-terminal appendage, respectively. Our analysis of the extant motifs suggests a possible series of events responsible for a gene fusion that gave rise to the bifunctional glutamyl-prolyl-tRNA synthetase through recombination between genomic sequences encoding the repeated units.


Assuntos
Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Evolução Molecular , Filogenia , Recombinação Genética/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/classificação , Animais , Arabidopsis , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Clonagem Molecular , Cricetinae , Troca Genética/genética , DNA Complementar/genética , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/classificação , Glutamato-tRNA Ligase/genética , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Leveduras
19.
Science ; 285(5430): 1074-7, 1999 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-10446055

RESUMO

Isoleucyl-transfer RNA (tRNA) synthetase (IleRS) joins Ile to tRNA(Ile) at its synthetic active site and hydrolyzes incorrectly acylated amino acids at its editing active site. The 2.2 angstrom resolution crystal structure of Staphylococcus aureus IleRS complexed with tRNA(Ile) and Mupirocin shows the acceptor strand of the tRNA(Ile) in the continuously stacked, A-form conformation with the 3' terminal nucleotide in the editing active site. To position the 3' terminus in the synthetic active site, the acceptor strand must adopt the hairpinned conformation seen in tRNA(Gln) complexed with its synthetase. The amino acid editing activity of the IleRS may result from the incorrect products shuttling between the synthetic and editing active sites, which is reminiscent of the editing mechanism of DNA polymerases.


Assuntos
Isoleucina-tRNA Ligase/química , Isoleucina-tRNA Ligase/metabolismo , Mupirocina/metabolismo , RNA de Transferência de Isoleucina/química , RNA de Transferência de Isoleucina/metabolismo , Acilação , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , DNA Polimerase Dirigida por DNA/metabolismo , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/metabolismo , Isoleucina/metabolismo , Modelos Moleculares , Mupirocina/química , Conformação de Ácido Nucleico , Oligopeptídeos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/metabolismo , Staphylococcus aureus/enzimologia , Especificidade por Substrato
20.
Biol Chem ; 378(11): 1313-29, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9426192

RESUMO

Glutamyl-tRNA synthetase (GluRS) belongs to the class I aminoacyl-tRNA synthetases and shows several similarities with glutaminyl-tRNA synthetase concerning structure and catalytic properties. Phylogenetic studies suggested that both diverged from an ancestral glutamyl-tRNA synthetase responsible for the gluta-mylation of tRNA(Glu) and tRNA(Gln), and whose Glu-tRNA(Gln) product is transformed into Gln-tRNA(Gln) by a specific amidotransferase. This pathway is present in gram-positive and some gram-negative eubacteria, in some archae and in organelles, and was never found jointly with a glutaminyl-tRNA synthetase. Other gram-negative eubacteria and the cytoplasm of eukaryotes contain a glutamyl-tRNA synthetase specific for tRNA(Glu), and a glutaminyl-tRNA synthetase. Bacterial glutamyl-tRNA synthetases consist of about 500 amino acid residues, possess molecular masses of about 50 kDa, and act as monomers. In higher eukaryotes chimeric glutamyl-prolyl-tRNA synthetases were found, in a high molecular mass complex containing several other aminoacyl-tRNA synthetases. To date one crystal structure of a glutamyl-tRNA synthetase (Thermus thermophilus) has been solved. The molecule has the form of a bent cylinder and consists of four domains. The N-terminal half (domains 1 and 2) contains the 'Rossman fold' typical for class I synthetases and resembles the corresponding part of E. coli GlnRS, whereas the C-terminal half exhibits a GluRS-specific structure. As found for the other aminoacyl-tRNA synthetases the catalytic pathway of GluRS includes the formation of an aminoacyl adenylate in the first reaction step, but GluRS shares a special property with GlnRS and ArgRS: the ATP/PPi pyrophosphate exchange reaction is only catalyzed in the presence of the cognate tRNA. Compared with other aminoacyl-tRNA synthetases a relatively high number of investigations deals with recognition of tRNA(Glu) by GluRS. Besides interactions between the enzyme and the acceptor stem and the anticodon of tRNA(Glu), checking of the dihydrouridine arm and of the variable loop by GluRS are documented.


Assuntos
Glutamato-tRNA Ligase/metabolismo , Acilação , Trifosfato de Adenosina/análogos & derivados , Animais , Cristalização , Evolução Molecular , Glutamato-tRNA Ligase/química , Glutamato-tRNA Ligase/genética , Glutamato-tRNA Ligase/isolamento & purificação , Ácido Glutâmico/análogos & derivados , Humanos , RNA de Transferência , RNA de Transferência de Glutamina , RNA de Transferência de Ácido Glutâmico , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA