Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39227165

RESUMO

AIMS: This study identifies a unique glutathione S-transferase (GST) in extremophiles using genome, phylogeny, bioinformatics, functional characterization, and RNA sequencing analysis. METHODS AND RESULTS: Five putative GSTs (H0647, H0729, H1478, H3557, and H3594) were identified in Halothece sp. PCC7418. Phylogenetic analysis suggested that H0647, H1478, H0729, H3557, and H3594 are distinct GST classes. Of these, H0729 was classified as an iota-class GST, encoding a high molecular mass GST protein with remarkable features. The protein secondary structure of H0729 revealed the presence of a glutaredoxin (Grx) Cys-Pro-Tyr-Cys (C-P-Y-C) motif that overlaps with the N-terminal domain and harbors a topology similar to the thioredoxin (Trx) fold. Interestingly, recombinant H0729 exhibited a high catalytic efficiency for both glutathione (GSH) and 1-chloro-2, 4-dinitrobenzene (CDNB), with catalytic efficiencies that were 155- and 32-fold higher, respectively, compared to recombinant H3557. Lastly, the Halothece gene expression profiles suggested that antioxidant and phase II detoxification encoding genes are crucial in response to salt stress. CONCLUSION: Iota-class GST was identified in cyanobacteria. This GST exhibited a high catalytic efficiency toward xenobiotic substrates. Our findings shed light on a diversified evolution of GST in cyanobacteria and provide functional dynamics of the genes encoding the enzymatic antioxidant and detoxification systems under abiotic stresses.


Assuntos
Cianobactérias , Glutationa Transferase , Filogenia , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Cianobactérias/genética , Cianobactérias/enzimologia , Cianobactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Glutationa/metabolismo , Sequência de Aminoácidos , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutarredoxinas/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-38703881

RESUMO

Intracellular antioxidant glutaredoxin controls cell proliferation and survival. Based on the active site, structure, and conserved domain motifs, it is classified into two classes. Class I contains dithiol Grxs with two cysteines in the consensus active site sequence CXXC, while class II has monothiol Grxs with one cysteine residue in the active site. Monothiol Grxs can also have an additional N-terminal thioredoxin (Trx)-like domain. Previously, we reported the characterization of Grx1 from Hydra vulgaris (HvGrx1), which is a dithiol isoform. Here, we report the molecular cloning, expression, analysis, and characterization of another isoform of Grx, which is the multidomain monothiol glutaredoxin-3 from Hydra vulgaris (HvGrx3). It encodes a protein with 303 amino acids and is significantly larger and more divergent than HvGrx1. In-silico analysis revealed that Grx1 and Grx3 have 22.5% and 9.9% identical nucleotide and amino acid sequences, respectively. HvGrx3 has two glutaredoxin domains and a thioredoxin-like domain at its amino terminus, unlike HvGrx1, which has a single glutaredoxin domain. Like other monothiol glutaredoxins, HvGrx3 failed to reduce glutathione-hydroxyethyl disulfide. In the whole Hydra, HvGrx3 was found to be expressed all over the body column, and treatment with H2O2 led to a significant upregulation of HvGrx3. When transfected in HCT116 (human colon cancer cells) cells, HvGrx3 enhanced cell proliferation and migration, indicating that this isoform could be involved in these cellular functions. These transfected cells also tolerate oxidative stress better.


Assuntos
Sequência de Aminoácidos , Glutarredoxinas , Hydra , Animais , Glutarredoxinas/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/química , Hydra/genética , Hydra/metabolismo , Hydra/enzimologia , Humanos , Clonagem Molecular , Domínios Proteicos , Filogenia , Proliferação de Células
3.
Biochemistry (Mosc) ; 88(5): 667-678, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37331712

RESUMO

Glutaredoxin (Grx) is an antioxidant redox protein that uses glutathione (GSH) as an electron donor. Grx plays a crucial role in various cellular processes, such as antioxidant defense, control of cellular redox state, redox control of transcription, reversible S-glutathionylation of specific proteins, apoptosis, cell differentiation, etc. In the current study, we have isolated and characterized dithiol glutaredoxin from Hydra vulgaris Ind-Pune (HvGrx1). Sequence analysis showed that HvGrx1 belongs to the Grx family with the classical Grx motif (CPYC). Phylogenetic analysis and homology modeling revealed that HvGrx1 is closely related to Grx2 from zebrafish. HvGrx1 gene was cloned and expressed in Escherichia coli cells; the purified protein had a molecular weight of 11.82 kDa. HvGrx1 efficiently reduced ß-hydroxyethyl disulfide (HED) with the temperature optimum of 25°C and pH optimum 8.0. HvGrx1 was ubiquitously expressed in all body parts of Hydra. Expression of HvGrx1 mRNA and enzymatic activity of HvGrx1 were significantly upregulated post H2O2 treatment. When expressed in human cells, HvGrx1 protected the cells from oxidative stress and enhanced cell proliferation and migration. Although Hydra is a simple invertebrate, HvGrx1 is evolutionary closer to its homologs from higher vertebrates (similar to many other Hydra proteins).


Assuntos
Glutarredoxinas , Hydra , Animais , Humanos , Glutarredoxinas/genética , Glutarredoxinas/química , Glutarredoxinas/metabolismo , Hydra/genética , Hydra/metabolismo , Antioxidantes/metabolismo , Filogenia , Peróxido de Hidrogênio , Peixe-Zebra/metabolismo , Índia , Proteínas/química , Oxirredução , Glutationa/metabolismo
4.
Molecules ; 28(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770941

RESUMO

Trypanosoma brucei is a species of kinetoplastid causing sleeping sickness in humans and nagana in cows and horses. One of the peculiarities of this species of parasites is represented by their redox metabolism. One of the proteins involved in this redox machinery is the monothiol glutaredoxin 1 (1CGrx1) which is characterized by a unique disordered N-terminal extension exclusively conserved in trypanosomatids and other organisms. This region modulates the binding profile of the glutathione/trypanothione binding site, one of the functional regions of 1CGrx1. No endogenous ligands are known to bind this protein which does not present well-shaped binding sites, making it target particularly challenging to target. With the aim of targeting this peculiar system, we carried out two different screenings: (i) a fragment-based lead discovery campaign directed to the N-terminal as well as to the canonical binding site of 1CGrx1; (ii) a structure-based virtual screening directed to the 1CGrx1 canonical binding site. Here we report a small molecule that binds at the glutathione binding site in which the binding mode of the molecule was deeply investigated by Nuclear Magnetic Resonance (NMR). This compound represents an important step in the attempt to develop a novel strategy to interfere with the peculiar Trypanosoma Brucei redox system, making it possible to shed light on the perturbation of this biochemical machinery and eventually to novel therapeutic possibilities.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Humanos , Feminino , Animais , Bovinos , Cavalos , Trypanosoma brucei brucei/metabolismo , Glutarredoxinas/química , Trypanosoma/metabolismo , Tripanossomíase Africana/tratamento farmacológico , Glutationa/metabolismo
5.
J Chem Phys ; 157(15): 154104, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36272777

RESUMO

Glutaredoxins are small enzymes that catalyze the oxidation and reduction of protein disulfide bonds by the thiol-disulfide exchange mechanism. They have either one or two cysteines in their active site, resulting in different catalytic reaction cycles that have been investigated in many experimental studies. However, the exact mechanisms are not yet fully known, and to our knowledge, no theoretical studies have been performed to elucidate the underlying mechanism. In this study, we investigated a proposed mechanism for the reduction of the disulfide bond in the protein HMA4n by a mutated monothiol Homo sapiens glutaredoxin and the co-substrate glutathione. The catalytic cycle involves three successive thiol-disulfide exchanges that occur between the molecules. To estimate the regioselectivity of the different attacks, classical molecular dynamics simulations were performed and the trajectories analyzed regarding the sulfur-sulfur distances and the attack angles between the sulfurs. The free energy profile of each reaction was obtained with hybrid quantum mechanical/molecular mechanical metadynamics simulations. Since this required extensive phase space sampling, the semi-empirical density functional tight-binding method was used to describe the reactive cysteines. For an accurate description, we used specific reaction parameters fitted to B3LYP energies of the thiol-disulfide exchange and a machine learned energy correction that was trained on coupled-cluster single double perturbative triple [CCSD(T)] energies of thiol-disulfide exchanges. Our calculations show the same regiospecificity as observed in the experiment, and the obtained barrier heights are about 12 and 20 kcal/mol for the different reaction steps, which confirms the proposed pathway.


Assuntos
Glutarredoxinas , Simulação de Dinâmica Molecular , Humanos , Glutarredoxinas/química , Glutarredoxinas/metabolismo , Dissulfetos/química , Compostos de Sulfidrila/química , Glutationa/química , Proteínas/metabolismo , Cisteína/química , Redes Neurais de Computação , Enxofre
6.
Biosci Rep ; 42(6)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35593209

RESUMO

Saccharomyces cerevisiae Grx3 and Grx4 are multidomain monothiol glutaredoxins that are redundant with each other. They can be efficiently complemented by heterologous expression of their mammalian ortholog, PICOT, which has been linked to tumor development and embryogenesis. PICOT is now believed to act as a chaperone distributing Fe-S clusters, although the first link to iron metabolism was observed with its yeast counterparts. Like PICOT, yeast Grx3 and Grx4 reside in the cytosol and nucleus where they form unusual Fe-S clusters coordinated by two glutaredoxins with CGFS motifs and two molecules of glutathione. Depletion or deletion of Grx3/Grx4 leads to functional impairment of virtually all cellular iron-dependent processes and loss of cell viability, thus making these genes the most upstream components of the iron utilization system. Nevertheless, the Δgrx3/4 double mutant in the BY4741 genetic background is viable and exhibits slow but stable growth under hypoxic conditions. Upon exposure to air, growth of the double deletion strain ceases, and suppressor mutants appear. Adopting a high copy-number library screen approach, we discovered novel genetic interactions: overexpression of ESL1, ESL2, SOK1, SFP1 or BDF2 partially rescues growth and iron utilization defects of Δgrx3/4. This genetic escape from the requirement for Grx3/Grx4 has not been previously described. Our study shows that even a far-upstream component of the iron regulatory machinery (Grx3/4) can be bypassed, and cellular networks involving RIM101 pH sensing, cAMP signaling, mTOR nutritional signaling, or bromodomain acetylation, may confer the bypassing activities.


Assuntos
Glutarredoxinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Glutarredoxinas/química , Glutarredoxinas/genética , Homeostase/genética , Ferro/metabolismo , Oxirredutases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
7.
Biochimie ; 197: 144-159, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35217125

RESUMO

Thiol redox proteins and low molecular mass thiols have essential functions in maintaining cellular redox balance in almost all living organisms. In the pathogenic bacterium Leptospira interrogans, several redox components have been described, namely, typical 2-Cys peroxiredoxin, a functional thioredoxin system, glutathione synthesis pathway, and methionine sulfoxide reductases. However, until now, information about proteins linked to GSH metabolism has not been reported in this pathogen. Glutaredoxins (Grxs) are GSH-dependent oxidoreductases that regulate and maintain the cellular redox state together with thioredoxins. This work deals with recombinant production at a high purity level, biochemical characterization, and detailed kinetic and structural study of the two Grxs (Lin1CGrx and Lin2CGrx) identified in L. interrogans serovar Copenhageni strain Fiocruz L1-130. Both recombinant LinGrxs exhibited the classical in vitro GSH-dependent 2-hydroxyethyl disulfide and dehydroascorbate reductase activity. Strikingly, we found that Lin2CGrx could serve as a substrate of methionine sulfoxide reductases A1 and B from L. interrogans. Distinctively, only recombinant Lin1CGrx contained a [2Fe2S] cluster confirming a homodimeric structure. The functionality of both LinGrxs was assessed by yeast complementation in null grx mutants, and both isoforms were able to rescue the mutant phenotype. Finally, our data suggest that protein glutathionylation as a post-translational modification process is present in L. interrogans. As a whole, our results support the occurrence of two new redox actors linked to GSH metabolism and iron homeostasis in L. interrogans.


Assuntos
Glutarredoxinas , Leptospira interrogans , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Leptospira interrogans/genética , Leptospira interrogans/metabolismo , Metionina Sulfóxido Redutases/metabolismo , Oxirredução , Compostos de Sulfidrila/química , Tiorredoxinas/metabolismo , Tolueno/análogos & derivados
8.
Nitric Oxide ; 118: 26-30, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742907

RESUMO

The intracellular concentration of reduced glutathione (GSH) lies in the range of 1-10 mM, thereby indisputably making it the most abundant intracellular thiol. Such a copious amount of GSH makes it the most potent and robust cellular antioxidant that plays a crucial role in cellular defence against redox stress. The role of GSH as a denitrosylating agent is well established; in this study, we demonstrate GSH mediated denitrosylation of HepG2 cell-derived protein nitrosothiols (PSNOs), by a unique spin-trapping mechanism, using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as the spin trapping agent, followed by a western blot analysis. We also report our findings of two, hitherto unidentified substrates of GSH mediated S-denitrosylation, namely S-nitrosoglutaredoxin 1 (Grx1-SNO) and S-nitrosylated R1 subunit of ribonucleotide reductase (R1-SNO).


Assuntos
Glutarredoxinas/metabolismo , Glutationa/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , S-Nitrosotióis/metabolismo , Óxidos N-Cíclicos/química , Glutarredoxinas/química , Células Hep G2 , Humanos , Ribonucleosídeo Difosfato Redutase/química , S-Nitrosotióis/química , Marcadores de Spin , Detecção de Spin , Tiorredoxinas/química , Tiorredoxinas/metabolismo
9.
Molecules ; 26(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206041

RESUMO

Parkinson's disease (PD) is characterized mainly by the loss of dopaminergic neurons in the substantia nigra (SN) mediated via oxidative stress. Although glutaredoxin-1 (GLRX1) is known as one of the antioxidants involved in cell survival, the effects of GLRX1 on PD are still unclear. In this study, we investigated whether cell-permeable PEP-1-GLRX1 inhibits dopaminergic neuronal cell death induced by 1-methyl-4-phenylpyridinium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We showed that PEP-1-GLRX1 protects cell death and DNA damage in MPP+-exposed SH-SY5Y cells via the inhibition of MAPK, Akt, and NF-κB activation and the regulation of apoptosis-related protein expression. Furthermore, we found that PEP-1-GLRX1 was delivered to the SN via the blood-brain barrier (BBB) and reduced the loss of dopaminergic neurons in the MPTP-induced PD model. These results indicate that PEP-1-GLRX1 markedly inhibited the loss of dopaminergic neurons in MPP+- and MPTP-induced cytotoxicity, suggesting that this fusion protein may represent a novel therapeutic agent against PD.


Assuntos
Cisteamina/análogos & derivados , Neurônios Dopaminérgicos/citologia , Glutarredoxinas/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Peptídeos/química , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , 1-Metil-4-fenilpiridínio/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Cisteamina/química , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutarredoxinas/química , Glutarredoxinas/farmacologia , Humanos , Masculino , Camundongos , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Substância Negra/química
10.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118847, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910989

RESUMO

The synthesis and trafficking of iron-sulfur (Fe-S) clusters in both prokaryotes and eukaryotes requires coordination within an expanding network of proteins that function in the cytosol, nucleus, mitochondria, and chloroplasts in order to assemble and deliver these ancient and essential cofactors to a wide variety of Fe-S-dependent enzymes and proteins. This review focuses on the evolving roles of two ubiquitous classes of proteins that operate in this network: CGFS glutaredoxins and BolA proteins. Monothiol or CGFS glutaredoxins possess a Cys-Gly-Phe-Ser active site that coordinates an Fe-S cluster in a homodimeric complex. CGFS glutaredoxins also form [2Fe-2S]-bridged heterocomplexes with BolA proteins, which possess an invariant His and an additional His or Cys residue that serve as cluster ligands. Here we focus on recent discoveries in bacteria, fungi, humans, and plants that highlight the shared and distinct roles of CGFS glutaredoxins and BolA proteins in Fe-S cluster biogenesis, Fe-S cluster storage and trafficking, and Fe-S cluster signaling to transcriptional factors that control iron metabolism--.


Assuntos
Citosol/química , Glutarredoxinas/genética , Proteínas Ferro-Enxofre/genética , Transporte Proteico/genética , Glutarredoxinas/química , Humanos , Proteínas Ferro-Enxofre/química , Ligantes , Modelos Moleculares , Células Procarióticas/química , Transdução de Sinais/genética , Enxofre/metabolismo
11.
Biochim Biophys Acta Bioenerg ; 1862(1): 148317, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32980338

RESUMO

Among the thioredoxin superfamily of proteins, the observation that numerous glutaredoxins bind iron-sulphur (Fe/S) clusters is one of the more recent and major developments concerning their functional properties. Glutaredoxins are present in most organisms. All members of the class II subfamily (including most monothiol glutaredoxins), but also some members of the class I (mostly dithiol glutaredoxins) and class III (land plant-specific monothiol or dithiol glutaredoxins) are Fe/S proteins. In glutaredoxins characterised so far, the [2Fe2S] cluster is coordinated by two active-site cysteine residues and two molecules of non-covalently bound glutathione in homo-dimeric complexes bridged by the cluster. In contrast to dithiol glutaredoxins, monothiol glutaredoxins possess no or very little oxidoreductase activity, but have emerged as important players in cellular iron metabolism. In this review we summarise the recent developments of the most prominent Fe/S glutaredoxins in eukaryotes, the mitochondrial single domain monothiol glutaredoxin 5, the chloroplastic single domain monothiol glutaredoxin S14 and S16, the nuclear/cytosolic multi-domain monothiol glutaredoxin 3, and the mitochondrial/cytosolic dithiol glutaredoxin 2.


Assuntos
Glutarredoxinas , Proteínas Ferro-Enxofre , Doenças das Plantas , Proteínas de Plantas , Plantas/enzimologia , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Ferro/química , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Relação Estrutura-Atividade , Enxofre/química , Enxofre/metabolismo
12.
J Biol Chem ; 296: 100247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33361108

RESUMO

Environmental sequence data of microbial communities now makes up the majority of public genomic information. The assignment of a function to sequences from these metagenomic sources is challenging because organisms associated with the data are often uncharacterized and not cultivable. To overcome these challenges, we created a rationally designed expression library of metagenomic proteins covering the sequence space of the thioredoxin superfamily. This library of 100 individual proteins represents more than 22,000 thioredoxins found in the Global Ocean Sampling data set. We screened this library for the functional rescue of Escherichia coli mutants lacking the thioredoxin-type reductase (ΔtrxA), isomerase (ΔdsbC), or oxidase (ΔdsbA). We were able to assign functions to more than a quarter of our representative proteins. The in vivo function of a given representative could not be predicted by phylogenetic relation but did correlate with the predicted isoelectric surface potential of the protein. Selected proteins were then purified, and we determined their activity using a standard insulin reduction assay and measured their redox potential. An unexpected gel shift of protein E5 during the redox potential determination revealed a redox cycle distinct from that of typical thioredoxin-superfamily oxidoreductases. Instead of the intramolecular disulfide bond formation typical for thioredoxins, this protein forms an intermolecular disulfide between the attacking cysteines of two separate subunits during its catalytic cycle. Our functional metagenomic approach proved not only useful to assign in vivo functions to representatives of thousands of proteins but also uncovered a novel reaction mechanism in a seemingly well-known protein superfamily.


Assuntos
Monitoramento Ambiental , Glutarredoxinas/genética , Metagenômica , Tiorredoxinas/genética , Catálise , Cisteína/química , Escherichia coli/genética , Glutarredoxinas/química , Glutarredoxinas/classificação , Família Multigênica/genética , Oceanos e Mares , Oxirredução , Filogenia , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/genética , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxinas/química , Tiorredoxinas/classificação
13.
Nat Commun ; 11(1): 1725, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265442

RESUMO

Class I glutaredoxins are enzymatically active, glutathione-dependent oxidoreductases, whilst class II glutaredoxins are typically enzymatically inactive, Fe-S cluster-binding proteins. Enzymatically active glutaredoxins harbor both a glutathione-scaffold site for reacting with glutathionylated disulfide substrates and a glutathione-activator site for reacting with reduced glutathione. Here, using yeast ScGrx7 as a model protein, we comprehensively identified and characterized key residues from four distinct protein regions, as well as the covalently bound glutathione moiety, and quantified their contribution to both interaction sites. Additionally, we developed a redox-sensitive GFP2-based assay, which allowed the real-time assessment of glutaredoxin structure-function relationships inside living cells. Finally, we employed this assay to rapidly screen multiple glutaredoxin mutants, ultimately enabling us to convert enzymatically active and inactive glutaredoxins into each other. In summary, we have gained a comprehensive understanding of the mechanistic underpinnings of glutaredoxin catalysis and have elucidated the determinant structural differences between the two main classes of glutaredoxins.


Assuntos
Glutarredoxinas/química , Glutationa/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos/genética , Catálise , Domínio Catalítico/genética , Dissulfetos/química , Ativação Enzimática , Ensaios Enzimáticos , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/química , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Oxirredução , Conformação Proteica em alfa-Hélice , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Biochim Biophys Acta Gen Subj ; 1864(7): 129599, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32173377

RESUMO

BACKROUND: Cytosolic glutaredoxin 2 (Grx2c) controls axonal outgrowth and is specifically induced in many cancer cell lines. We thus hypothesized that Grx2c promotes cell motility and invasiveness. METHODS: We characterized the impact of Grx2c expression in cell culture models. We combined stable isotope labeling, phosphopeptide enrichment, and high-accuracy mass spectrometry to characterize the underlying mechanisms. RESULTS: The most prominent associations were found with actin dynamics, cellular adhesion, and receptor-mediated signal transduction, processes that are crucial for cell motility. For instance, collapsin response mediator protein 2, a protein involved in the regulation of cytoskeletal dynamics, is regulated by Grx2c through a redox switch that controls the phosphorylation state of the protein as well. Cell lines expressing Grx2c showed dramatic alterations in morphology. These cells migrated two-fold faster and gained the ability to infiltrate a collagen matrix. CONCLUSIONS: The expression of Grx2c promotes cell migration, and may negatively correlate with cancer-specific survival. GENERAL SIGNIFICANCE: Our results imply critical roles of Grx2c in cytoskeletal dynamics, cell adhesion, and cancer cell invasiveness.


Assuntos
Glutarredoxinas , Neoplasias , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Glutarredoxinas/química , Humanos , Isoformas de Proteínas/metabolismo , Transdução de Sinais
15.
Annu Rev Biochem ; 89: 471-499, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31935115

RESUMO

Mitochondria are essential in most eukaryotes and are involved in numerous biological functions including ATP production, cofactor biosyntheses, apoptosis, lipid synthesis, and steroid metabolism. Work over the past two decades has uncovered the biogenesis of cellular iron-sulfur (Fe/S) proteins as the essential and minimal function of mitochondria. This process is catalyzed by the bacteria-derived iron-sulfur cluster assembly (ISC) machinery and has been dissected into three major steps: de novo synthesis of a [2Fe-2S] cluster on a scaffold protein; Hsp70 chaperone-mediated trafficking of the cluster and insertion into [2Fe-2S] target apoproteins; and catalytic conversion of the [2Fe-2S] into a [4Fe-4S] cluster and subsequent insertion into recipient apoproteins. ISC components of the first two steps are also required for biogenesis of numerous essential cytosolic and nuclear Fe/S proteins, explaining the essentiality of mitochondria. This review summarizes the molecular mechanisms underlying the ISC protein-mediated maturation of mitochondrial Fe/S proteins and the importance for human disease.


Assuntos
Ataxia de Friedreich/genética , Proteínas Ferro-Enxofre/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Ferredoxinas/química , Ferredoxinas/genética , Ferredoxinas/metabolismo , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/patologia , Regulação da Expressão Gênica , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Humanos , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Biossíntese de Proteínas , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Frataxina
16.
Microb Pathog ; 139: 103890, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31765768

RESUMO

Neisseria meningitidis is a human-restricted bacterium that can invade the bloodstream and cross the blood-brain barrier resulting in life-threatening sepsis and meningitis. Meningococci express a cytoplasmic peroxiredoxin-glutaredoxin (Prx5-Grx) hybrid protein that has also been identified on the bacterial surface. Here, recombinant Prx5-Grx was confirmed as a plasminogen (Plg)-binding protein, in an interaction which could be inhibited by the lysine analogue ε-aminocapronic acid. rPrx5-Grx derivatives bearing a substituted C-terminal lysine residue (rPrx5-GrxK244A), but not the active site cysteine residue (rPrx5-GrxC185A) or the sub-terminal rPrx5-GrxK230A lysine residue, exhibited significantly reduced Plg-binding. The absence of Prx5-Grx did not significantly reduce the ability of whole meningococcal cells to bind Plg, but under hydrogen peroxide-mediated oxidative stress, the N. meningitidis Δpxn5-grx mutant survived significantly better than the wild-type or complemented strains. Significantly, using human whole blood as a model of meningococcal bacteremia, it was found that the N. meningitidis Δpxn5-grx mutant had a survival defect compared with the parental or complemented strain, confirming an important role for Prx5-Grx in meningococcal pathogenesis.


Assuntos
Glutarredoxinas/metabolismo , Interações Hospedeiro-Patógeno , Infecções Meningocócicas/metabolismo , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/fisiologia , Peroxirredoxinas/metabolismo , Plasminogênio/metabolismo , Ensaio de Imunoadsorção Enzimática , Glutarredoxinas/química , Glutarredoxinas/genética , Humanos , Peróxido de Hidrogênio/metabolismo , Infecções Meningocócicas/diagnóstico , Infecções Meningocócicas/mortalidade , Mutação , Peroxirredoxinas/química , Peroxirredoxinas/genética , Plasminogênio/química , Prognóstico , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
17.
Comput Biol Chem ; 84: 107141, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31839562

RESUMO

Glutaredoxins (Grxs), the oxidoreductase proteins, are involved in several cellular processes, including maintenance of cellular redox potential and iron-sulfur homeostasis. The analysis of 503 amino acid sequences from 167 cyanobacterial species led to the identification of four classes of cyanobacterial Grxs, i.e., class I, II, V, and VI Grxs. Class III and IV Grxs were absent in cyanobacteria. Class I and II Grxs are single module oxidoreductase while class V and VI Grxs are multimodular proteins having additional modules at their C-terminal and N-terminal end, respectively. Furthermore, class VI Grxs were exclusively present in marine cyanobacteria. We also report the identification of class VI Grxs with two novel active site motif compositions. Detailed phylogenetic analysis of all four classes of Grxs revealed the presence of several subgroups within each class of Grx having variable dithiol and/or monothiol catalytic active site motif and putative glutathione binding sites. However, class II Grxs possess CGFS-type highly conserved monothiol catalytic active site motif. Sequence analysis confirmed the highly diverse nature of Grx proteins in terms of their amino acid composition; though, sequence diversity does not affect the overall 3D structure of cyanobacterial Grxs. The active site residues and putative GSH binding residues are uncharged amino acids which are present on the surface of the protein. Additionally, the presence of hydrophilic residues at the surface of Grxs confirms their solubility. Protein-ligand interaction analysis identified novel glutathione binding sites on Grxs. Regulation of Grxs encoding genes expression by light quality and quantity as well as salinity suggests their role in determining the fitness of organisms under abiotic factors.


Assuntos
Cianobactérias/química , Glutarredoxinas/química , Filogenia , Sequência de Aminoácidos , Domínio Catalítico , Biologia Computacional , Expressão Gênica/efeitos da radiação , Glutarredoxinas/classificação , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Ligação de Hidrogênio , Luz , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência
18.
Free Radic Biol Med ; 141: 233-243, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31228548

RESUMO

Ascorbic acid (vitamin C) plays a significant role in the prevention of oxidative stress. In this process, ascorbate is oxidized to dehydroascorbate (DHA). We have investigated the impact of DHA on peptide/protein intramolecular disulfide formation as well as S-glutathionylation and S-homocysteinylation. S-glutathionylation of peptides/proteins is a reversible, potential regulatory mechanism in oxidative stress. Although the exact role of protein S-homocysteinylation is unknown, it has been proposed to be of importance in pathobiological processes such as onset of cardiovascular disease. Using an in vitro model system, we demonstrate that DHA causes disulfide bond formation within the active site of recombinant human glutaredoxin (Grx-1). DHA also facilities the formation of S-glutathionylation and S-homocysteinylation of a model peptide (AcFHACAAK) as well as Grx-1. We discuss the possible mechanisms of peptide/protein S-thiolation, which can occur either via thiol exchange or a thiohemiketal intermediate. A thiohemiketal DHA-peptide adduct was detected by mass spectrometry and its location on the peptide/protein cysteinyl thiol group was unambiguously confirmed by tandem mass spectrometry. This demonstrates that peptide/protein S-thiolation mediated by DHA is not limited to thiol exchange reactions but also takes place directly via the formation of a thiohemiketal peptide intermediate. Finally, we investigated a potential reducing role of glutathione (GSH) in the presence of S-homocysteinylated peptide/protein adducts. S-homocysteinylated AcFHACAAK, human hemoglobin α-chain and Grx-1 were incubated with GSH. Both peptide and proteins were reduced, and homocysteine replaced with GS-adducts by thiol exchange, as a function of time.


Assuntos
Ácido Desidroascórbico/química , Glutarredoxinas/química , Glutationa/química , Homocisteína/química , Peptídeos/química , Compostos de Sulfidrila/química , Antioxidantes/química , Domínio Catalítico , Cisteína/química , Dimerização , Dissulfetos/química , Hemoglobinas/química , Humanos , Oxirredução , Estresse Oxidativo
19.
Parasitol Res ; 118(6): 1785-1797, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31062084

RESUMO

We report the complete coding sequences of mitochondrial thioredoxin (TsTrx2) and glutaredoxin (TsGrx1) from the cysticerci of T. solium. The full-length DNA of the TsTrx2 gene shows two introns of 88 and 77 bp and three exons. The TsTrx2 gene contains a single ORF of 423 bp, encoding 140 amino acid residues with an estimated molecular weight of 15,560 Da. A conserved C64NPC67 active site and a 30-amino acid extension at its N-terminus were identified. An insulin reduction reaction was used to determine whether it was a functional recombinant protein. The full-length DNA of the TsGrx1 gene shows one intron of 39 bp and a single ORF of 315 bp, encoding 105 amino acid residues with an estimated molecular weight of 12,582 Da. Sequence analysis revealed a conserved dithiol C34PYC37 active site, GSH-binding motifs (CXXC, Lys and Gln/Arg, TVP, and CXD), and a conserved Gly-Gly motif. The r-TsGrx1 kinetic constants for glutathione (GSH) and 2-hydroxyethyl disulfide (HED) were determined. In addition, cytosolic thioredoxin (TsTrx1), as reported by (Jiménez et al., Biomed Res Int 2015:453469, 2015), was cloned and expressed, and its catalytic constants were obtained along with those of the other two reductases. Rabbit-specific antibodies showed immune cross-reactions between TsTrx1 and TsTrx2 but not with TsGrx1. Both TsTGRs as reported by (Plancarte and Nava, Exp Parasitol 149:65-73, 2015) were biochemically purified to obtain and compare the catalytic constants for their natural substrates, r-TsTrx1, and r-TsTrx2, compared to those for Trx-S2E. coli. In addition, we determined the catalytic differences between the glutaredoxin activity of the TsTGRs compared with r-TsGrx1. These data increase the knowledge of the thioredoxin and GSH systems in T. solium, which is relevant for detoxification and immune evasion.


Assuntos
Citosol/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/isolamento & purificação , Mitocôndrias/metabolismo , Taenia solium/genética , Tiorredoxinas/genética , Tiorredoxinas/isolamento & purificação , Sequência de Aminoácidos , Animais , Clonagem Molecular , Cysticercus/genética , Cysticercus/isolamento & purificação , Cysticercus/metabolismo , Citosol/química , Dissulfetos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/análogos & derivados , Etanol/metabolismo , Glutarredoxinas/química , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Cinética , Mitocôndrias/química , Mitocôndrias/genética , Fases de Leitura Aberta , Coelhos , Taenia solium/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo
20.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 5): 392-396, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045569

RESUMO

Grx1, a cytosolic thiol-disulfide oxidoreductase, actively maintains cellular redox homeostasis using glutathione substrates (reduced, GSH, and oxidized, GSSG). Here, the crystallization of reduced Grx1 from the yeast Saccharomyces cerevisiae (yGrx1) in space group P212121 and its structure solution and refinement to 1.22 Šresolution are reported. To study the structure-function relationship of yeast Grx1, the crystal structure of reduced yGrx1 was compared with the existing structures of the oxidized and glutathionylated forms. These comparisons revealed structural differences in the conformations of residues neighbouring the Cys27-Cys30 active site which accompany alterations in the redox status of the protein.


Assuntos
Cisteína/química , Glutarredoxinas/química , Glutationa/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA