Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 10(3): 620-631, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33719397

RESUMO

l-Theanine, as an active component of the leaves of the tea plant, possesses many health benefits and broad applications. Chemical synthesis of l-theanine is possible; however, this method generates chiral compounds and needs further isolation of the pure l-isoform. Heterologous biosynthesis is an alternative strategy, but one main limitation is the toxicity of the substrate ethylamine on microbial host cells. In this study, we introduced a cell-free protein synthesis (CFPS) system for l-theanine production. The CFPS expressed l-theanine synthetase 2 from Camellia sinensis (CsTS2) could produce l-theanine at a concentration of 11.31 µM after 32 h of the synthesis reaction. In addition, three isozymes from microorganisms were expressed in CFPS for l-theanine biosynthesis. The γ-glutamylcysteine synthetase from Escherichia coli could produce l-theanine at the highest concentration of 302.96 µM after 24 h of reaction. Furthermore, CFPS was used to validate a hypothetical two-step l-theanine biosynthetic pathway consisting of the l-alanine decarboxylase from C. sinensis (CsAD) and multiple l-theanine synthases. Among them, the combination of CsAD and the l-glutamine synthetase from Pseudomonas taetrolens (PtGS) could synthesize l-theanine at the highest concentration of 13.42 µM. Then, we constructed an engineered E. coli strain overexpressed CsAD and PtGS to further confirm the l-theanine biosynthesis ability in living cells. This engineered E. coli strain could convert l-alanine and l-glutamate in the medium to l-theanine at a concentration of 3.82 mM after 72 h of fermentation. Taken together, these results demonstrated that the CFPS system can be used to produce the l-theanine through the two-step l-theanine biosynthesis pathway, indicating the potential application of CFPS for the biosynthesis of other active compounds.


Assuntos
Sistema Livre de Células , Glutamatos/biossíntese , Amida Sintases/classificação , Amida Sintases/genética , Proteínas de Bactérias/genética , Camellia sinensis/enzimologia , Camellia sinensis/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutamato-Amônia Ligase/genética , Glutamato-Cisteína Ligase/genética , Isoenzimas/classificação , Isoenzimas/economia , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Pseudomonas/enzimologia , Pseudomonas/genética
2.
J Plant Physiol ; 253: 153273, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32927134

RESUMO

Global warming has multifarious effects on crop growth and productivity. Nonetheless, the effects of moderate-high temperatures and melatonin on tea yield and quality remain unclear. In this study, we found that melatonin, a universal growth stimulatory molecule, not only promotes photosynthesis and biomass accumulation in tea plants (Camellia sinensis L.) but also improves tea quality under sub high temperature (SHT). SHT increased the dry biomass and photosynthesis by 40.8% and 28.1%, respectively, and exogenous melatonin caused a further improvement. Moreover, SHT increased the total polyphenol concentrations and decreased the free amino acid concentrations, leading to a significant increase (68.2%) in polyphenol to free amino acid ratio. However, melatonin decreased the polyphenol to free amino acid ratio by delicately improving the concentrations of polyphenols and amino acids. Consistent with the total polyphenol, melatonin increased the concentrations of (-)-catechin, (-)-gallocatechin (GC), and (-)-epigallocatechin-3-gallate (EGCG) in tea leaves. The qRT-PCR analysis revealed that melatonin increased the transcript levels of catechins biosynthesis genes, such as CsCHS, CsCH1, CsF3H, CsDFR, CsANS, CsLAR, and CsANR under SHT. Meanwhile, the theanine concentration was decreased by SHT, which was attributed to the attenuated expression of CsGS, CsGOGAT, CsGDH, and CsTS1. Nonetheless, melatonin significantly increased those transcripts and the content of theanine under SHT. Melatonin also increased the caffeine content by inducing the expression of CsTIDH, CssAMS, and CsTCS1. These results suggest that melatonin could positively alter tea growth and quality by modulating the photosynthesis and biosynthesis of polyphenols, amino acids, and caffeine in tea leaves under SHT.


Assuntos
Camellia sinensis/efeitos dos fármacos , Catequina/análogos & derivados , Glutamatos/biossíntese , Melatonina/farmacologia , Fotossíntese/efeitos dos fármacos , Cafeína/metabolismo , Camellia sinensis/genética , Camellia sinensis/fisiologia , Catequina/biossíntese , Clima , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Chá/efeitos dos fármacos , Chá/normas , Temperatura
3.
J Ind Microbiol Biotechnol ; 47(8): 573-583, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32885332

RESUMO

γ-Glutamyl compounds have unveiled their importance as active substances or precursors of pharmaceuticals. In this research, an approach for enzymatic synthesis of γ-glutamyl compounds was developed using γ-glutamylmethylamide synthetase (GMAS) from Methylovorus mays and polyphosphate kinase (PPK) from Corynebacterium glutamicum. GMAS and PPK were co-recombined in pETDuet-1 plasmid and co-expressed in E. coli BL21 (DE3), and the enzymatic properties of GMAS and PPK were investigated, respectively. Under the catalysis of the co-expression system, L-theanine was synthesized with 89.8% conversion when the substrate molar ratio of sodium glutamate and ethylamine (1:1.4) and only 2 mM ATP were used. A total of 14 γ-glutamyl compounds were synthesized by this one-pot method and purified by cation exchange resin and isoelectric point crystallization with a yield range from 22.3 to 72.7%. This study provided an efficient approach for the synthesis of γ-glutamyl compounds by GMAS and PPK co-expression system.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Corynebacterium glutamicum/enzimologia , Escherichia coli/genética , Glutamatos/biossíntese , Methylophilaceae/enzimologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Carbono-Nitrogênio Ligases/genética , Escherichia coli/enzimologia , Fermentação , Microrganismos Geneticamente Modificados , Ressonância Magnética Nuclear Biomolecular , Fosfotransferases (Aceptor do Grupo Fosfato)/genética
4.
Plant Sci ; 298: 110546, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32771159

RESUMO

l-Theanine, a non-proteinaceous amino acid abundantly present in tea (Camellia sinensis), contributes to the umami flavor of tea and has beneficial effects on human health. While key l-theanine biosynthetic genes have been well documented, their transcriptional regulation remains poorly understood. In this study, we determined the l-theanine contents in tea leaves of two cultivars at three developmental stages and investigated the expression patterns of the l-theanine biosynthetic genes CsGS1 and CsGS2. Additionally, we identified an R2R3-MYB transcription factor, CsMYB73, belonging to subgroup 22 of the R2R3-MYB family. CsMYB73 expression negatively correlated with l-theanine accumulation during leaf maturation. We found that CsMYB73, as a nuclear protein, binds to the promoter regions of CsGS1 and CsGS2 via MYB recognition sequences and represses the transcription of CsGS1 and CsGS2 in tobacco leaves. Collectively, our results demonstrate that CsMYB73 is a transcriptional repressor involved in l-theanine biosynthesis in tea plants. Our findings might contribute to future tea plant breeding strategies.


Assuntos
Amida Sintases/genética , Camellia sinensis/genética , Glutamatos/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Amida Sintases/metabolismo , Sequência de Aminoácidos , Camellia sinensis/enzimologia , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
5.
Appl Microbiol Biotechnol ; 104(8): 3417-3431, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32103318

RESUMO

γ-Glutamylcysteine synthetase (γ-GCS) from Escherichia coli, which catalyzes the formation of L-glutamylcysteine from L-glutamic acid and L-cysteine, was engineered into an L-theanine synthase using L-glutamic acid and ethylamine as substrates. A high-throughput screening method using a 96-well plate was developed to evaluate the L-theanine synthesis reaction. Both site-saturation mutagenesis and random mutagenesis were applied. After three rounds of directed evolution, 13B6, the best-performing mutant enzyme, exhibited 14.6- and 17.0-fold improvements in L-theanine production and catalytic efficiency for ethylamine, respectively, compared with the wild-type enzyme. In addition, the specific activity of 13B6 for the original substrate, L-cysteine, decreased to approximately 14.6% of that of the wild-type enzyme. Thus, the γ-GCS enzyme was successfully switched to a specific L-theanine synthase by directed evolution. Furthermore, an ATP-regeneration system was introduced based on polyphosphate kinases catalyzing the transfer of phosphates from polyphosphate to ADP, thus lowering the level of ATP consumption and the cost of L-theanine synthesis. The final L-theanine production by mutant 13B6 reached 30.4 ± 0.3 g/L in 2 h, with a conversion rate of 87.1%, which has great potential for industrial applications.


Assuntos
Amida Sintases/metabolismo , Escherichia coli/enzimologia , Glutamato-Cisteína Ligase/metabolismo , Glutamatos/biossíntese , Trifosfato de Adenosina/metabolismo , Amida Sintases/genética , Catálise , Evolução Molecular Direcionada , Escherichia coli/genética , Etilaminas/metabolismo , Glutamato-Cisteína Ligase/genética , Ácido Glutâmico/metabolismo , Ensaios de Triagem em Larga Escala , Microbiologia Industrial , Engenharia de Proteínas
6.
Appl Microbiol Biotechnol ; 104(1): 119-130, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31776607

RESUMO

L-Theanine is a unique non-protein amino acid found in tea plants that has been shown to possess numerous functional properties relevant to food science and human nutrition. L-Theanine has been commercially developed as a valuable additive for use in food and beverages, and its market is expected to expand substantially if the production cost can be lowered. Although the enzymatic approach holds considerable potential for use in L-theanine production, demand exists for developing more tractable methods (than those currently available) that can be implemented under mild conditions and will reduce operational procedures and cost. Here, we sought to engineer fermentative production of L-theanine in Corynebacterium glutamicum, an industrially safe host. For L-theanine synthesis, we used γ-glutamylmethylamide synthetase (GMAS), which catalyzes the ATP-dependent ligation of L-glutamate and ethylamine. First, distinct GMASs were expressed in C. glutamicum wild-type ATCC 13032 strain and GDK-9, an L-glutamate overproducing strain, to produce L-theanine upon ethylamine addition to the hosts. Second, the L-glutamate exporter in host cells was disrupted, which markedly increased the L-theanine titer in GDK-9 cells and almost eliminated the accumulation of L-glutamate in the culture medium. Third, a chromosomally gmasMm-integrated L-alanine producer was constructed and used, attempting to synthesize ethylamine endogenously by expressing plant-derived L-serine/L-alanine decarboxylases; however, these enzymes showed no L-alanine decarboxylase activity under our experimental conditions. The optimal engineered strain that we ultimately created produced ~ 42 g/L L-theanine, with a yield of 19.6%, in a 5-L fermentor. This is the first report of fermentative production of L-theanine achieved using ethylamine supplementation.


Assuntos
Corynebacterium glutamicum/metabolismo , Fermentação , Glutamatos/biossíntese , Engenharia Metabólica/métodos , Trifosfato de Adenosina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Etilaminas/metabolismo , Ácido Glutâmico/metabolismo , Microbiologia Industrial
7.
J Agric Food Chem ; 67(36): 10235-10244, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31436988

RESUMO

Tea provides a rich taste and has healthy properties due to its variety of bioactive compounds, such as theanine, catechins, and caffeine. Theanine is the most abundant free amino acid (40%-70%) in tea leaves. Key genes related to theanine biosynthesis have been studied, but relatively little is known about the regulatory mechanisms of theanine accumulation in tea leaves. Herein, we analyzed theanine content in tea (Camellia sinensis) and oil tea (Camellia oleifera) and found it to be higher in the roots than in other tissues in both species. The theanine content was significantly higher in tea than oil tea. To explore the regulatory mechanisms of theanine accumulation, we identified genes involved in theanine biosynthesis by RNA-Seq analysis and compared theanine-related modules. Moreover, we cloned theanine synthase (TS) promoters from tea and oil tea plants and found that a difference in TS expression and cis-acting elements may explain the difference in theanine accumulation between the two species. These data provide an important resource for regulatory mechanisms of theanine accumulation in tea plants.


Assuntos
Camellia sinensis/genética , Camellia/genética , Glutamatos/biossíntese , Proteínas de Plantas/genética , Transcriptoma , Camellia/química , Camellia/metabolismo , Camellia sinensis/química , Camellia sinensis/metabolismo , Glutamatos/análise , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
8.
J Neuroimmune Pharmacol ; 14(3): 391-400, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31209775

RESUMO

HIV-associated neurocognitive disorders (HAND) have been linked to dysregulation of glutamate metabolism in the central nervous system (CNS) culminating in elevated extracellular glutamate and disrupted glutamatergic neurotransmission. Increased glutamate synthesis via upregulation of glutaminase (GLS) activity in brain immune cells has been identified as one potential source of excess glutamate in HAND. However, direct evidence for this hypothesis in an animal model is lacking, and the viability of GLS as a drug target has not been explored. In this brief report, we demonstrate that GLS inhibition with the glutamine analogue 6-diazo-5-oxo-L-norleucine (DON) can reverse cognitive impairment in the EcoHIV-infected mouse model of HAND. However, due to peripheral toxicity DON is not amenable to clinical use in a chronic disease such as HAND. We thus tested JHU083, a novel, brain penetrant DON prodrug predicted to exhibit improved tolerability. Systemic administration of JHU083 reversed cognitive impairment in EcoHIV-infected mice similarly to DON, and simultaneously normalized EcoHIV-induced increases in cerebrospinal fluid (CSF) glutamate and GLS activity in microglia-enriched brain CD11b + cells without observed toxicity. These studies support the mechanistic involvement of elevated microglial GLS activity in HAND pathogenesis, and identify JHU083 as a potential treatment option. Graphical Abstract Please provide Graphical Abstract caption.Glutamine Antagonist JHU083 Normalizes Aberrant Glutamate Production and Cognitive Deficits in the EcoHIV Murine Model of HIV-Associated Neurocognitive Disorders .


Assuntos
Complexo AIDS Demência , Compostos Azo/uso terapêutico , Caproatos/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Glutamatos/biossíntese , Glutamina/antagonistas & inibidores , Pró-Fármacos/uso terapêutico , Animais , Compostos Azo/farmacocinética , Antígeno CD11b/análise , Caproatos/farmacocinética , Transtornos Cognitivos/líquido cefalorraquidiano , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/virologia , Condicionamento Clássico/efeitos dos fármacos , Medo , Glutamatos/líquido cefalorraquidiano , HIV-1/genética , HIV-1/patogenicidade , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/patogenicidade , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Norleucina/análogos & derivados , Norleucina/uso terapêutico , Pró-Fármacos/farmacocinética , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Aprendizagem Espacial/efeitos dos fármacos
9.
Cell Death Dis ; 9(3): 325, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487283

RESUMO

Targeted therapies as BRAF and MEK inhibitor combination have been approved as first-line treatment for BRAF-mutant melanoma. However, disease progression occurs in most of the patients within few months of therapy. Metabolic adaptations have been described in the context of acquired resistance to BRAF inhibitors (BRAFi). BRAFi-resistant melanomas are characterized by an increase of mitochondrial oxidative phosphorylation and are more prone to cell death induced by mitochondrial-targeting drugs. BRAFi-resistant melanomas also exhibit an enhancement of oxidative stress due to mitochondrial oxygen consumption increase. To understand the mechanisms responsible for survival of BRAFi-resistant melanoma cells in the context of oxidative stress, we have established a preclinical murine model that accurately recapitulates in vivo the acquisition of resistance to MAPK inhibitors including several BRAF or MEK inhibitors alone and in combination. Using mice model and melanoma cell lines generated from mice tumors, we have confirmed that the acquisition of resistance is associated with an increase in mitochondrial oxidative phosphorylation as well as the importance of glutamine metabolism. Moreover, we have demonstrated that BRAFi-resistant melanoma can adapt mitochondrial metabolism to support glucose-derived glutamate synthesis leading to increase in glutathione content. Besides, BRAFi-resistant melanoma exhibits a strong activation of NRF-2 pathway leading to increase in the pentose phosphate pathway, which is involved in the regeneration of reduced glutathione, and to increase in xCT expression, a component of the xc-amino acid transporter essential for the uptake of cystine required for intracellular glutathione synthesis. All these metabolic modifications sustain glutathione level and contribute to the intracellular redox balance to allow survival of BRAFi-resistant melanoma cells.


Assuntos
Antioxidantes/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glucose/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/metabolismo , Melanoma/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Glutamatos/biossíntese , Glutationa/biossíntese , Humanos , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Ácido Pirúvico/metabolismo
10.
Sheng Wu Gong Cheng Xue Bao ; 32(12): 1745-1749, 2016 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-29034642

RESUMO

Recombinant strains expressing enzymes for ATP regeneration and L-theanine production were constructed and used for the synthesis of L-theanine. The ppk gene encoding polyphosphate kinase (PPK) from Rhodobacter sphaeroides and gmas gene encoding γ-glutamylmethylamide synthetase (GMAS) from Methylovorus mays were synthesized, and two recombinant plasmids, pETDuet-ppk+gmas and pET21a-ppk+gmas were constructed for co-expression of PPK and GMAS in Escherichia coli BL21(DE3). SDS-PAGE analysis showed that PPK and GMAS were overexpressed in soluble form in both recombinant strains. GMAS-PPK obtained from the recombinant strain containing pET21a-ppk+gmas was more efficient to synthesize L-theanine. After 24 h at 37 ℃ and pH at 7.0, 86.0% yield of L-theanine was achieved with catalytic amount of ATP. This study extends the application of enzymatic ATP regeneration system. In addition, it provides an efficient method for the biosynthesis of L-theanine.


Assuntos
Carbono-Nitrogênio Ligases/genética , Glutamatos/biossíntese , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Ligases
11.
Microbiol Immunol ; 59(7): 398-409, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25990091

RESUMO

Viral protein R (Vpr) of HIV-1 plays an important role in viral replication in macrophages. Various lines of evidence suggest that expression of Vpr in macrophages causes immunopathogenesis; however, the underlying mechanism is not yet fully understood. In this study, it was shown that recombinant Vpr (rVpr) induces retrotransposition of long interspersed element-1 in RAW264.7, a macrophage-like cell line, and activates reverse transcriptase-dependent immunotoxic cascades including production of IFN-ß and phosphorylation of signal transducer and activator of transcription 1 (STAT1). Knockout experiments based on the CRISPR/Cas9 nickase system further demonstrated that cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and stimulator of interferon gene (STING) are responsible for IFN-ß production and STAT1 phosphorylation, respectively. Moreover, rVpr was found to increase production of glutaminase C, a regulator of glutamate synthesis, which is also dependent on the cGAS-STING pathway. Taken together with reports that glutaminase C is involved in the pathogenesis of HIV-associated neurocognitive disorder (HAND) and that Vpr is detectable in the cerebrospinal fluid of HIV-1-positive patients, a possible role of Vpr-induced L1-RTP and immunotoxic cascades in the development of HAND is discussed.


Assuntos
Glutamatos/biossíntese , Infecções por HIV/metabolismo , HIV-1/genética , HIV-1/metabolismo , Fator de Transcrição STAT1/metabolismo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Animais , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Elementos Nucleotídeos Longos e Dispersos , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosforilação , Células RAW 264.7 , Fator de Transcrição STAT1/genética , Transdução de Sinais , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
12.
Enzyme Microb Technol ; 55: 31-9, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24411443

RESUMO

Two biosurfactants, surfactin and fatty acyl-glutamate, were produced from genetically-modified strains of Bacillus subtilis on 2% glucose and mineral salts media in shake-flasks and bioreactors. Biosurfactant synthesis ceased when the main carbohydrate source was completely depleted. Surfactin titers were ∼30-fold higher than fatty acyl-glutamate in the same medium. When bacteria were grown in large aerated bioreactors, biosurfactants mostly partitioned to the foam fraction, which was recovered. Dispersion effectiveness of surfactin and fatty acyl-glutamate was evaluated by measuring the critical micelle concentration (CMC) and dispersant-to-oil ratio (DOR). The CMC values for surfactin and fatty acyl-glutamate in double deionized distilled water were 0.015 and 0.10 g/L, respectively. However, CMC values were higher, 0.02 and 0.4 g/L for surfactin and fatty acyl-glutamate, respectively, in 12 parts per thousand Instant Ocean®[corrected].sea salt, which has been partly attributed to saline-induced conformational changes in the solvated ionic species of the biosurfactants. The DORs for surfactin and fatty acyl-glutamate were 1:96 and 1:12, respectively, in water. In Instant Ocean® solutions containing 12 ppt sea salt, these decreased to 1:30 and 1:4, respectively, suggesting reduction in oil dispersing efficiency of both surfactants in saline. Surfactant toxicities were assessed using the Gulf killifish, Fundulus grandis, which is common in estuarine habitats of the Gulf of Mexico. Surfactin was 10-fold more toxic than fatty acyl-glutamate. A commercial surfactant, sodium laurel sulfate, had intermediate toxicity. Raising the salinity from 5 to 25 ppt increased the toxicity of all three surfactants; however, the increase was the lowest for fatty acyl-glutamate.


Assuntos
Glutamatos/isolamento & purificação , Lipopeptídeos/isolamento & purificação , Peptídeos Cíclicos/isolamento & purificação , Poluição por Petróleo , Tensoativos/isolamento & purificação , Poluentes Químicos da Água , Animais , Bacillus subtilis/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Fermentação , Fundulidae/crescimento & desenvolvimento , Glutamatos/biossíntese , Glutamatos/farmacologia , Glutamatos/toxicidade , Larva/efeitos dos fármacos , Lipopeptídeos/biossíntese , Lipopeptídeos/farmacologia , Lipopeptídeos/toxicidade , Micelas , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/toxicidade , Salinidade , Tensão Superficial , Tensoativos/metabolismo , Tensoativos/farmacologia , Tensoativos/toxicidade
13.
Biosci Biotechnol Biochem ; 73(12): 2677-83, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19966457

RESUMO

Gamma-glutamylcysteine synthetase (gammaGCS, EC 6.3.2.2) catalyzes the formation of gamma-glutamylcysteine from L-glutamic acid (Glu) and L-cysteine (Cys) in an ATP-dependent manner. While gammaGCS can use various amino acids as substrate, little is known about whether it can use non-amino acid compounds in place of Cys. We determined that gammaGCS from Escherichia coli has the ability to combine Glu and amines to form gamma-glutamylamides. The reaction rate depended on the length of the methylene chain of the amines in the following order: n-propylamine > butylamine > ethylamine >> methylamine. The optimal pH for the reaction was narrower and more alkaline than for the reaction with an amino acid. The newly found catalytic ability of gammaGCS was used in the production of theanine (gamma-glutamylethylamine). The resting cells of E. coli expressing gammaGCS, in which ATP was regenerated through glycolysis, synthesized 12.1 mM theanine (18 h) from 429 mM ethylamine.


Assuntos
Biocatálise , Escherichia coli/enzimologia , Glutamato-Cisteína Ligase/metabolismo , Glutamatos/biossíntese , Escherichia coli/citologia , Escherichia coli/genética , Escherichia coli/metabolismo , Etilaminas/metabolismo , Glutamato-Cisteína Ligase/biossíntese , Glutamato-Cisteína Ligase/isolamento & purificação , Concentração de Íons de Hidrogênio , Especificidade por Substrato
14.
Biosci Biotechnol Biochem ; 71(2): 545-52, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17284842

RESUMO

For development of theanine production from glutamic acid and ethylamine by coupling yeast sugar fermentation as an ATP-regenerating system, several strains were selected from among about 200 methylamine- and/or methanol-assimilating bacteria depending on the theanine-forming activity of their permeated cells. The amount of theanine formed by the cells of the selected strains was much larger than that by the cells of Escherichia coli AD494 (DE3) expressing Pseudomonas taetrolens Y-30 glutamine synthetase (GS), which has been found to be a usable enzyme for theanine production. A GS-like enzyme responsible for the theanine-forming reaction was obtained from an obligate methylotroph isolate, Methylovorus mays No. 9. The enzyme was induced by methylamine in the culture medium. A molecular mass of 410-470 kDa was obtained by gel filtration of the enzyme, and 51 kDa by SDS-PAGE analysis. The enzyme showed high activity toward methylamine rather than ammonia, which indicates that it is similar to known gamma-glutamylmethylamide synthetase. The isolated enzyme also had high reactivity to ethylamine in a neutral pH range, and formed theanine from glutamic acid and ethylamine in a reaction mixture containing a yeast sugar fermentation system for ATP-regeneration.


Assuntos
Glutamatos/biossíntese , Methanobacteriaceae/enzimologia , Trifosfato de Adenosina/metabolismo , Sulfato de Amônio , Cátions Bivalentes/metabolismo , Permeabilidade da Membrana Celular , Cromatografia DEAE-Celulose , Meios de Cultura , DNA Bacteriano/metabolismo , Eletroforese em Gel de Poliacrilamida , Transferência de Energia , Etilaminas/metabolismo , Fermentação , Ácido Glutâmico/metabolismo , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Methanobacteriaceae/genética , Methanobacteriaceae/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
J Biol Chem ; 281(13): 8486-96, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16452488

RESUMO

We demonstrated previously in a liver perfusion system that agmatine increases oxygen consumption as well as the synthesis of N-acetylglutamate and urea by an undefined mechanism. In this study our aim was to identify the mechanism(s) by which agmatine up-regulates ureagenesis. We hypothesized that increased oxygen consumption and N-acetylglutamate and urea synthesis are coupled to agmatine-induced stimulation of mitochondrial fatty acid oxidation. We used 13C-labeled fatty acid as a tracer in either a liver perfusion system or isolated mitochondria to monitor fatty acid oxidation and the incorporation of 13C-labeled acetyl-CoA into ketone bodies, tricarboxylic acid cycle intermediates, amino acids, and N-acetylglutamate. With [U-13C16] palmitate in the perfusate, agmatine significantly increased the output of 13C-labeled beta-hydroxybutyrate, acetoacetate, and CO2, indicating stimulated fatty acid oxidation. The stimulation of [U-13C16]palmitate oxidation was accompanied by greater production of urea and a higher 13C enrichment in glutamate, N-acetylglutamate, and aspartate. These observations suggest that agmatine leads to increased incorporation and flux of 13C-labeled acetyl-CoA in the tricarboxylic acid cycle and to increased utilization of 13C-labeled acetyl-CoA for synthesis of N-acetylglutamate. Experiments with isolated mitochondria and 13C-labeled octanoic acid also demonstrated that agmatine increased synthesis of 13C-labeled beta-hydroxybutyrate, acetoacetate, and N-acetylglutamate. The current data document that agmatine stimulates mitochondrial beta-oxidation and suggest a coupling between the stimulation of hepatic beta-oxidation and up-regulation of ureagenesis. This action of agmatine may be mediated via a second messenger such as cAMP, and the effects on ureagenesis and fatty acid oxidation may occur simultaneously and/or independently.


Assuntos
Agmatina/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , Regulação para Cima , Ureia/metabolismo , Difosfato de Adenosina/análise , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/análise , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Agmatina/farmacologia , Amônia/análise , Amônia/metabolismo , Animais , Isótopos de Carbono , Citrulina/biossíntese , Relação Dose-Resposta a Droga , Jejum , Cromatografia Gasosa-Espectrometria de Massas , Glutamatos/biossíntese , Corpos Cetônicos/biossíntese , Cinética , Fígado/citologia , Masculino , Mitocôndrias Hepáticas/metabolismo , Modelos Biológicos , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Consumo de Oxigênio , Ácidos Palmíticos/metabolismo , Perfusão , Ratos , Ratos Sprague-Dawley , Ureia/análise
16.
Biosci Biotechnol Biochem ; 69(4): 784-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15849418

RESUMO

Theanine was formed from glutamic acid and ethylamine by coupling the reaction of glutamine synthetase (GS) of Pseudomonas taetrolens Y-30 with sugar fermentation of baker's yeast cells as an ATP-regeneration system. Theanine formation was stimulated by the addition of Mn2+ to the mixture for the coupling. The addition of Mg2+ was less effective. In a mixture containing a larger amount of yeast cells with a fixed level of GS, glucose (the energy source) was consumed rapidly, resulting in a decrease in the final yield of theanine. On the other hand, an increase in GS amounts increased theanine formation in a mixture with a fixed amount of yeast cells. High concentrations of ethylamine enhanced theanine formation whereas inhibited yeast fermentation of sugar and the two contrary effects of ethylamine caused a high yield of theanine based on glucose consumed. In an improved reaction mixture containing 200 mM sodium glutamate, 1,200 mM ethylamine, 300 mM glucose, 50 mM potassium phosphate buffer (pH 7.0), 5 mM MnCl2, 5 mM AMP, 100 units/ml GS, and 60 mg/ml yeast cells, approximately 170 mM theanine was formed in 48 h.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Glutamatos/biossíntese , Pseudomonas/enzimologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Monofosfato de Adenosina/farmacologia , Cátions Bivalentes/farmacologia , Dessecação , Transferência de Energia , Etilaminas/farmacologia , Fermentação , Magnésio/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos
17.
Biol Reprod ; 72(1): 143-9, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15385417

RESUMO

Our aim was to study the inhibitory and facilitatory factors possibly accounting for the undetectable activity of the GnRH pulse generator in late fetal life in vitro and its awakening in early postnatal life. Gamma aminobutyric acid (GABA(A)) receptor antagonism using SR 95 531 did not cause any secretory pulse in fetal explants, whereas a significant stimulation of GnRH pulse frequency was obtained at 5 and 15 days. GnRH secretory response to repeated N-methyl-D-aspartate (NMDA) stimulation showed progressive disappearance, indicating that the inhibitory autofeedback was operating. GnRH release caused by glutamine was respectively 9% and 20% of that evoked by glutamate in fetal and 5-day-old rats whereas both amino acids were equally active at 15 days. Explants obtained after cesarean section performed at onset of labor did not show any secretory pulse, while pulses could be observed with explants obtained 2 h after vaginal delivery. Incubation of fetal explants with oxytocin (10(-8) M) or prostaglandin E2 (PGE2) (10(-6) M) resulted in occurrence of GnRH secretory pulses. A facilitatory effect of the oxytocin was shown to persist on Days 1, 5, and 15 and inhibitory effects of an oxytocin receptor antagonist provided some evidence of endogenous oxytocin involvement. We conclude that, in the fetal rat hypothalamus, GnRH inhibitory autofeedback and GABAergic inputs do not account for the absence of pulsatile GnRH secretion in vitro. A low rate of glutamate biosynthesis from glutamine is a possibly limiting factor. Oxytocin and PGE2 can play a facilitatory role in the postpartal occurrence of pulsatile GnRH secretion.


Assuntos
Embrião de Mamíferos/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Animais , Dinoprostona/farmacologia , Embrião de Mamíferos/efeitos dos fármacos , Retroalimentação Fisiológica , Feminino , Antagonistas GABAérgicos/farmacologia , Glutamatos/biossíntese , Técnicas In Vitro , Trabalho de Parto/fisiologia , Masculino , N-Metilaspartato/farmacologia , Ocitocina/farmacologia , Gravidez , Piridazinas/farmacologia , Ratos , Ratos Wistar , Receptores de GABA/efeitos dos fármacos , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
18.
Biosci Biotechnol Biochem ; 68(9): 1888-97, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15388964

RESUMO

Concentrated cell-extract of Pseudomonas taetrolens Y-30, isolated as a methylamine-assimilating organism, formed gamma-glutamylethylamide (theanine) from glutamic acid and ethylamine in a mixture containing the alcoholic fermentation system of baker's yeast for ATP-regeneration. Glutamine synthetase (GS), probably responsible for theanine formation, was isolated from the extract of the organism grown on a medium containing 1% methylamine, 1% glycerol, 0.5% yeast extract, and 0.2% polypepton as carbon and nitrogen sources. The molecular mass was estimated to be 660 kDa by gel filtration and 55 kDa by SDS-polyacrylamide gel electrophoresis, suggesting that Ps. taetrolens Y-30 GS consists of 12 identical subunits. The enzyme required Mg2+ or Mn2+ for its activity. Under the standard reaction condition for glutamine formation (pH 8.0 with 30 mM Mg2+), GS showed 7% and 1% reactivity toward methylamine and ethylamine respectively of that to ammonia. Reactivity to the alkylamines varied with optimum pH of the reaction in response to divalent cation in the mixture: pH 11.0 was the optimum for the Mg2+ -dependent reaction with ethylamine, and pH 8.5 was the optimum for the Mn2+ -dependent reaction. In a mixture of an optimum reaction condition with 1000 mM ethylamine (at pH 8.5 with 3 mM Mn2+), reactivity increased up to 7% of the reactivity to ammonia in the standard reaction condition. The isolated GS formed theanine in the mixture with the yeast fermentation system.


Assuntos
Glutamato-Amônia Ligase/isolamento & purificação , Glutamatos/biossíntese , Pseudomonas/enzimologia , Saccharomyces cerevisiae/metabolismo , Transferência de Energia , Fermentação , Indústria Alimentícia , Glutamato-Amônia Ligase/metabolismo , Pseudomonas/isolamento & purificação
19.
Chem Res Toxicol ; 15(9): 1190-207, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12230413

RESUMO

The in vivo and in vitro disposition of benzylamine was investigated in rats. Benzylamine was metabolized to only a small extent by rat liver subcellular fractions. In contrast, it was extensively metabolized in vivo in rats. In vivo studies performed with stable isotope-labeled benzylamine enabled rapid mass spectrometric identification of metabolites present in rat bile and urine. The major metabolite of benzylamine was the hippuric acid formed by glycine conjugation of benzoic acid. LC/MS analysis of bile and urine obtained from rats dosed with 1:1 equimolar mixture of either d(0):d(7)- or d(0):d(2)-benzylamine showed the presence of several glutathione adducts in addition to the hippuric acid metabolite. The presence of various glutathione adducts indicated that benzylamine was metabolized to a number of reactive intermediates. Various metabolic pathways, including those independent of P450, were found to produce these intermediates. A previously undocumented pathway included the formation of a new carbon-nitrogen bond that led to a potentially reactive intermediate, Ar-CH(2)-NH(CO)-X, capable of interacting with various nucleophiles. The origin of this reactive intermediate is postulated to occur via the formation of either a formamide or carbamic acid metabolites. Metabolites which were produced by the reaction of this intermediate, Ar-CH(2)-NH(CO)-X with nucleophiles included S-[benzylcarbamoyl] glutathione, N-acetyl-S-[benzylcarbamoyl]cysteine, S-[benzylcarbamoyl] cysteinylglycine, S-[benzylcarbamoyl] cysteinylglutamate, N-[benzylcarbamoyl] glutamate, and an oxidized glutathione adduct. Bioactivation of amines via this pathway has not been previously described. The oxidative deamination of benzylamine yielding the benzaldehyde was demonstrated to be a precursor to the hippuric acid metabolite and S-benzyl-L-glutathione. The formation of the S-benzyl-L-glutathione conjugate showed that a net displacement of amine from benzylamine had taken place with a subsequent addition of glutathione at the benzylic position. In addition to these novel pathways, a number of other glutathione-derived adducts formed as a result of epoxide formation was characterized. It was demonstrated that benzylamine was converted by rat P450 2A1 and 2E1 to benzamide that was rapidly metabolized to an epoxide. Mechanisms are proposed for the formation of various GSH adducts of benzylamine.


Assuntos
Benzilaminas/farmacocinética , Glutamatos/biossíntese , Glutationa/biossíntese , Animais , Bile/metabolismo , Biotransformação , Cromatografia Líquida , Sistema Enzimático do Citocromo P-450/classificação , Sistema Enzimático do Citocromo P-450/metabolismo , Glutamatos/química , Glutamatos/urina , Glutationa/análogos & derivados , Glutationa/química , Glutationa/urina , Masculino , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Oxirredução , Oximas/análise , Ratos , Ratos Sprague-Dawley , Frações Subcelulares/metabolismo
20.
J Neurosci ; 17(3): 932-40, 1997 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-8994048

RESUMO

GLT-1, GLAST, and EAAC1 are high-affinity, Na(+)-dependent glutamate transporters identified in rat forebrain. The expression of these transporter subtypes was characterized in three preparations: undifferentiated rat cortical astrocyte cultures, astrocytes cocultured with cortical neurons, and astrocyte cultures differentiated with dibutyryl cyclic AMP (dBcAMP). The undifferentiated astrocyte monocultures expressed only the GLAST subtype. Astrocytes cocultured with neurons developed a stellate morphology and expressed both GLAST and GLT-1; neurons expressed only the EAAC1 transporter, and rare microglia in these cultures expressed GLT-1. Treatment of astrocyte cultures with dBcAMP induced expression of GLT-1 and increased expression of GLAST. These effects of dBcAMP on transporter expression were qualitatively similar to those resulting from coculture with neurons, but immunocytochemistry showed the pattern of transporter expression to be more complex in the coculture preparations. Compared with astrocytes expressing only GLAST, the dBcAMP-treated cultures expressing both GLAST and GLT-1 showed an increase in glutamate uptake Vmax, but no change in the glutamate K(m) and no increased sensitivity to inhibition by dihydrokainate. Pyrrolidine-2,4-dicarboxylic acid and threo-beta-hydroxyaspartic acid caused relatively less inhibition of transport in cultures expressing both GLAST and GLT-1, suggesting a weaker effect at GLT-1 than at GLAST. These studies show that astrocyte expression of glutamate transporter subtypes is influenced by neurons, and that dBcAMP can partially mimic this influence. Manipulation of transporter expression in astrocyte cultures may permit identification of factors regulating the expression and function of GLAST and GLT-1 in their native cell type.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Astrócitos/metabolismo , Proteínas de Transporte/biossíntese , Glutamatos/biossíntese , Glicoproteínas/biossíntese , Simportadores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sistema X-AG de Transporte de Aminoácidos , Animais , Sequência de Bases , Transporte Biológico , Células Cultivadas , AMP Cíclico/farmacologia , Transportador 1 de Aminoácido Excitatório , Transportador 3 de Aminoácido Excitatório , Expressão Gênica/efeitos dos fármacos , Proteínas de Transporte de Glutamato da Membrana Plasmática , Dados de Sequência Molecular , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA