Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Life Sci ; 291: 120274, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34990648

RESUMO

AIMS: The purpose of this study was to evaluate the heterogeneities of glutamine metabolism in EGFR-TKI-resistant lung cancer cells and its potential as a therapeutic target. MAIN METHODS: Cell proliferation and cell cycle assays was performed by IncuCyte real-time analysis and flow cytometry, respectively. Tumor growth was assessed in xenografts implanted with HCC827 GR. An isotopologue analysis was conducted by LC-MS/MS using 13C-(U)-glutamine labeling to determine the amounts of metabolites. Cellular ATP and mitochondrial oxidative phosphorylation were determined by XFp analysis. KEY FINDINGS: We found that the cell growth of the two acquired EGFR-TKI-resistant lung cancer cells lines (HCC827 GR and H292 ER) depends on glutamine. In HCC827 GR, glutamine deficiency caused reduced GSH synthesis and, subsequently, enhanced ROS generation relative to their parental cells, HCC827. On the other hand, in H292 ER, glutamine mainly acted as a carbon source for TCA-cycle intermediates, and its depletion led to reduced mitochondrial ATP production. CB-839, a specific GLS inhibitor, inhibited the latter's conversion of glutamine to glutamate and exerted enhanced anti-proliferating effects on the two acquired EGFR-TKI-resistant lung cancer cell lines versus their parental cell lines. Moreover, oral administration of CB-839 significantly suppressed HCC827 GR tumor growth in the xenograft model. SIGNIFICANCE: These findings suggest that glutamine dependency in acquired EGFR-TKI-resistant lung cancer is heterogeneous and that inhibition of glutamine metabolism by CB-839 may serve as a therapeutic tool for acquired EGFR-TKI-resistant lung cancer.


Assuntos
Benzenoacetamidas/farmacologia , Glutamina/metabolismo , Neoplasias Pulmonares/metabolismo , Tiadiazóis/farmacologia , Apoptose/efeitos dos fármacos , Benzenoacetamidas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Glutamina/fisiologia , Humanos , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Espectrometria de Massas em Tandem/métodos , Tiadiazóis/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biochem Biophys Res Commun ; 533(3): 424-428, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32972751

RESUMO

Nutrient stress driven by glutamine deficiency activates EGFR signaling in a subset of KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) cells. EGFR signaling in the context of glutamine starvation is thought to be instigated by the transcriptional upregulation of EGFR ligands and functions as an adaptation mechanism to allow PDAC cells to maintain metabolic fitness. Having a clear view of the intricate signaling cascades potentiated by the metabolic induction of EGFR is important in understanding how these effector pathways influence cancer progression. In this study, we examined the complex signaling that occurs in PDAC cells when EGFR is activated by glutamine deprivation. We elucidate that the metabolic activation of EGFR is principally mediated by HB-EGF, and that other members of the ErbB receptor tyrosine kinase family are not activated by glutamine starvation. Additionally, we determine that glutamine depletion-driven EGFR signaling is associated with a specific receptor phosphorylation known to participate in a feedback loop, a process that is dependent on Erk. Lastly, we determine that K-Ras is required for glutamine depletion-induced Erk activation, as well as EGFR feedback phosphorylation, but is dispensable for Akt activation. These data provide important insights into the regulation of EGFR signaling in the context of metabolic stresses.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Carcinoma Ductal Pancreático/enzimologia , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Retroalimentação Fisiológica , Glutamina/fisiologia , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
3.
Biochem Biophys Res Commun ; 533(3): 437-441, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32972756

RESUMO

The interplay between nutrient scarcity and signal transduction circuits is an important aspect of tumorigenesis that regulates many aspects of cancer progression. Glutamine is a critical nutrient for cancer cells, as it contributes to biosynthetic reactions that sustain cancer proliferation and growth. In tumors, because nutrient utilization can often outpace supply, glutamine levels can become limiting and oncogene-mediated metabolic rewiring triggers signaling cascades that support nutrient stress survival. Recently, we identified that in pancreatic ductal adenocarcinoma (PDAC) cells, glutamine depletion can trigger p21-activated kinase (Pak) activation through EGFR signaling as a means to circumvent metabolic stress. Here, we elucidate that glutamine starvation, as well EGF stimulation, can enhance the presence of many different Pak phosphoforms, and that this activation only occurs in a subset of PDAC cells. Pak is a well-established effector of Rac1, and while Rac1 mutant variants can modulate the metabolic induction of Pak phosphorylation, Rac1 inhibition only partially attenuates Pak activation upon glutamine depletion. We decipher that in order to efficiently suppress metabolic activation of Pak, both EGFR and Rac1 signaling must be inhibited. These results provide a mechanistic understanding of how glutamine-regulated signal transduction can control Pak activation in PDAC cells.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Carcinoma Ductal Pancreático/enzimologia , Ativação Enzimática , Glutamina/fisiologia , Humanos , Isoenzimas/metabolismo , Nutrientes , Neoplasias Pancreáticas/enzimologia , Fosforilação , Células Tumorais Cultivadas
4.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31748393

RESUMO

Viruses may hijack glycolysis, glutaminolysis, or fatty acid ß-oxidation of host cells to provide the energy and macromolecules required for efficient viral replication. Marek's disease virus (MDV) causes a deadly lymphoproliferative disease in chickens and modulates metabolism of host cells. Metabolic analysis of MDV-infected chicken embryonic fibroblasts (CEFs) identified elevated levels of metabolites involved in glutamine catabolism, such as glutamic acid, alanine, glycine, pyrimidine, and creatine. In addition, our results demonstrate that glutamine uptake is elevated by MDV-infected cells in vitro Although glutamine, but not glucose, deprivation significantly reduced cell viability in MDV-infected cells, both glutamine and glucose were required for virus replication and spread. In the presence of minimum glutamine requirements based on optimal cell viability, virus replication was partially rescued by the addition of the tricarboxylic acid (TCA) cycle intermediate, α-ketoglutarate, suggesting that exogenous glutamine is an essential carbon source for the TCA cycle to generate energy and macromolecules required for virus replication. Surprisingly, the inhibition of carnitine palmitoyltransferase 1a (CPT1a), which is elevated in MDV-infected cells, by chemical (etomoxir) or physiological (malonyl-CoA) inhibitors, did not reduce MDV replication, indicating that MDV replication does not require fatty acid ß-oxidation. Taken together, our results demonstrate that MDV infection activates anaplerotic substrate from glucose to glutamine to provide energy and macromolecules required for MDV replication, and optimal MDV replication occurs when the cells do not depend on mitochondrial ß-oxidation.IMPORTANCE Viruses can manipulate host cellular metabolism to provide energy and essential biosynthetic requirements for efficient replication. Marek's disease virus (MDV), an avian alphaherpesvirus, causes a deadly lymphoma in chickens and hijacks host cell metabolism. This study provides evidence for the importance of glycolysis and glutaminolysis, but not fatty acid ß-oxidation, as an essential energy source for the replication and spread of MDV. Moreover, it suggests that in MDV infection, as in many tumor cells, glutamine is used for generation of energetic and biosynthetic requirements of the MDV infection, while glucose is used biosynthetically.


Assuntos
Glucose/metabolismo , Glutamina/metabolismo , Mardivirus/fisiologia , Alphaherpesvirinae/metabolismo , Alphaherpesvirinae/fisiologia , Animais , Embrião de Galinha , Galinhas/virologia , Glucose/fisiologia , Glutamina/fisiologia , Glicólise/fisiologia , Herpesvirus Galináceo 2/metabolismo , Herpesvirus Galináceo 2/fisiologia , Mardivirus/metabolismo , Doença de Marek/metabolismo , Doença de Marek/virologia , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
5.
Neurochem Int ; 129: 104505, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31310779

RESUMO

The green tea amino acid theanine is abundant in green tea rather than black and oolong teas, which are all made of the identical tea plant "Chanoki" (Camellia sinensis). Theanine has a molecular structure close to glutamine (GLN) compared to glutamic acid (Glu), in terms of the absence of a free carboxylic acid moiety from the gamma carbon position. Theanine efficiently inhibits [3H]GLN uptake without affecting [3H]Glu uptake in rat brain synaptosomes. In contrast to GLN, however, theanine markedly stimulates the abilities to replicate and to commit to a neuronal lineage following prolonged exposure in cultured neural progenitor cells (NPCs) prepared from embryonic and adult rodent brains. Upregulation of transcript expression is found for one of the GLN transporter isoforms, Slc38a1, besides the promotion of both proliferation and neuronal commitment along with acceleration of the phosphorylation of mechanistic target of rapamycin (mTOR) and relevant downstream proteins, in murine NPCs cultured with theanine. Stable overexpression of Slc38a1 similarly facilitates both cellular replication and neuronal commitment in pluripotent embryonic carcinoma P19 cells. In P19 cells with stable overexpression of Slc38a1, marked phosphorylation is seen for mTOR and downstream proteins in a manner insensitive to further additional phosphorylation by theanine. Taken together, theanine would exhibit a novel pharmacological property to up-regulate Slc38a1 expression for activation of the intracellular mTOR signaling pathway required for neurogenesis after sustained exposure in undifferentiated NPCs in the brain. In this review, a novel neurogenic property of the green tea amino acid theanine is summarized for embryonic and adult neurogenesis with a focus on the endogenous amino acid GLN on the basis of our accumulating evidence to date.


Assuntos
Encéfalo/efeitos dos fármacos , Glutamatos/farmacologia , Glutamina/fisiologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Sistema A de Transporte de Aminoácidos/fisiologia , Animais , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/prevenção & controle , Método Duplo-Cego , Previsões , Glutamatos/química , Glutamatos/uso terapêutico , Glutamina/química , Hipocampo/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Transgênicos , Transtornos do Humor/tratamento farmacológico , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Fosforilação/efeitos dos fármacos , Fitoterapia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ensaios Clínicos Controlados Aleatórios como Assunto , Ratos , Transtornos do Sono-Vigília/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Chá/química
6.
Zhonghua Wei Chang Wai Ke Za Zhi ; 20(4): 450-454, 2017 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-28440528

RESUMO

OBJECTIVE: To investigate the effect of ASCT2 gene (glutamine transporter) knock-down by shRNA on biological behaviors of colorectal cancer cells. METHODS: shRNA was transfected into colorectal cancer cells Lovo and SW480 to knockdown ASCT2 mediated by Lipofectamine 2000. Reverse transcription-PCR and Western blot were used to examine the mRNA and protein expression of ASCT2. MTT and transwell assay were used to determine the proliferation and invasiveness of Lovo and SW480 cells. Radioactive-tracer was used to detect the uptake of glutamine. RESULTS: ASCT2 mRNA and protein levels were significantly down-regulated by shRNA in Lovo and SW480 cells(P<0.01). MTT and transwell assays showed that ASCT2 knock-down could significantly inhibit the proliferation of Lovo and SW480 cells (A490) and decrease the number of invasive Lovo and SW480 cells from the membrane (both P<0.01). The number of membrane Lovo cells in shASCT group and control group was 46.3±5.9 and 197.7±9.1, respectively while the number of membrane SW480 cells in shASCT group and control group was 29.7±3.8 and 139.0±9.5, respectively. Radioactive-tracer showed that shASCT2 transfection could significantly reduce the uptake of glutamine, with an inhibition rate of 79.15% in Lovo and 67.22% in SW480 cells (both P<0.01). CONCLUSIONS: ASCT2 plays an oncogenic role in colonic cancer, and its promotion mechanism may be associated with glutamine metabolism. ASCT2 may be a novel therapeutic target of colonic cancer.


Assuntos
Sistema ASC de Transporte de Aminoácidos/efeitos dos fármacos , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/fisiologia , Proliferação de Células/genética , Neoplasias Colorretais/genética , Glutamina/efeitos dos fármacos , Antígenos de Histocompatibilidade Menor/efeitos dos fármacos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/fisiologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/fisiopatologia , Linhagem Celular Tumoral/fisiologia , Neoplasias Colorretais/fisiopatologia , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes/métodos , Glutamina/genética , Glutamina/fisiologia , Humanos , Oncogenes/efeitos dos fármacos , Oncogenes/genética , RNA Mensageiro/fisiologia , RNA Interferente Pequeno/farmacologia , Transfecção
7.
J Biol Chem ; 290(13): 8348-59, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25697355

RESUMO

Cancer cells that escape induction therapy are a major cause of relapse. Understanding metabolic alterations associated with drug resistance opens up unexplored opportunities for the development of new therapeutic strategies. Here, we applied a broad spectrum of technologies including RNA sequencing, global untargeted metabolomics, and stable isotope labeling mass spectrometry to identify metabolic changes in P-glycoprotein overexpressing T-cell acute lymphoblastic leukemia (ALL) cells, which escaped a therapeutically relevant daunorubicin treatment. We show that compared with sensitive ALL cells, resistant leukemia cells possess a fundamentally rewired central metabolism characterized by reduced dependence on glutamine despite a lack of expression of glutamate-ammonia ligase (GLUL), a higher demand for glucose and an altered rate of fatty acid ß-oxidation, accompanied by a decreased pantothenic acid uptake capacity. We experimentally validate our findings by selectively targeting components of this metabolic switch, using approved drugs and starvation approaches followed by cell viability analyses in both the ALL cells and in an acute myeloid leukemia (AML) sensitive/resistant cell line pair. We demonstrate how comparative metabolomics and RNA expression profiling of drug-sensitive and -resistant cells expose targetable metabolic changes and potential resistance markers. Our results show that drug resistance is associated with significant metabolic costs in cancer cells, which could be exploited using new therapeutic strategies.


Assuntos
Antineoplásicos/farmacologia , Daunorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Glutamina/fisiologia , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Linhagem Celular Tumoral , Ciclosporinas/farmacologia , Sinergismo Farmacológico , Enoil-CoA Hidratase/metabolismo , Ácidos Graxos/biossíntese , Glicólise , Humanos , Leucemia , Metaboloma , Oxirredução , Ácido Pantotênico/metabolismo , Perexilina/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Racemases e Epimerases/metabolismo , Transcriptoma
8.
Oncogene ; 34(30): 4005-10, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25284589

RESUMO

Cellular transformation is associated with altered glutamine (Gln) metabolism. Tumor cells utilize Gln in the tricarboxylic acid (TCA) cycle to maintain sufficient pools of biosynthetic precursors to support rapid growth and proliferation. However, Gln metabolism also generates NADPH, and Gln-derived glutamate is used for synthesis of glutathione (GSH). As both NADPH and GSH are antioxidants, Gln may also contribute to redox balance in transformed cells. The Hace1 E3 ligase is a tumor suppressor inactivated in diverse human cancers. Hace1 targets the Rac1 GTPase for degradation at Rac1-dependent NADPH oxidase complexes, blocking superoxide generation by the latter. Consequently, loss of Hace1 increases reactive oxygen species (ROS) levels in vitro and in vivo. Given the link between Hace1 loss and increased ROS, we investigated whether genetic inactivation of Hace1 alters Gln metabolism. We demonstrate that mouse embryonic fibroblasts (MEFs) derived from Hace1(-/-) mice are highly sensitive to Gln withdrawal, leading to enhanced cell death compared with wild-type (wt) MEFs, and Gln depletion or chemical inhibition of Gln uptake blocks soft agar colony formation by Hace1(-/-) MEFs. Hace1(-/-) MEFs exhibit increased Gln uptake and ammonia secretion, and metabolic labeling using (13)C-Gln revealed that Hace1 loss increases incorporation of Gln carbons into the TCA cycle intermediates. Gln starvation markedly increases ROS levels in Hace1(-/-) but not in wt MEFs, and treatment with the antioxidant N-acetyl cysteine or the TCA cycle intermediate oxaloacetate efficiently rescues Gln starvation-induced ROS elevation and cell death in Hace1(-/-) MEFs. Finally, Gln starvation increases superoxide levels in Hace1(-/-) MEFs, and NADPH oxidase inhibitors block the induction of superoxide and cell death by Gln starvation. Together, these results suggest that increased ROS production due to Hace1 loss leads to Gln addiction as a mechanism to cope with increased ROS-induced oxidative stress.


Assuntos
Glutamina/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Animais , Apoptose , Células Cultivadas , Camundongos Knockout , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
Inflamm Res ; 63(5): 347-56, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24413629

RESUMO

OBJECTIVE: To investigate whether glutamine deprivation induces expression of inflammatory cytokine interleukin-8 (IL-8) by determining NF-κB activity and levels of oxidative indices (ROS, reactive oxygen species; hydrogen peroxide; GSH, glutathione) in fibroblasts isolated from patients with ataxia telangiectasia (A-T). MATERIALS: We used A-T fibroblasts stably transfected with empty vector (Mock) or with human full-length ataxia telangiectasia mutated (ATM) cDNA (YZ5) and mouse embryonic fibroblasts (MEFs) transiently transfected with ATM small interfering RNA (siRNA) or with non-specific control siRNA. TREATMENT: The cells were cultured with or without glutamine or GSH. METHODS: ROS levels were determined using a fluorescence reader and confocal microscopy. IL-8 or murine IL-8 homolog, keratinocyte chemoattractant (KC), and hydrogen peroxide levels in the medium were determined by enzyme-linked immunosorbent assay and colorimetric assay. GSH level was assessed by enzymatic assay, while IL-8 (KC) mRNA level was measured by reverse transcription-polymerase chain reaction (RT-PCR) and/or quantitative real-time PCR. NF-κB DNA-binding activity was determined by electrophoretic mobility shift assay. Catalase activity and ATM protein levels were determined by O2 generation and Western blotting. RESULTS: While glutamine deprivation induced IL-8 expression and increased NF-κB DNA-binding activity in Mock cells, both processes were decreased by treatment of cells with glutamine or GSH or both glutamine and GSH. Glutamine deprivation had no effect on IL-8 expression or NF-κB DNA-binding activity in YZ5 cells. Glutamine-deprived Mock cells had higher oxidative stress indices (increases in ROS and hydrogen peroxide, reduction in GSH) than glutamine-deprived YZ5 cells. In Mock cells, glutamine deprivation-induced oxidative stress indices were suppressed by treatment with glutamine or GSH or both glutamine and GSH. GSH levels and catalase activity were lower in Mock cells than YZ5 cells. MEFs transfected with ATM siRNA and cultured without glutamine showed higher levels of ROS and IL-8 than those transfected with negative control siRNA; increased levels of ROS and IL-8 were suppressed by the treatment of glutamine. CONCLUSION: Glutamine deprivation induces ROS production, NF-κB activation, and IL-8 expression as well as a reduction in GSH in A-T fibroblasts, all of which are attenuated by glutamine supplementation.


Assuntos
Ataxia Telangiectasia/metabolismo , Fibroblastos/metabolismo , Glutamina/fisiologia , Interleucina-8/genética , Animais , Ataxia Telangiectasia/imunologia , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Células Cultivadas , DNA/metabolismo , Fibroblastos/imunologia , Glutationa/metabolismo , Humanos , Camundongos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Nutrition ; 30(2): 218-27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24262514

RESUMO

OBJECTIVE: Most glucose (and glutamine)-deprivation studies of cancer cell cultures focus on total depletion, and are conducted over at least 24 h. It is difficult to extrapolate findings from such experiments to practical anti-glycolytic treatments, such as with insulin-inhibiting diets (with 10%-50% carbohydrate dietary restriction) or with isolated limb perfusion therapy (which usually lasts about 90 min). The aim of this study was to obtain experimental data on the effect of partial deprivation of d-glucose and l-glutamine (to typical physiological concentrations) during 0 to 6-h exposures of HeLa cells. METHODS: HeLa cells were treated for 0 to 6 h with 6 mM d-glucose and 1 mM l-glutamine (normal in vivo conditions), 3 mM d-glucose and 0.5 mM l-glutamine (severe hypoglycemic conditions), and 0 mM d-glucose and 0 mM l-glutamine ("starvation"). Polarization-optical differential interference contrast and phase-contrast light microscopy were employed to investigate morphologic changes. RESULTS: Reduction of glucose levels from 6 to 3 mM (and glutamine levels from 1 to 0.5 mM) brings about cancer cell survival of 73% after 2-h exposure and 63% after 4-h exposure. Reducing glucose levels from 6 to 0 mM (and glutamine levels from 1 to 0 mM) for 4 h resulted in 53% cell survival. CONCLUSION: These data reveal that glucose (and glutamine) deprivation to typical physiological concentrations result in significant cancer cell killing after as little as 2 h. This supports the possibility of combining anti-glycolytic treatment, such as a carbohydrate-restricted diet, with chemotherapeutics for enhanced cancer cell killing.


Assuntos
Glucose/farmacologia , Glutamina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura/química , Glucose/fisiologia , Glutamina/fisiologia , Glicólise , Células HeLa , Humanos , Insulina/sangue
12.
Cold Spring Harb Perspect Med ; 3(9): a014258, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24003245

RESUMO

Cell growth and division require the biosynthesis of macromolecule components and cofactors (e.g., nucleotides, lipids, amino acids, and nicotinamide adenine dinucleotide phosphate [NADPH]). Normally, macromolecular biosynthesis is under tight regulatory control, yet these anabolic pathways are often dysregulated in cancer. The resulting metabolic reprogramming of cancer cells is thought to support their high rates of growth and division. The mechanisms that underlie the metabolic changes in cancer are at least partially understood, providing a rationale for their targeting with known or novel therapeutics. This review is focused on how cells sense and respond transcriptionally to essential nutrients, including glucose and glutamine, and how MAX- and MLX-centered transcription networks contribute to metabolic homeostasis in normal and neoplastic cells.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Proteínas de Transporte/fisiologia , Redes Reguladoras de Genes/fisiologia , Glucose/fisiologia , Glutamina/fisiologia , Alimentos , Fase G1/fisiologia , Genes myc/fisiologia , Humanos , Neoplasias/metabolismo , Proteínas Supressoras de Tumor/fisiologia
13.
Mol Cell ; 49(2): 310-21, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23201122

RESUMO

Differences in global levels of histone acetylation occur in normal and cancer cells, although the reason why cells regulate these levels has been unclear. Here we demonstrate a role for histone acetylation in regulating intracellular pH (pH(i)). As pH(i) decreases, histones are globally deacetylated by histone deacetylases (HDACs), and the released acetate anions are coexported with protons out of the cell by monocarboxylate transporters (MCTs), preventing further reductions in pH(i). Conversely, global histone acetylation increases as pH(i) rises, such as when resting cells are induced to proliferate. Inhibition of HDACs or MCTs decreases acetate export and lowers pH(i), particularly compromising pH(i) maintenance in acidic environments. Global deacetylation at low pH is reflected at a genomic level by decreased abundance and extensive redistribution of acetylation throughout the genome. Thus, acetylation of chromatin functions as a rheostat to regulate pH(i) with important implications for mechanism of action and therapeutic use of HDAC inhibitors.


Assuntos
Histonas/metabolismo , Líquido Intracelular/metabolismo , Processamento de Proteína Pós-Traducional , Acetatos , Acetilação , Metabolismo dos Carboidratos , Cromatina , Regulação da Expressão Gênica , Glucose/fisiologia , Glutamina/fisiologia , Células HeLa , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histonas/genética , Humanos , Concentração de Íons de Hidrogênio , Ácidos Hidroxâmicos/farmacologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Niacinamida/farmacologia , Ácido Pirúvico/metabolismo , Análise de Sequência de RNA , Transcriptoma
14.
Surg Clin North Am ; 91(4): 737-53, vii, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21787965

RESUMO

Malnutrition has marked consequences on surgical outcomes. Adequate nutrition is important for the proper functioning of all organ systems, particularly the immune system. Determination of the type and amount of nutrient supplementation and the appropriate route of nutrient delivery is essential to bolster the immune system and enhance the host's response to stress. Correct administration of immunonutrients could lead to reductions in patient morbidity following major surgery, trauma, and critical illness.


Assuntos
Imunocompetência , Desnutrição/terapia , Apoio Nutricional , Assistência Perioperatória , Arginina/administração & dosagem , Arginina/fisiologia , Suplementos Nutricionais , Nutrição Enteral , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/fisiologia , Ácidos Graxos Ômega-6/administração & dosagem , Ácidos Graxos Ômega-6/fisiologia , Glutamina/administração & dosagem , Glutamina/fisiologia , Humanos , Sistema Imunitário , Tolerância Imunológica , Desnutrição/imunologia , Neoplasias/imunologia , Nutrição Parenteral , Nutrição Parenteral Total , Procedimentos Cirúrgicos Operatórios , Ferimentos e Lesões/imunologia
16.
Front Biosci (Landmark Ed) ; 16(2): 578-97, 2011 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-21196190

RESUMO

Glutamine is the most abundant free alpha-amino acid in plasma and skeletal muscle. This nutrient plays an important role in regulating gene expression, protein turnover, anti-oxidative function, nutrient metabolism, immunity, and acid-base balance. Interestingly, intracellular and extracellular concentrations of glutamine exhibit marked reductions in response to infection, sepsis, severe burn, cancer, and other pathological factors. This raised an important question of whether glutamine may be a key mediator of muscle loss and negative nitrogen balance in critically ill and injured patients. Therefore, since the initial reports in late 1980s that glutamine could stimulate protein synthesis and inhibit proteolysis in rat skeletal muscle, there has been growing interest in the use of this functional amino acid to improve protein balance under various physiological and disease conditions. Although inconsistent results have appeared in the literature regarding a therapeutic role of glutamine in clinical medicine, a majority of studies indicate that supplementing appropriate doses of glutamine to enteral diets or parenteral solutions is beneficial for improving nitrogen balance in animals or humans with glutamine deficiency.


Assuntos
Glutamina/fisiologia , Proteínas/metabolismo , Animais , Queimaduras/fisiopatologia , Estado Terminal , Suplementos Nutricionais , Glutamina/metabolismo , Glutamina/uso terapêutico , Humanos , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Desnutrição/fisiopatologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Neoplasias/fisiopatologia , Ciências da Nutrição , Ratos , Sepse/induzido quimicamente , Sepse/fisiopatologia
17.
Neurosci Lett ; 482(2): 151-5, 2010 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-20650305

RESUMO

The specific aim of this study was to elucidate the role of mitochondria in a neuronal death caused by different metabolic effectors and possible role of intracellular calcium ions ([Ca(2+)](i)) and glutamine in mitochondria- and non-mitochondria-mediated cell death. Inhibition of mitochondrial complex I by rotenone was found to cause intensive death of cultured cerebellar granule neurons (CGNs) that was preceded by an increase in intracellular calcium concentration ([Ca(2+)](i)). The neuronal death induced by rotenone was significantly potentiated by glutamine. In addition, inhibition of Na/K-ATPase by ouabain also caused [Ca(2+)](i) increase, but it induced neuronal cell death only in the absence of glucose. Treatment with glutamine prevented the toxic effect of ouabain and decreased [Ca(2+)](i). Blockade of ionotropic glutamate receptors prevented neuronal death and significantly decreased [Ca(2+)](i), demonstrating that toxicity of rotenone and ouabain was at least partially mediated by activation of these receptors. Activation of glutamate receptors by NMDA increased [Ca(2+)](i) and decreased mitochondrial membrane potential leading to markedly decreased neuronal survival under glucose deprivation. Glutamine treatment under these conditions prevented cell death and significantly decreased the disturbances of [Ca(2+)](i) and changes in mitochondrial membrane potential caused by NMDA during hypoglycemia. Our results indicate that glutamine stimulates glutamate-dependent neuronal damage when mitochondrial respiration is impaired. However, when mitochondria are functionally active, glutamine can be used by mitochondria as an alternative substrate to maintain cellular energy levels and promote cell survival.


Assuntos
Glutamina/fisiologia , Mitocôndrias/fisiologia , Neurônios/fisiologia , Animais , Cálcio/metabolismo , Cátions Bivalentes , Morte Celular , Células Cultivadas , Cerebelo/citologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glucose/deficiência , Glutamina/farmacologia , Espaço Intracelular/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , N-Metilaspartato/farmacologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ouabaína/farmacologia , Ratos , Ratos Wistar , Rotenona/farmacologia , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
18.
J Nutr ; 138(10): 2025S-2031S, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18806119

RESUMO

Glutamine is the most abundant free amino acid of the human body. Besides its role as a constituent of proteins and its importance in amino acid transamination, glutamine has regulatory capacity in immune and cell modulation. Glutamine deprivation reduces proliferation of lymphocytes, influences expression of surface activation markers on lymphocytes and monocytes, affects the production of cytokines, and stimulates apoptosis. Moreover, glutamine administration seems to have a positive effect on glucose metabolism in the state of insulin resistance. Glutamine influences a variety of different molecular pathways. Glutamine stimulates the formation of heat shock protein 70 in monocytes by enhancing the stability of mRNA, influences the redox potential of the cell by enhancing the formation of glutathione, induces cellular anabolic effects by increasing the cell volume, activates mitogen-activated protein kinases, and interacts with particular aminoacyl-transfer RNA synthetases in specific glutamine-sensing metabolism. Glutamine is applied under clinical conditions as an oral, parenteral, or enteral supplement either as the single amino acid or in the form of glutamine-containing dipeptides for preventing mucositis/stomatitis and for preventing glutamine-deficiency in critically ill patients. Because of the high turnover rate of glutamine, even high amounts of glutamine up to a daily administration of 30 g can be given without any important side effects.


Assuntos
Glutamina/fisiologia , Necessidades Nutricionais , Transdução de Sinais/fisiologia , Aminoácidos/fisiologia , Apoptose/fisiologia , Tamanho Celular , Glutamina/imunologia , Glutationa/metabolismo , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/fisiologia , Homeostase , Humanos , Linfócitos/imunologia , Monócitos/fisiologia
19.
Biochem J ; 416(1): 109-16, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18593381

RESUMO

ERAP-1 (endoplasmic-reticulum aminopeptidase-1) is a multifunctional enzyme with roles in the regulation of blood pressure, angiogenesis and the presentation of antigens to MHC class I molecules. Whereas the enzyme shows restricted specificity toward synthetic substrates, its substrate specificity toward natural peptides is rather broad. Because of the pathophysiological significance of ERAP-1, it is important to elucidate the molecular basis of its enzymatic action. In the present study we used site-directed mutagenesis to identify residues affecting the substrate specificity of human ERAP-1 and identified Gln(181) as important for enzymatic activity and substrate specificity. Replacement of Gln(181) by aspartic acid resulted in a significant change in substrate specificity, with Q181D ERAP-1 showing a preference for basic amino acids. In addition, Q181D ERAP-1 cleaved natural peptides possessing a basic amino acid at the N-terminal end more efficiently than did the wild-type enzyme, whereas its cleavage of peptides with a non-basic amino acid was significantly reduced. Another mutant enzyme, Q181E, also revealed some preference for peptides with a basic N-terminal amino acid, although it had little hydrolytic activity toward the synthetic peptides tested. Other mutant enzymes, including Q181N and Q181A ERAP-1s, revealed little enzymatic activity toward synthetic or peptide substrates. These results indicate that Gln(181) is critical for the enzymatic activity and substrate specificity of ERAP-1.


Assuntos
Aminopeptidases/metabolismo , Glutamina/fisiologia , Sequência de Aminoácidos , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/química , Aminopeptidases/genética , Domínio Catalítico , Linhagem Celular , Humanos , Antígenos de Histocompatibilidade Menor , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Peptídeos/farmacologia , Especificidade por Substrato , Zinco/farmacologia
20.
Rio de Janeiro; s.n; 2008. 96 p. ilus, graf.
Tese em Português | LILACS | ID: lil-488496

RESUMO

Nutrientes específicos, denominados farmaconutrientes, demonstraram possuir a capacidade de modular a resposta imunológica e inflamatória de animais e seres humanos, em estudos clínicos e laboratoriais. Dentre os substratos conhecidos, os que têm maior relevância e açãoimunomoduladora são a arginina, glutamina, ácido graxo n-3 e nucleotídeos. No entanto, revisõessistemáticas e meta-análises buscam consenso em relação aos vários e controversos resultados publicados sobre os possíveis benefícios da imunonutrição em pacientes críticos. Objetiva avaliar a efetividade das dietas enriquecidas com Imunonutrientes na redução de complicações e mortalidade nos diferentes tipos de pacientes críticos. O presente estudo é umarevisão sistemática com metanálise onde foram inseridos ensaios clínicos randomizados avaliando o uso de nutrientes imunomoduladores em doente adulto de ambos os sexos, definido como crítico traumatizado, séptico, queimado ou cirúrgico; as dietas utilizadas deveriam conter um ou mais dosimunonutrientes, em qualquer dose, administradas por via enteral comparadas à dieta padrão pelamesma via em pelo menos um dos grupos de comparação. As bases de dados consultadas foram Pubmed e Cinhal, utilizando os termos: Immunonutrition, arginine, glutamine, n-3, nucleotides e criticall illness...


Assuntos
Humanos , Masculino , Feminino , Adulto , Inquéritos sobre Dietas , Ensaios Clínicos como Assunto/métodos , Metanálise , Ciências da Nutrição/etnologia , Pacientes/estatística & dados numéricos , Pacientes/psicologia , Arginina/antagonistas & inibidores , Arginina/sangue , Glutamina/fisiologia , Glutamina/sangue , Nucleotídeos , Nutrição dos Grupos Vulneráveis , Nucleotídeos/fisiologia , Nucleotídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA