Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.360
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mol Med ; 30(1): 64, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760723

RESUMO

BACKGROUND: Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) has been implicated in numerous inflammatory and cancerous conditions. However, its precise molecular mechanisms in endometriosis (EMs) remains unclear. The aim of this study is to examine the influence of IGF2BP3 on the occurrence and progression of EMs and to elucidate its underlying molecular mechanism. METHODS: Efects of IGF2BP3 on endometriosis were confrmed in vitro and in vivo. Based on bioinformatics analysis, RNA immunoprecipitation (RIP), RNA pull-down assays and Fluorescent in situ hybridization (FISH) were used to show the association between IGF2BP3 and UCA1. Single-cell spatial transcriptomics analysis shows the expression distribution of glutaminase 1 (GLS1) mRNA in EMs. Study the effect on glutamine metabolism after ectopic endometriotic stromal cells (eESCs) were transfected with Sh-IGF2BP3 and Sh-UCA1 lentivirus. RESULTS: Immunohistochemical staining have revealed that IGF2BP3 was upregulated in ectopic endometriotic lesions (EC) compared to normal endometrial tissues (EN). The proliferation and migration ability of eESCs were greatly reduced by downregulating IGF2BP3. Additionally, IGF2BP3 has been observed to interact with urothelial carcinoma associated 1 (UCA1), leading to increased stability of GLS1 mRNA and subsequently enhancing glutamine metabolism. Results also demonstrated that IGF2BP3 directly interacts with the 3' UTR region of GLS1 mRNA, influencing its expression and stability. Furthermore, UCA1 was able to bind with c-MYC protein, stabilizing c-MYC mRNA and consequently enhancing GLS1 expression through transcriptional promotion. CONCLUSION: These discoveries underscored the critical involvement of IGF2BP3 in the elevation and stability of GLS1 mRNA in the context of glutamine metabolism by interacting with UCA1 in EMs. The implications of our study extended to the identification of possible therapeutic targets for individuals with EMs.


Assuntos
Endometriose , Glutaminase , Glutamina , Estabilidade de RNA , RNA Longo não Codificante , Proteínas de Ligação a RNA , Feminino , Humanos , Glutaminase/metabolismo , Glutaminase/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Endometriose/metabolismo , Endometriose/genética , Endometriose/patologia , Glutamina/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proliferação de Células , Adulto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica , Ligação Proteica
2.
Front Immunol ; 15: 1369289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756785

RESUMO

Background: This study aims to identify precise biomarkers for breast cancer to improve patient outcomes, addressing the limitations of traditional staging in predicting treatment responses. Methods: Our analysis encompassed data from over 7,000 breast cancer patients across 14 datasets, which included in-house clinical data and single-cell data from 8 patients (totaling 43,766 cells). We utilized an integrative approach, applying 10 machine learning algorithms in 54 unique combinations to analyze 100 existing breast cancer signatures. Immunohistochemistry assays were performed for empirical validation. The study also investigated potential immunotherapies and chemotherapies. Results: Our research identified five consistent glutamine metabolic reprogramming (GMR)-related genes from multi-center cohorts, forming the foundation of a novel GMR-model. This model demonstrated superior accuracy in predicting recurrence and mortality risks compared to existing clinical and molecular features. Patients classified as high-risk by the model exhibited poorer outcomes. IHC validation in 30 patients reinforced these findings, suggesting the model's broad applicability. Intriguingly, the model indicates a differential therapeutic response: low-risk patients may benefit more from immunotherapy, whereas high-risk patients showed sensitivity to specific chemotherapies like BI-2536 and ispinesib. Conclusions: The GMR-model marks a significant leap forward in breast cancer prognosis and the personalization of treatment strategies, offering vital insights for the effective management of diverse breast cancer patient populations.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Glutamina , Aprendizado de Máquina , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Feminino , Glutamina/metabolismo , Biomarcadores Tumorais/metabolismo , Prognóstico , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Transcriptoma , Reprogramação Metabólica
3.
J Mol Neurosci ; 74(2): 52, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724832

RESUMO

Treatment of glioblastoma multiforme (GBM) remains challenging. Unraveling the orchestration of glutamine metabolism may provide a novel viewpoint on GBM therapy. The study presented a full and comprehensive comprehending of the glutamine metabolism atlas and heterogeneity in GBM for facilitating the development of a more effective therapeutic choice. Transcriptome data from large GBM cohorts were integrated in this study. A glutamine metabolism-based classification was established through consensus clustering approach, and a classifier by LASSO analysis was defined for differentiating the classification. Prognosis, signaling pathway activity, tumor microenvironment, and responses to immune checkpoint blockade (ICB) and small molecular drugs were characterized in each cluster. A combinational therapy of glutaminase inhibitor CB839 with dihydroartemisinin (DHA) was proposed, and the influence on glutamine metabolism, apoptosis, reactive oxygen species (ROS), and migration was measured in U251 and U373 cells. We discovered that GBM presented heterogeneous glutamine metabolism-based clusters, with unique survival outcomes, activity of signaling pathways, tumor microenvironment, and responses to ICB and small molecular compounds. In addition, the classifier could accurately differentiate the two clusters. Strikingly, the combinational therapy of CB839 with DHA synergistically attenuated glutamine metabolism, triggered apoptosis and ROS accumulation, and impaired migrative capacity in GBM cells, demonstrating the excellent preclinical efficacy. Altogether, our findings unveil the glutamine metabolism heterogeneity in GBM and propose an innovative combination therapy of CB839 with DHA for this malignant disease.


Assuntos
Artemisininas , Neoplasias Encefálicas , Glioblastoma , Glutamina , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Humanos , Glutamina/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Glutaminase/metabolismo , Glutaminase/antagonistas & inibidores , Microambiente Tumoral , Apoptose , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Movimento Celular , Benzenoacetamidas/farmacologia , Benzenoacetamidas/uso terapêutico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia
4.
Commun Biol ; 7(1): 608, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769385

RESUMO

Diverse tumor metabolic phenotypes are influenced by the environment and genetic lesions. Whether these phenotypes extend to rhabdomyosarcoma (RMS) and how they might be leveraged to design new therapeutic approaches remains an open question. Thus, we utilized a Pax7Cre-ER-T2/+; NrasLSL-G12D/+; p53fl/fl (P7NP) murine model of sarcoma with mutations that most frequently occur in human embryonal RMS. To study metabolism, we infuse 13C-labeled glucose or glutamine into mice with sarcomas and show that sarcomas consume more glucose and glutamine than healthy muscle tissue. However, we reveal a marked shift from glucose consumption to glutamine metabolism after radiation therapy (RT). In addition, we show that inhibiting glutamine, either through genetic deletion of glutaminase (Gls1) or through pharmacological inhibition of glutaminase, leads to significant radiosensitization in vivo. This causes a significant increase in overall survival for mice with Gls1-deficient compared to Gls1-proficient sarcomas. Finally, Gls1-deficient sarcomas post-RT elevate levels of proteins involved in natural killer cell and interferon alpha/gamma responses, suggesting a possible role of innate immunity in the radiosensitization of Gls1-deficient sarcomas. Thus, our results indicate that glutamine contributes to radiation response in a mouse model of RMS.


Assuntos
Glutaminase , Glutamina , Sarcoma , Animais , Glutamina/metabolismo , Camundongos , Glutaminase/metabolismo , Glutaminase/genética , Glutaminase/antagonistas & inibidores , Sarcoma/metabolismo , Sarcoma/radioterapia , Sarcoma/genética , Glucose/metabolismo , Modelos Animais de Doenças , Tolerância a Radiação
5.
Gac Med Mex ; 160(1): 1-8, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753562

RESUMO

BACKGROUND: Protein interactions participate in many molecular mechanisms involved in cellular processes. The human TATA box binding protein (hTBP) interacts with Antennapedia (Antp) through its N-terminal region, specifically via its glutamine homopeptides. This PolyQ region acts as a binding site for other transcription factors under normal conditions, but when it expands, it generates spinocerebellar ataxia 17 (SCA17), whose protein aggregates in the brain prevent its correct functioning. OBJECTIVE: To determine whether the hTBP glutamine-rich region is involved in its interaction with homeoproteins and the role it plays in the formation of protein aggregates in SCA17. MATERIAL AND METHODS: We characterized hTBP interaction with other homeoproteins using BiFC, and modeled SCA17 in Drosophila melanogaster by targeting hTBPQ80 to the fly brain using UAS/GAL4. RESULTS: There was hTBP interaction with homeoproteins through its glutamine-rich region, and hTBP protein aggregates with expanded glutamines were found to affect the locomotor capacity of flies. CONCLUSIONS: The study of hTBP interactions opens the possibility for the search for new therapeutic strategies in neurodegenerative pathologies such as SCA17.


ANTECEDENTES: Las interacciones proteicas participan en una gran cantidad de mecanismos moleculares que rigen los procesos celulares. La proteína de unión a la caja TATA humana (hTBP) interacciona con Antennapedia (Antp) a través de su extremo N-terminal, específicamente a través de sus homopéptidos de glutaminas. Esta región PolyQ sirve como sitio de unión a factores de transcripción en condiciones normales, pero cuando se expande genera la ataxia espinal cerebelosa 17 (SCA17), cuyos agregados proteicos en el cerebro impiden su funcionamiento correcto. OBJETIVO: Determinar si la región rica en glutaminas de hTBP interviene en su interacción con homeoproteínas y el papel que tiene en la formación de agregados proteicos en SCA17. MATERIAL Y MÉTODOS: Se caracterizó la interacción de hTBP con otras homeoproteínas usando BiFC y se modeló SCA17 en Drosophila melanogaster dirigiendo hTBPQ80 al cerebro de las moscas usando UAS/GAL4. RESULTADOS: Existió interacción de hTBP con homeoproteínas a través de su región rica en glutaminas. Los agregados proteicos de hTBP con las glutaminas expandidas afectaron la capacidad locomotriz de las moscas. CONCLUSIONES: El estudio de las interacciones de hTBP abre la posibilidad para la búsqueda de nuevas estrategias terapéuticas en patologías neurodegenerativas como SCA17.


Assuntos
Modelos Animais de Doenças , Drosophila melanogaster , Ataxias Espinocerebelares , Proteína de Ligação a TATA-Box , Animais , Drosophila melanogaster/metabolismo , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/genética , Proteína de Ligação a TATA-Box/metabolismo , Proteína de Ligação a TATA-Box/genética , Humanos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Glutamina/metabolismo , Agregados Proteicos/fisiologia , Peptídeos/metabolismo , Encéfalo/metabolismo
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167152, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582012

RESUMO

Intrahepatic cholangiocarcinoma (ICC) is a kind of hepatobiliary tumor that is increasing in incidence and mortality. The gut microbiota plays a role in the onset and progression of cancer, however, the specific mechanism by which the gut microbiota acts on ICC remains unclear. In this study, feces and plasma from healthy controls and ICC patients were collected for 16S rRNA sequencing or metabolomics analysis. Gut microbiota analysis showed that gut microbiota abundance and biodiversity were altered in ICC patients compared with controls. Plasma metabolism analysis showed that the metabolite glutamine content of the ICC patient was significantly higher than that of the controls. KEGG pathway analysis showed that glutamine plays a vital role in ICC. In addition, the use of antibiotics in ICC animals further confirmed that changes in gut microbiota affect changes in glutamine. Further experiments showed that supplementation with glutamine inhibited ferroptosis and downregulated ALK5 and NOX1 expression in HuCCT1 cells. ALK5 overexpression or NOX1 overexpression increased NOX1, p53, PTGS2, ACSL4, LPCAT3, ROS, MDA and Fe2+ and decreased FTH1, SLC7A11 and GSH. Knockdown of NOX1 suppressed FIN56-induced ferroptosis. In vivo, supplementation with glutamine promoted tumor growth. Overexpression of ALK5 repressed tumor growth and induced ferroptosis in nude mice, which could be reversed by the addition of glutamine. Our results suggested that the gut microbiota altered glutamine metabolism to inhibit ferroptosis in ICC by regulating the ALK5/NOX1 axis.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Ferroptose , Microbioma Gastrointestinal , Glutamina , NADPH Oxidase 1 , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/microbiologia , Colangiocarcinoma/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Humanos , Glutamina/metabolismo , NADPH Oxidase 1/metabolismo , NADPH Oxidase 1/genética , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/microbiologia , Camundongos , Masculino , Linhagem Celular Tumoral , Receptores de Ativinas Tipo I/metabolismo , Receptores de Ativinas Tipo I/genética , Camundongos Nus , Feminino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptor do Fator de Crescimento Transformador beta Tipo I
7.
Biol Res ; 57(1): 13, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561846

RESUMO

BACKGROUND: Endometrial fibrosis, a significant characteristic of intrauterine adhesion (IUA), is caused by the excessive differentiation and activation of endometrial stromal cells (ESCs). Glutaminolysis is the metabolic process of glutamine (Gln), which has been implicated in multiple types of organ fibrosis. So far, little is known about whether glutaminolysis plays a role in endometrial fibrosis. METHODS: The activation model of ESCs was constructed by TGF-ß1, followed by RNA-sequencing analysis. Changes in glutaminase1 (GLS1) expression at RNA and protein levels in activated ESCs were verified experimentally. Human IUA samples were collected to verify GLS1 expression in endometrial fibrosis. GLS1 inhibitor and glutamine deprivation were applied to ESCs models to investigate the biological functions and mechanisms of glutaminolysis in ESCs activation. The IUA mice model was established to explore the effect of glutaminolysis inhibition on endometrial fibrosis. RESULTS: We found that GLS1 expression was significantly increased in activated ESCs models and fibrotic endometrium. Glutaminolysis inhibition by GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES or glutamine deprivation treatment suppressed the expression of two fibrotic markers, α-SMA and collagen I, as well as the mitochondrial function and mTORC1 signaling in ESCs. Furthermore, inhibition of the mTORC1 signaling pathway by rapamycin suppressed ESCs activation. In IUA mice models, BPTES treatment significantly ameliorated endometrial fibrosis and improved pregnancy outcomes. CONCLUSION: Glutaminolysis and glutaminolysis-associated mTOR signaling play a role in the activation of ESCs and the pathogenesis of endometrial fibrosis through regulating mitochondrial function. Glutaminolysis inhibition suppresses the activation of ESCs, which might be a novel therapeutic strategy for IUA.


Assuntos
Glutamina , Mitocôndrias , Feminino , Camundongos , Humanos , Animais , Glutamina/metabolismo , Fibrose , Mitocôndrias/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , RNA/metabolismo , Endométrio/metabolismo , Endométrio/patologia
8.
BMC Oral Health ; 24(1): 418, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580938

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy. The oncometabolites have been studied in OSCC, but the mechanism of metabolic reprogramming remains unclear. To identify the potential metabolic markers to distinguish malignant oral squamous cell carcinoma (OSCC) tissue from adjacent healthy tissue and study the mechanism of metabolic reprogramming in OSCC. We compared the metabolites between cancerous and paracancerous tissues of OSCC patients by 1HNMR analysis. We established OSCC derived cell lines and analyzed their difference of RNA expression by RNA sequencing. We investigated the metabolism of γ-aminobutyrate in OSCC derived cells by real time PCR and western blotting. Our data revealed that much more γ-aminobutyrate was produced in cancerous tissues of OSCC patients. The investigation based on OSCC derived cells showed that the increase of γ-aminobutyrate was promoted by the synthesis of glutamate beyond the mitochondria. In OSCC cancerous tissue derived cells, the glutamate was catalyzed to glutamine by glutamine synthetase (GLUL), and then the generated glutamine was metabolized to glutamate by glutaminase (GLS). Finally, the glutamate produced by glutamate-glutamine-glutamate cycle was converted to γ-aminobutyrate by glutamate decarboxylase 2 (GAD2). Our study is not only benefit for understanding the pathological mechanisms of OSCC, but also has application prospects for the diagnosis of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/patologia , Glutamina/genética , Glutamina/metabolismo , Reprogramação Metabólica , Glutamatos/genética , Glutamatos/metabolismo , Linhagem Celular Tumoral
9.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38622951

RESUMO

We determined apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of crude protein (CP) and amino acids (AA) in fermented soybean meal from five different sources (FSBM 1 to 5) in China when fed to mid and late-gestating sows. Twenty-four parity four sows (12 at 30 d in gestation and 12 at 80 d in gestation) were fitted with a T-cannula in the distal ileum and used in this experiment. Sows were randomly assigned to a replicated 6 × 3 Youden square design including six diets and three periods. Six diets were provided for sows in mid and late gestation, including a nitrogen-free diet and five test diets containing 26% FSBM from different sources. Results showed that there were differences in AID and SID of CP among the different FSBM samples, but no differences between sow physiological stages were observed. Specifically, when mid-gestating sows were fed FSBM 2, the AID of CP was the lowest, whereas FSBM 3 exhibited a greater AID of CP when compared to the other FSBM samples (P < 0.01). Furthermore, during late gestation, FSBM 3 consistently had greater SID of CP when compared to other FSBM samples (P < 0.01). The ileal digestibility of most AA varied with different FSBM samples. In both mid and late gestation, differences (P < 0.05) were observed for AID of lysine, tryptophan, histidine, and arginine across different FSBM samples. Similarly, the AID of dispensable AA (cysteine, glutamine, and serine) also exhibited differences (P < 0.05) across different FSBM samples in both mid and late-gestating sows. For mid-gestating sows, SID differences relating to lysine, phenylalanine, tryptophan, threonine, and arginine were observed among different diets (P < 0.05). In late-gestating sows, SID values for lysine, tryptophan, leucine, and arginine differed across diets (P < 0.05). Furthermore, the ileal digestibility of some dispensable AA was influenced by physiological stage, as evidenced by greater AID and SID values for glycine, glutamine, cysteine, and serine in late-gestating sows when compared to mid-gestating sows (P < 0.01). In summary, our study determined AA ileal digestibility of different FSBM fed to mid and late-gestating sows. We observed that the AA ileal digestibility differed among five FSBM samples, but the physiological stage of sows did not affect the ileal digestibility of CP and most AA. Additionally, when formulating diets for sows, it is crucial to consider the nutritional value differences of FSBM.


Fermented soybean meal (FSBM) is obtained from the microbial fermentation of soybean meal, which reduces anti-nutritional factor levels and enhances other nutrient content. Substituting soybean meal with FSBM in piglet and growing pig diets improves nutrient digestibility. However, its nutritional value for sows remains unclear. Therefore, five sources of FSBM were fed to sows in mid and late gestation to evaluate apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of amino acids (AA). We found that different FSBM samples impacted the SID value of AA when fed to gestating sows. Additionally, sow physiological stage influenced the SID of some dispensable AA. These findings provide valuable insights into the incorporation of FSBM into sow diets.


Assuntos
Aminoácidos , Alimentos Fermentados , Suínos , Animais , Feminino , Gravidez , Aminoácidos/metabolismo , Digestão/fisiologia , Glutamina/metabolismo , Triptofano/metabolismo , Cisteína/metabolismo , Lisina/metabolismo , Glycine max , Dieta/veterinária , Arginina/metabolismo , Serina , Ração Animal/análise , Íleo/metabolismo , Fenômenos Fisiológicos da Nutrição Animal
10.
Cell Mol Life Sci ; 81(1): 170, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597976

RESUMO

In our prior investigation, we discerned loss-of-function variants within the gene encoding glutamine-rich protein 2 (QRICH2) in two consanguineous families, leading to various morphological abnormalities in sperm flagella and male infertility. The Qrich2 knockout (KO) in mice also exhibits multiple morphological abnormalities of the flagella (MMAF) phenotype with a significantly decreased sperm motility. However, how ORICH2 regulates the formation of sperm flagella remains unclear. Abnormal glutamylation levels of tubulin cause dysplastic microtubules and flagella, eventually resulting in the decline of sperm motility and male infertility. In the current study, by further analyzing the Qrich2 KO mouse sperm, we found a reduced glutamylation level and instability of tubulin in Qrich2 KO mouse sperm flagella. In addition, we found that the amino acid metabolism was dysregulated in both testes and sperm, leading to the accumulated glutamine (Gln) and reduced glutamate (Glu) concentrations, and disorderly expressed genes responsible for Gln/Glu metabolism. Interestingly, mice fed with diets devoid of Gln/Glu phenocopied the Qrich2 KO mice. Furthermore, we identified several mitochondrial marker proteins that could not be correctly localized in sperm flagella, which might be responsible for the reduced mitochondrial function contributing to the reduced sperm motility in Qrich2 KO mice. Our study reveals a crucial role of a normal Gln/Glu metabolism in maintaining the structural stability of the microtubules in sperm flagella by regulating the glutamylation levels of the tubulin and identifies Qrich2 as a possible novel Gln sensor that regulates microtubule glutamylation and mitochondrial function in mouse sperm.


Assuntos
Glutamina , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Ácido Glutâmico , Infertilidade Masculina/genética , Camundongos Knockout , Microtúbulos , Mitocôndrias , Proteínas Mitocondriais , Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Tubulina (Proteína)
11.
Discov Med ; 36(183): 836-841, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665031

RESUMO

BACKGROUND: Over 80% of lung cancer cases constitute non-small cell lung cancer (NSCLC), making it the most prevalent type of lung cancer globally and the leading cause of cancer-related deaths. The treatment of NSCLC patients with gefitinib has demonstrated promising initial efficacy. However, the underlying mechanism remains unclear. This study aims to investigate how gefitinib affects the mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway-mediated growth and death of NSCLC cells. METHODS: In this study, the NSCLC cell line A549 was cultured in vitro and divided into a control group and a gefitinib group. The viability of the A549 cells was assessed using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Flow cytometry was employed to detect apoptosis in A549 cells, and the expression of glutamate dehydrogenase (GDH1) mRNA in these cells was determined using real-time quantitative PCR (RT-PCR). Western blotting was utilized to evaluate the protein expression levels of key components in the MEK/ERK signaling pathway, including phospho-MEK1/2, MEK1/2, phospho-ERK1/2, and ERK1/2. Additionally, intracellular glutamine content in A549 cells was measured using a colorimetric method. RESULTS: In contrast to the control group, the proliferation of A549 cells, the transcription level of glutamate dehydrogenase (GDH1), the intracellular glutamine content, and the protein expression levels of phospho-MEK1/2 and phospho-ERK1/2 were significantly lower in the gefitinib group. Moreover, apoptosis markedly increased. CONCLUSIONS: Gefitinib expedites apoptosis and diminishes proliferation in the NSCLC cell line A549 by downregulating the epidermal growth factor receptor (EGFR)/MEK/ERK signaling pathway. This effect is accomplished by fostering the expression of GDH1 to augment glutaminolysis in A549 cells.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Gefitinibe , Glutamina , Neoplasias Pulmonares , Sistema de Sinalização das MAP Quinases , Humanos , Gefitinibe/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Células A549 , Glutamina/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Glutamato Desidrogenase/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral
12.
Mol Nutr Food Res ; 68(9): e2300704, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38656560

RESUMO

SCOPE: This study investigates the potential of glutamine to mitigate intestinal mucositis and dysbiosis caused by the chemotherapeutic agent 5-fluorouracil (5-FU). METHODS AND RESULTS: Over twelve days, Institute of Cancer Research (ICR) mice are given low (0.5 mg kg-1) or high (2 mg kg-1) doses of L-Glutamine daily, with 5-FU (50 mg kg-1) administered between days six and nine. Mice receiving only 5-FU exhibited weight loss, diarrhea, abnormal cell growth, and colonic inflammation, correlated with decreased mucin proteins, increased endotoxins, reduced fecal short-chain fatty acids, and altered gut microbiota. Glutamine supplementation counteracted these effects by inhibiting the Toll-like receptor 4/nuclear factor kappa B (TLR4/NF-κB) pathway, modulating nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) oxidative stress proteins, and increasing mammalian target of rapamycin (mTOR) levels, thereby enhancing microbial diversity and protecting intestinal mucosa. CONCLUSIONS: These findings underscore glutamine's potential in preventing 5-FU-induced mucositis by modulating gut microbiota and inflammation pathways.


Assuntos
Fluoruracila , Microbioma Gastrointestinal , Glutamina , Mucosa Intestinal , Mucosite , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Fluoruracila/efeitos adversos , Glutamina/farmacologia , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos ICR , Masculino , Receptor 4 Toll-Like/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Disbiose/induzido quimicamente , Disbiose/tratamento farmacológico , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Antimetabólitos Antineoplásicos/efeitos adversos , Heme Oxigenase-1/metabolismo
13.
Nat Commun ; 15(1): 3534, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670989

RESUMO

Glutamine synthetase (GS) is vital in maintaining ammonia and glutamate (Glu) homeostasis in living organisms. However, the natural enzyme relies on adenosine triphosphate (ATP) to activate Glu, resulting in impaired GS function during ATP-deficient neurotoxic events. To date, no reports demonstrate using artificial nanostructures to mimic GS function. In this study, we synthesize aggregation-induced emission active polyP-Mn nanosheets (STPE-PMNSs) based on end-labeled polyphosphate (polyP), exhibiting remarkable GS-like activity independent of ATP presence. Further investigation reveals polyP in STPE-PMNSs serves as phosphate source to activate Glu at low ATP levels. This self-feeding mechanism offers a significant advantage in regulating Glu homeostasis at reduced ATP levels in nerve cells during excitotoxic conditions. STPE-PMNSs can effectively promote the conversion of Glu to glutamine (Gln) in excitatory neurotoxic human neuroblastoma cells (SH-SY5Y) and alleviate Glu-induced neurotoxicity. Additionally, the fluorescence signal of nanosheets enables precise monitoring of the subcellular distribution of STPE-PMNSs. More importantly, the intracellular fluorescence signal is enhanced in a conversion-responsive manner, allowing real-time tracking of reaction progression. This study presents a self-sustaining strategy to address GS functional impairment caused by ATP deficiency in nerve cells during neurotoxic events. Furthermore, it offers a fresh perspective on the potential biological applications of polyP-based nanostructures.


Assuntos
Trifosfato de Adenosina , Glutamato-Amônia Ligase , Ácido Glutâmico , Glutamina , Manganês , Nanoestruturas , Neurônios , Polifosfatos , Glutamato-Amônia Ligase/metabolismo , Humanos , Polifosfatos/química , Polifosfatos/metabolismo , Polifosfatos/farmacologia , Nanoestruturas/química , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Glutamina/metabolismo , Manganês/metabolismo , Manganês/química , Materiais Biocompatíveis/química
14.
Nat Commun ; 15(1): 3445, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658533

RESUMO

Mutations in isocitrate dehydrogenases (IDH) are oncogenic events due to the generation of oncogenic metabolite 2-hydroxyglutarate. However, the role of wild-type IDH in cancer development remains elusive. Here we show that wild-type IDH2 is highly expressed in triple negative breast cancer (TNBC) cells and promotes their proliferation in vitro and tumor growth in vivo. Genetic silencing or pharmacological inhibition of wt-IDH2 causes a significant increase in α-ketoglutarate (α-KG), indicating a suppression of reductive tricarboxylic acid (TCA) cycle. The aberrant accumulation of α-KG due to IDH2 abrogation inhibits mitochondrial ATP synthesis and promotes HIF-1α degradation, leading to suppression of glycolysis. Such metabolic double-hit results in ATP depletion and suppression of tumor growth, and renders TNBC cells more sensitive to doxorubicin treatment. Our study reveals a metabolic property of TNBC cells with active utilization of glutamine via reductive TCA metabolism, and suggests that wild-type IDH2 plays an important role in this metabolic process and could be a potential therapeutic target for TNBC.


Assuntos
Proliferação de Células , Ciclo do Ácido Cítrico , Isocitrato Desidrogenase , Ácidos Cetoglutáricos , Neoplasias de Mama Triplo Negativas , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Feminino , Animais , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ácidos Cetoglutáricos/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Glutamina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Mutação
15.
J Cancer Res Clin Oncol ; 150(4): 211, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662258

RESUMO

BACKGROUND: Circular ribose nucleic acids (circRNAs), an abundant type of noncoding RNAs, are widely expressed in eukaryotic cells and exert a significant impact on the initiation and progression of various disorders, including different types of cancer. However, the specific role of various circRNAs in colorectal cancer (CRC) pathology is still not fully understood. METHODS: The initial step involved the use of quantitative reverse transcription polymerase chain reaction (RT-qPCR) to assess the expression levels of circRNAs and messenger RNA (mRNA) in CRC cell lines and tissues. Subsequently, functional analyses of circCOL1A1 knockdown were conducted in vitro and in vivo through cell counting kit (CCK)-8, colony formation and transwell assays, as well as xenograft mouse model of tumor formation. Molecular expression and interactions were investigated using luciferase reporter assays, Western blot analysis, RNA immunoprecipitation (RIP), and immunohistochemical staining. RESULTS: The RT-qPCR results revealed elevated levels of circCOL1A1 expressions in CRC tissues and cell lines as compared to the normal counterparts. In addition, circCOL1A1 expression level was found to be correlated with TNM stage, lymph node metastases, distant metastases, and invasion. Knockdown of circCOL1A1 resulted in impaired invasion, migration, and proliferation of CRC cells, and suppressed tumor generation in the animal model. We further demonstrated that circCOL1A1 could act as a sponge for miR-214-3p, suppressing miR-214-3p activity and leading to the upregulation of GLS1 protein to promote glutamine metabolism. CONCLUSION: These findings suggest that circCOL1A1 functions as an oncogenic molecule to promote CRC progression via miR-214-3p/GLS1 axis, hinting on the potential of circCOL1A1 as a therapeutic target for CRC.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Colorretais , Glutaminase , Glutamina , MicroRNAs , Invasividade Neoplásica , RNA Circular , Regulação para Cima , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , RNA Circular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Exp Mol Med ; 56(4): 1013-1026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38684915

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent because it kills cancer cells while sparing normal cells. However, many cancers, including pancreatic ductal adenocarcinoma (PDAC), exhibit intrinsic or acquired resistance to TRAIL, and the molecular mechanisms underlying TRAIL resistance in cancers, particularly in PDAC, remain unclear. In this study, we demonstrated that glutamine (Gln) endows PDAC cells with resistance to TRAIL through KDM4C-mediated epigenetic regulation of cFLIP. Inhibition of glutaminolysis significantly reduced the cFLIP level, leading to TRAIL-mediated formation of death-inducing signaling complexes. Overexpression of cFLIP dramatically rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Alpha-Ketoglutarate (aKG) supplementation significantly reversed the decrease in the cFLIP level induced by glutaminolysis inhibition and rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Knockdown of glutamic-oxaloacetic transaminase 2, which facilitates the conversion of oxaloacetate and glutamate into aspartate and aKG, decreased aKG production and the cFLIP level and activated TRAIL-induced apoptosis. AKG-mediated epigenetic regulation was necessary for maintaining a high level of cFLIP. Glutaminolysis inhibition increased the abundance of H3K9me3 in the cFLIP promoter, indicating that Gln-derived aKG production is important for Jumonji-domain histone demethylase (JHDM)-mediated cFLIP regulation. The JHDM KDM4C regulated cFLIP expression by binding to its promoter, and KDM4C knockdown sensitized PDAC cells to TRAIL-induced apoptosis. The present findings suggest that Gln-derived aKG production is required for KDM4C-mediated epigenetic regulation of cFLIP, which leads to resistance to TRAIL.


Assuntos
Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glutamina , Histona Desmetilases com o Domínio Jumonji , Neoplasias Pancreáticas , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Glutamina/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ácidos Cetoglutáricos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Aspartato Aminotransferase Citoplasmática/metabolismo , Aspartato Aminotransferase Citoplasmática/genética , Animais , Regiões Promotoras Genéticas
17.
Endocr Regul ; 58(1): 91-100, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656254

RESUMO

Objective. Glucose and glutamine supply as well as serine synthesis and endoplasmic reticulum (ER) stress are important factors of glioblastoma growth. Previous studies showed that the knockdown of ERN1 (ER to nucleus signaling 1) suppressed glioblastoma cell proliferation and modified the sensitivity of numerous gene expressions to nutrient deprivations. The present study is aimed to investigate the impact of glucose and glutamine deprivations on the expression of serine synthesis genes in U87MG glioblastoma cells in relation to ERN1 knockdown with the intent to reveal the role of ERN1 signaling pathway on the ER stress-dependent regulation of these gene expressions. Clarification of the regulatory mechanisms of serine synthesis is a great significance for glioblastoma therapy. Methods. The control U87MG glioblastoma cells (transfected by empty vector) and ERN1 knockdown cells (transfected by dominant-negative ERN1) were exposed under glucose and glutamine deprivation conditions for 16 h. RNA was extracted from cells and reverse transcribed. The expression level of PHGDH (phosphoglycerate dehydrogenase), PSAT1 (phosphoserine amino-transferase 1), PSPH (phosphoserine phosphatase), ATF4 (activating transcription factor 4), and SHMT1 (serine hydroxymethyltransferase 1) genes was studied by real-time qPCR and normalized to ACTB. Results. It was found that the expression level of genes responsible for serine synthesis such as PHGDH, PSAT1, PSPH, and transcription factor ATF4 was up-regulated in U87MG glioblastoma cells under glucose and glutamine deprivations. Furthermore, inhibition of ERN1 significantly enhances the impact of glucose and especially glutamine deprivations on these gene expressions. At the same time, the expression of the SHMT1 gene, which is responsible for serine conversion to glycine, was down-regulated in both nutrient deprivation conditions with more significant changes in ERN1 knockdown glioblastoma cells. Conclusion. Taken together, the results of present study indicate that the expression of genes responsible for serine synthesis is sensitive to glucose and glutamine deprivations in gene-specific manner and that suppression of ERN1 signaling significantly modifies the impact of both glucose and glutamine deprivations on PHGDH, PSAT1, PSPH, ATF4, and SHMT1 gene expressions and reflects the ERN1-mediated genome reprograming introduced by nutrient deprivation condition.


Assuntos
Endorribonucleases , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Glucose , Glutamina , Fosfoglicerato Desidrogenase , Monoéster Fosfórico Hidrolases , Proteínas Serina-Treonina Quinases , Serina , Transaminases , Humanos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Serina/biossíntese , Transdução de Sinais
18.
Environ Toxicol ; 39(6): 3448-3472, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38450906

RESUMO

BACKGROUND: Globally, breast cancer, with diverse subtypes and prognoses, necessitates tailored therapies for enhanced survival rates. A key focus is glutamine metabolism, governed by select genes. This study explored genes associated with T cells and linked them to glutamine metabolism to construct a prognostic staging index for breast cancer patients for more precise medical treatment. METHODS: Two frameworks, T-cell related genes (TRG) and glutamine metabolism (GM), stratified breast cancer patients. TRG analysis identified key genes via hdWGCNA and machine learning. T-cell communication and spatial transcriptomics emphasized TRG's clinical value. GM was defined using Cox analyses and the Lasso algorithm. Scores categorized patients as TRG_high+GM_high (HH), TRG_high+GM_low (HL), TRG_low+GM_high (LH), or TRG_low+GM_low (LL). Similarities between HL and LH birthed a "Mixed" class and the TRG_GM classifier. This classifier illuminated gene variations, immune profiles, mutations, and drug responses. RESULTS: Utilizing a composite of two distinct criteria, we devised a typification index termed TRG_GM classifier, which exhibited robust prognostic potential for breast cancer patients. Our analysis elucidated distinct immunological attributes across the classifiers. Moreover, by scrutinizing the genetic variations across groups, we illuminated their unique genetic profiles. Insights into drug sensitivity further underscored avenues for tailored therapeutic interventions. CONCLUSION: Utilizing TRG and GM, a robust TRG_GM classifier was developed, integrating clinical indicators to create an accurate predictive diagnostic map. Analysis of enrichment disparities, immune responses, and mutation patterns across different subtypes yields crucial subtype-specific characteristics essential for prognostic assessment, clinical decision-making, and personalized therapies. Further exploration is warranted into multiple fusions between metrics to uncover prognostic presentations across various dimensions.


Assuntos
Neoplasias da Mama , Análise de Célula Única , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Prognóstico , Glutamina , Antineoplásicos/uso terapêutico , Medicina de Precisão , Genômica , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
19.
Sci Adv ; 10(13): eado7808, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536918

RESUMO

The glutamine antagonist DRP-104 blocks purine synthesis and combines with checkpoint inhibitors to promote antitumor immunity in KEAP1/NRF2-mutant lung cancers.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Proteína 1 Associada a ECH Semelhante a Kelch , Glutamina , Fator 2 Relacionado a NF-E2/metabolismo
20.
Sci Adv ; 10(13): eadm9859, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536921

RESUMO

Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Glutamina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Inibidores Enzimáticos/uso terapêutico , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA