Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.462
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 125011, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39213831

RESUMO

Thiols function as antioxidants in food, prolonging shelf life and enhancing flavor. Moreover, thiols are vital biomolecules involved in enzyme activity, cellular signal transduction, and protein folding among critical biological processes. In this paper, the fluorescent probe PYL-NBD was designed and synthesized, which utilized the fluorescent molecule pyrazoline, the lysosome-targeted morpholine moiety, and the sensing moiety NBD. Probe PYL-NBD was tailored for the recognition of biothiols through single-wavelength excitation, yielding distinct fluorescence emission signals: blue for Cys, Hcy, and GSH; green for Cys, Hcy. Probe PYL-NBD exhibited rapid reaction kinetics (<10 min), distinct fluorescence response signals, and low detection limits (15.7 nM for Cys, 14.4 nM for Hcy, and 12.6 nM for GSH). Probe PYL-NBD enabled quantitative determination of Cys content in food samples and L-cysteine capsules. Furthermore, probe PYL-NBD had been successfully applied for confocal imaging with dual-channel detection of biothiols in various biological specimens, including HeLa cells, zebrafish, tumor sections, and Arabidopsis thaliana.


Assuntos
Cisteína , Corantes Fluorescentes , Análise de Alimentos , Glutationa , Lisossomos , Espectrometria de Fluorescência , Peixe-Zebra , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Lisossomos/química , Lisossomos/metabolismo , Células HeLa , Cisteína/análise , Animais , Análise de Alimentos/métodos , Glutationa/análise , Espectrometria de Fluorescência/métodos , Homocisteína/análise , Arabidopsis/química , Limite de Detecção , Microscopia Confocal
2.
Molecules ; 29(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39339330

RESUMO

Intracellular biothiols, including cysteine (Cys), glutathione (GSH), and homocysteine (Hcy), play a critical role in many physiological and pathological processes. Among them, GSH is the most abundant non-protein mercaptan (1-10 mM) in cells, and the change in GSH concentration level is closely related to the occurrence of many diseases, such as Parkinson's disease, Alzheimer's disease, and neurological diseases. Fluorescent probes have attracted much attention due to their advantages of high specificity, high sensitivity, high selectivity, low cost, and high quantum yield. Methods that use optical probes for selective detection of GSH in vitro and in vivo are in high demand. In this paper, we reviewed the most recent five years of research on fluorescence probes for the detection of GSH, including the specific detection of GSH, dual-channel identification of GSH and other substances, and the detection of GSH and other biothiols. According to the type of fluorophore, we classified GSH fluorescent probes into eight classes, including BODIPY, 1,8-Naphthalimide, coumarin, xanthene, rhodamine, cyanine, benzothiazoles, and others. In addition, we roundly discuss the synthesis, detection mechanism, photophysical properties, and biological applications of fluorescent probes. We hope that this review will inspire the exploration of new fluorescent probes for GSH and other related analyses.


Assuntos
Corantes Fluorescentes , Glutationa , Corantes Fluorescentes/química , Glutationa/análise , Humanos , Animais , Cumarínicos/química
3.
Molecules ; 29(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39339429

RESUMO

Redox metabolism is an integral part of the glutathione system, encompassing reduced and oxidized glutathione, hydrogen peroxide, and associated enzymes. This core process orchestrates a network of thiol antioxidants like thioredoxins and peroxiredoxins, alongside critical thiol-containing proteins such as mercaptoalbumin. Modifications to thiol-containing proteins, including oxidation and glutathionylation, regulate cellular signaling influencing gene activities in inflammation and carcinogenesis. Analyzing thiol antioxidants, especially glutathione, in biological fluids offers insights into pathological conditions. This review discusses the analytical methods for biothiol determination, mainly in blood plasma. The study includes all key methodological aspects of spectroscopy, chromatography, electrochemistry, and mass spectrometry, highlighting their principles, benefits, limitations, and recent advancements that were not included in previously published reviews. Sample preparation and factors affecting thiol antioxidant measurements are discussed. The review reveals that the choice of analytical procedures should be based on the specific requirements of the research. Spectrophotometric methods are simple and cost-effective but may need more specificity. Chromatographic techniques have excellent separation capabilities but require longer analysis times. Electrochemical methods enable real-time monitoring but have disadvantages such as interference. Mass spectrometry-based approaches have high sensitivity and selectivity but require sophisticated instrumentation. Combining multiple techniques can provide comprehensive information on thiol antioxidant levels in biological fluids, enabling clearer insights into their roles in health and disease. This review covers the time span from 2010 to mid-2024, and the data were obtained from the SciFinder® (ACS), Google Scholar (Google), PubMed®, and ScienceDirect (Scopus) databases through a combination search approach using keywords.


Assuntos
Antioxidantes , Compostos de Sulfidrila , Humanos , Antioxidantes/análise , Antioxidantes/metabolismo , Antioxidantes/química , Compostos de Sulfidrila/análise , Compostos de Sulfidrila/sangue , Líquidos Corporais/química , Líquidos Corporais/metabolismo , Espectrometria de Massas/métodos , Oxirredução , Animais , Glutationa/análise , Glutationa/sangue , Técnicas Eletroquímicas/métodos
4.
Sensors (Basel) ; 24(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39275587

RESUMO

A sequential injection analysis method for the determination of glutathione (GSH) in pharmaceuticals has been developed. It is based on the reduction of the Cu(II)-neocuproine complex by GSH and the formation of an orange-yellow colored Cu(I)-neocuproine complex with maximum absorbance at 458 nm. Under optimal conditions the method is characterized by a linear calibration range of 6.0 × 10-7-8.0 × 10-5 mol L-1 (Amax = 3270 CGSH - 0.0010; R2 = 0.9983), limit of detection of 2.0 × 10-7 mol L-1, limit of quantification of 6.7 × 10-7 mol L-1, repeatability (expressed as relative standard deviation) of 3.8%, and sampling rate of 60 h-1. The newly developed method has been successfully applied to the determination of GSH in pharmaceutical samples with no statistically significant difference between the results obtained and those produced by the standard Pharmacopoeia method.


Assuntos
Glutationa , Glutationa/análise , Glutationa/química , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Análise de Injeção de Fluxo/métodos , Cobre/química , Cobre/análise , Limite de Detecção , Calibragem
5.
Mikrochim Acta ; 191(10): 618, 2024 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316193

RESUMO

A chemiluminescence (CL) method for determination of glutathione (GSH) was developed with magnetic nanoparticle-decorated metal organic frameworks (Fe3O4 NPs@Cu-TATB). The composite material was synthesized via a hydrothermal method and glutathione (GSH) can be detected by both visual and chemiluminescence (CL) methods. The synthesized Fe3O4 NPs@Cu-TATB exhibited excellent catalytic activity in the luminol-H2O2 CL system. The mechanism revealed that three types of oxygen-containing radicals (ROS) were generated in this system. As GSH can reduce the catalytic effect of generated ROS radicals, the inhibiting CL signal was produced in the Fe3O4 NPs@Cu-TATB-luminol-H2O2 system. Based on the established CL system, the detection limits for GSH using CL and visual methods were found to be 0.3 µM and 0.7 µM, respectively. This low-cost and convenient detection method can be applied to the determination of GSH content in human blood.


Assuntos
Glutationa , Peróxido de Hidrogênio , Limite de Detecção , Medições Luminescentes , Luminol , Nanopartículas de Magnetita , Estruturas Metalorgânicas , Glutationa/sangue , Glutationa/química , Glutationa/análise , Humanos , Estruturas Metalorgânicas/química , Medições Luminescentes/métodos , Luminol/química , Nanopartículas de Magnetita/química , Peróxido de Hidrogênio/química , Cobre/química , Catálise
6.
Anal Chim Acta ; 1325: 343114, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39244302

RESUMO

BACKGROUND: Temperature sensing is commonly used in point-of-care (POC) detection technologies, yet the portability and convenience of use are frequently compromised by the complexity of thermosensitive processes and signal transduction. Especially, multi-step target recognition reactions and temperature measurement in the reaction vessel present challenges in terms of stability and integration of detection devices. To further combine photothermal reaction and signal readout in one assay, these two processes enable to be integrated into miniaturized microfluidic chips, thereby facilitating photothermal sensing and achieving a simple visual temperature sensing as POC detection. RESULTS: A copper ion (Cu2+)-catalyzed photothermal sensing system integrated onto a microfluidic distance-based analytical device (µDAD), enabling the visual, portable, and sensitive quantitative detection of multiple targets, including ascorbic acid, glutathione, and alkaline phosphatase (ALP). The polydopamine nanoparticles (PDA NPs) were synthesized by the regulation of free Cu2+ through redox or coordination reactions, facilitating the transduction of distinct photothermal response signals and providing the versatile Cu2+-responsive sensing systems. Promoted by integration with a photothermal µDAD, the system combines PDA's photothermal responsiveness and thermosensitive gas production of ammonium bicarbonate for improved sensitivity of ALP detection, reaching the detection limit of 9.1 mU/L. The system has successfully achieved on-chip detection of ALP with superior anti-interference capability and recoveries ranging from 96.8 % to 104.7 %, alongside relative standard deviations below 8.0 %. SIGNIFICANCE AND NOVELTY: The µDAD design accommodated both the photothermal reaction of PDA NPs and thermosensitive gas production reaction, achieving the rapid sensing of visual distance signals. The µDAD-based Cu2+-catalyzed photothermal sensing system holds substantial potential for applications in biochemical analysis and clinical diagnostics, underscored by the versatile Cu2+ regulation mechanism for a broad spectrum of biomarkers.


Assuntos
Ácido Ascórbico , Cobre , Indóis , Testes Imediatos , Polímeros , Cobre/química , Indóis/química , Polímeros/química , Catálise , Ácido Ascórbico/análise , Ácido Ascórbico/química , Limite de Detecção , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/análise , Fosfatase Alcalina/química , Temperatura , Humanos , Glutationa/análise , Glutationa/química , Nanopartículas/química , Processos Fotoquímicos , Dispositivos Lab-On-A-Chip , Técnicas Biossensoriais
7.
J Mass Spectrom ; 59(10): e5091, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39291925

RESUMO

Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) uses an infrared laser to desorb neutral biomolecules with postionization via ESI at atmospheric pressure. The Gaussian profile of the laser with conventional optics results in the heating of adjacent nonablated tissue due to the energy profile being circular. A diffractive optical element (DOE) was incorporated into the optical train to correct for this disadvantage. The DOE produces a top-hat beam profile and square ablation spots, which have uniform energy distributions. Although beneficial to mass spectrometry imaging (MSI), it is unknown how the DOE affects the ability to perform quantitative MSI (qMSI). In this work, we evaluate the performance of the DOE optical train against our conventional optics to define the potential advantages of the top-hat beam profile. Absolute quantification of glutathione (GSH) was achieved by normalizing the analyte of interest to homoglutathione (hGSH), spotting a dilution series of stable isotope labeled glutathione (SIL-GSH), and analyzing by IR-MALDESI MSI with either the conventional optical train or with the DOE incorporated. Statistical comparison indicates that there was no significant difference between the quantification of GSH by the two optical trains as evidenced by similar calibration curves. Results support that both optical trains can be used for qMSI without a change in the ability to carry out absolute quantification but providing the benefits of the top-hat optical train (i.e., flat energy profile and square ablation spots)-for future qMSI studies.


Assuntos
Glutationa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Glutationa/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais
8.
Anal Chim Acta ; 1328: 343186, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39266201

RESUMO

BACKGROUND: Biothiols are important for numerous cellular processes, such as resisting oxidative stress and protecting cell health. Their abnormal levels and molecular configurations have been associated with various diseases. So, establishing an effective and reliable method for the specific detection and enantiomeric discrimination of diverse biothiols is highly meaningful. RESULTS: We have developed a new NMR and CD probe using 1,4-dinitroimidazole, specifically targeting the thiol group. This probe allows for the specific detection and enantiomeric recognition of biothiols in complex mixtures. We achieved this by identifying the distinguishable 1H NMR signals of 2nd in imidazole-ring of the resulting 4NI-biothiols in the downfield region at 7-8 ppm and newly discovered induced CD signals within 290-430 nm. Using this probe, the limits of detection of Cys, GSH, and Hcy, the recovery rates, and the concentration of GSH extracted from HEK293T cells were determined by measuring the unique downfield 1H NMR signals. Moreover, Cys, GSH, and Hcy can be discriminated simultaneously in complicated samples at a pH range of 2-3.5. Furthermore, this probe can also be utilized to sense chiral thiol-drugs. SIGNIFICANCE: This method offers a cost-effective and accurate sensing solution for the specific detection of biothiols in complex mixtures, with stereochemical recognition.


Assuntos
Imidazóis , Compostos de Sulfidrila , Humanos , Estereoisomerismo , Imidazóis/química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/análise , Células HEK293 , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Cisteína/análise , Glutationa/análise , Glutationa/química , Homocisteína/análise , Limite de Detecção , Estrutura Molecular
9.
Clin Chim Acta ; 563: 119915, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39134217

RESUMO

The physiological and clinical importance of Glutathione and Cysteamine is emphasized by their participation in a range of conditions, such as diabetes, cancer, renal failure, Parkinson's disease, and hypothyroidism. This necessitates the requirement for accessible, expedited, and cost-efficient testing that can facilitate clinical diagnosis and treatment options. This article examines numerous techniques used to detect both glutathione and cysteamine. The discussed methods include electroanalytical techniques such as voltammetry and amperometry, which are examined for their sensitivity and ability to provide real-time analysis. Furthermore, this study investigates the accuracy of gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) in measuring the concentrations of glutathione and cysteamine. Additionally, the potential of new nanotechnology-based methods, such as plasmonic nanoparticles and quantum dots, to improve the sensitivity of detecting glutathione and cysteamine is emphasized.


Assuntos
Biomarcadores , Cisteamina , Glutationa , Cisteamina/química , Glutationa/análise , Humanos , Biomarcadores/análise , Cromatografia Líquida de Alta Pressão , Técnicas Eletroquímicas , Cromatografia Gasosa-Espectrometria de Massas , Compostos de Sulfidrila/análise
10.
Langmuir ; 40(32): 16909-16920, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39087886

RESUMO

We have prepared a novel assembly with copper nanoclusters (CuNCs) and imidazolium-based gemini surfactants (different chain lengths). These novel mimic enzymes formed through the assembly of nanocluster-gemini surfactants have been utilized in creating colorimetric sensors to detect biomolecules. Yet, understanding the method for detecting glutathione (GSH) and its sensing mechanism using this specific assembly-based colorimetric sensor poses a significant challenge. Because of the role of surface ligands, the complexes of cysteine-capped CuNCs (Cys-CuNCs) and gemini surfactants exhibit strong amphiphilicity, enabling them to self-assemble like a molecular amphiphile. We have investigated the kinetics and catalytic capabilities of this Cys-CuNCs@gemini surfactant assembly through peroxidase-like activity. Additionally, a sensitive and simple-to-use colorimetric sensing approach for glutathione (GSH) is also disclosed here, demonstrating a low limit of detection, by using this peroxidase-like activity of Cys-CuNCs@gemini surfactant assemblies. Thus, the remarkable advantages of the Cys-CuNCs@gemini surfactant nanozyme make it suitable for the precise colorimetric detection of GSH, demonstrating excellent sensitivity and reliable selectivity. Additionally, it performs well in detecting GSH in various soft drinks.


Assuntos
Colorimetria , Cobre , Cisteína , Glutationa , Nanopartículas Metálicas , Tensoativos , Cobre/química , Glutationa/análise , Glutationa/química , Colorimetria/métodos , Tensoativos/química , Cisteína/análise , Cisteína/química , Nanopartículas Metálicas/química , Imidazóis/química , Peroxidase/química , Peroxidase/metabolismo
11.
PLoS One ; 19(8): e0308792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39146282

RESUMO

BACKGROUND: The neurobiological underpinnings of Autism Spectrum Disorder (ASD) are diverse and likely multifactorial. One possible mechanism is increased oxidative stress leading to altered neurodevelopment and brain function. However, this hypothesis has mostly been tested in post-mortem studies. So far, available in vivo studies in autistic individuals have reported no differences in glutathione (GSH) levels in frontal, occipital, and subcortical regions. However, these studies were limited by the technically challenging quantification of GSH, the main brain antioxidant molecule. This study aimed to overcome previous studies' limitations by using a GSH-tailored spectroscopy sequence and optimised quantification methodology to provide clarity on GSH levels in autistic adults. METHODS: We used spectral editing proton-magnetic resonance spectroscopy (1H-MRS) combined with linear combination model fitting to quantify GSH in the dorsomedial prefrontal cortex (DMPFC) and medial occipital cortex (mOCC) of autistic and non-autistic adults (male and female). We compared GSH levels between groups. We also examined correlations between GSH and current autism symptoms, measured using the Autism Quotient (AQ). RESULTS: Data were available from 31 adult autistic participants (24 males, 7 females) and 40 non-autistic participants (21 males, 16 females); the largest sample to date. The GSH levels did not differ between groups in either region. No correlations with AQ were observed. CONCLUSION: GSH levels as measured using 1H-MRS are unaltered in the DMPFC and mOCC regions of autistic adults, suggesting that oxidative stress in these cortical regions is not a marked neurobiological signature of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Glutationa , Lobo Occipital , Humanos , Masculino , Feminino , Glutationa/metabolismo , Glutationa/análise , Adulto , Lobo Occipital/metabolismo , Lobo Occipital/diagnóstico por imagem , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Adulto Jovem , Espectroscopia de Prótons por Ressonância Magnética , Lobo Frontal/metabolismo , Estresse Oxidativo , Pessoa de Meia-Idade , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/diagnóstico por imagem
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124846, 2024 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-39059262

RESUMO

Biothiols, including cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), play distinct yet crucial roles in various mitochondrial physiological activities. However, due to their similar chemical structures, distinguishing and detecting Cys/Hcy/GSH poses a considerable challenge. In this study, we developed a dual-channel, mitochondrial-targeted fluorescent probe termed QX-NBD, designed specifically for discriminating Cys/Hcy from GSH. The incorporation of a quinolinium group endowed the probe with excellent mitochondrial targeting capabilities. This functionality arose from the positively charged group's ability to selectively bind to negatively charged mitochondrial membranes through electrostatic interactions. Additionally, the ether bond between 4-chloro-7-nitro-1,2,3-benzoxadiazole and the near-infrared fluorophore QX-OH rendered the probe susceptible to nucleophilic attack by biothiols. Upon the introduction of Cys/Hcy, the probe exhibited dual fluorescence emissions in red and green. Conversely, the presence of GSH resulted in only red fluorescence emission. The detection limits of the probe for Cys and Hcy at 542 nm in buffer solution were determined to be 0.044 µM and 0.042 µM, respectively. Similarly, the detection limit for all these biothiols was 0.028 µM at 678 nm. Furthermore, the response times for Cys/Hcy/GSH were recorded as 4.0 min, 5.5 min, and 9.5 min, respectively. Moreover, the probe was employed to monitor fluctuations in biothiol levels during oxidative stress in both HeLa cells and zebrafish, demonstrating its applicability and utility in biological contexts.


Assuntos
Corantes Fluorescentes , Homocisteína , Mitocôndrias , Peixe-Zebra , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/química , Células HeLa , Homocisteína/análise , Homocisteína/metabolismo , Homocisteína/análogos & derivados , Compostos de Sulfidrila/análise , Compostos de Sulfidrila/química , Glutationa/análise , Glutationa/metabolismo , Cisteína/análise , Espectrometria de Fluorescência/métodos , Limite de Detecção , Imagem Óptica/métodos
13.
Anal Methods ; 16(29): 4951-4959, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38973573

RESUMO

Glutathione (GSH) is commonly used as a diagnostic biomarker for many diseases. In this study, based on carbon quantum dots prepared from dragon fruit peel (D-CQDs) and the T-Hg(II)-T mismatch, a dual-mode biosensor was developed for the detection of GSH. This system consists of two single-stranded DNA (ssDNA). DNA1 was the T-rich sequence; DNA2 was attached to streptavidin-coated magnetic beads and consisted of T-rich and G-rich fragments. Due to the presence of Hg(II), the T-Hg(II)-T mismatch was formed between T-rich fragments of two ssDNA. In the presence of GSH, Hg(II) detached from dsDNA and bound with GSH to form a new complex. The G-rich fragment assembled with the hemin shed from D-CQDs to form the G-quadruplex/hemin complex. At this time, in fluorescence mode, the fluorescence of D-CQDs quenched by hemin could be restored. In colorimetric mode, after the magnetic beads separate, a visual signal could be produced by catalyzing the oxidation of ABTS using the peroxide-like activity of the G-quadruplex/hemin complex. This biosensor in both fluorescence mode and colorimetric mode had excellent selectivity and sensitivity, and the limit of detection was 0.089 µM and 0.26 µM for GSH, respectively. Moreover, the proposed dual-mode biosensor had good application prospects for detection of GSH.


Assuntos
Técnicas Biossensoriais , Carbono , Frutas , Glutationa , Pontos Quânticos , Pontos Quânticos/química , Técnicas Biossensoriais/métodos , Glutationa/química , Glutationa/análise , Carbono/química , Frutas/química , DNA de Cadeia Simples/química , Mercúrio/análise , Mercúrio/química , Limite de Detecção , Pareamento Incorreto de Bases , Humanos , Quadruplex G , Cactaceae
14.
Biosens Bioelectron ; 262: 116559, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38981320

RESUMO

Glutathione (GSH) is indispensable for maintaining redox homeostasis in biological fluids and serves as a key component in cellular defense mechanisms. Accurate assessment of GSH relative to its oxidized counterpart, glutathione disulfide (GSSG), is critical for the early diagnosis and understanding of conditions related to oxidative stress. Despite existing methods for their quantification, the label-free and simultaneous measurement of GSH and GSSG in biological fluid presents significant challenges. Herein, we report the use of an alpha-hederin (Ah) nanopore for the direct measurement of the GSH:GSSG ratio in simulated biological fluid, containing fetal bovine serum (FBS). This system hinges on detecting characteristic relative ion blockades (ΔI/Io) as GSH and GSSG molecules pass through the Ah nanopore under an applied electric field. The distinct current blockage signals derived from the translocation of GSH and GSSG enabled us to determine the molar ratio of GSH and its oxidized form. Notably, the interactions between the hydroxyl groups of the sugar moiety lining the nanopore's inner surface and the sulfhydryl group of GSH significantly influence the translocation dynamics, resulting in a longer translocation time for GSH compared to GSSG. The Ah nanopore technology proposed in this study offers a promising approach for real-time, single molecule-level monitoring of glutathione redox status in biological fluids, eliminating the need for labeling or extensive sample preparation.


Assuntos
Técnicas Biossensoriais , Dissulfeto de Glutationa , Glutationa , Nanoporos , Oxirredução , Glutationa/química , Glutationa/análise , Glutationa/sangue , Técnicas Biossensoriais/métodos , Dissulfeto de Glutationa/análise , Dissulfeto de Glutationa/química , Dissulfeto de Glutationa/sangue , Animais , Humanos , Bovinos , Estresse Oxidativo
15.
J Mass Spectrom ; 59(7): e5063, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953332

RESUMO

An unprecedented and direct PS-MS (paper spray ionization mass spectrometry) method was proposed for the detection of native peptides, that is, glutathiones (GSHs), homoglutathiones (hGSHs), and phytochelatins (PCs), in basil (Ocimum basilicum L.) roots before and after cadmium exposure. The roots were submitted to cold maceration followed by sonication with formic acid as the extractor solvent for sample preparation. PS-MS was used to analyze such extracts in the positive mode, and the results allowed for the detection of several GSHs, hGSHs, and PCs. Some of these PCs were not distinguished in the control samples, that is, basil roots not exposed to cadmium. Other PCs were noticed in both types of roots, uncontaminated and cadmium-contaminated, but the intensities were higher in the former samples. Moreover, long-time exposure to cadmium stimulated the formation of some of these PCs and their cadmium complexes. The results, therefore, provided some crucial insights into the defense mechanism of plants against an external stress condition due to exposure to a toxic heavy metal. The present study represents a promising alternative to investigate other crucial physiological processes in plants submitted to assorted stress conditions.


Assuntos
Cádmio , Ocimum basilicum , Fitoquelatinas , Raízes de Plantas , Fitoquelatinas/química , Fitoquelatinas/metabolismo , Raízes de Plantas/química , Cádmio/análise , Ocimum basilicum/química , Espectrometria de Massas/métodos , Glutationa/análise , Glutationa/metabolismo , Glutationa/química
16.
J Vis Exp ; (208)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39007566

RESUMO

Glutathione has long been considered a key biomarker for determining the antioxidant response of the cell. Hence, it is a primary marker for reactive oxygen species studies. The method utilizes Ortho-phthalaldehyde (OPA) to quantify the cellular concentration of glutathione(s). OPA conjugates with reduced glutathione (GSH) via sulfhydryl binding to subsequently form an isoindole, resulting in a highly fluorescent conjugate. To attain an accurate result of both oxidized glutathione (GSSG) and GSH, a combination of masking agents and reducing agents, which have been implemented in this protocol, are required. Treatments may also impact cellular viability. Hence, normalization via protein assay is presented in this multiparametric assay. The assay demonstrates a pseudo-linear detection range of 0.234 - 30µM (R2=0.9932±0.007 (N=12)) specific to GSH. The proposed assay also allows for the determination of oxidized glutathione with the addition of the masking agent N-ethylmaleimide to bind reduced glutathione, and the reducing agent tris(2-carboxyethyl) phosphine is introduced to cleave the disulfide bond in GSSG to produce two molecules of GSH. The assay is used in combination with a validated bicinchoninic acid assay for protein quantification and an adenylate kinase assay for cytotoxicity assessment.


Assuntos
Glutationa , Oxirredução , o-Ftalaldeído , o-Ftalaldeído/química , Glutationa/análise , Glutationa/química , Glutationa/metabolismo , Humanos , Animais , Dissulfeto de Glutationa/análise , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/química , Fosfinas/química
17.
Nanoscale ; 16(31): 14831-14843, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39034677

RESUMO

This study reports a fluorescent nanoprobe operated in fluorescence turn-on mode for simultaneously sensing and imaging intracellular GSH and ATP. By using maleimide-derivatives as the ligand, the bimetallic nanoscale metal-organic framework (NMOF) Cu-Mi-UiO-66 has been synthesized for the first time using a straightforward one-step solvothermal approach, serving as a GSH recognition moiety. Subsequently, a Cy5-labeled ATP aptamer was assembled onto Cu-Mi-UiO-66 via strong coordination between phosphate and zirconium, π-π stacking and electrostatic adsorption to develop the dual-responsive fluorescence nanoprobe Cu-Mi-UiO-66/aptamer. Due to the photoinduced electron transfer (PET) effect between maleimide groups and the benzene ring of the ligand and the charge transfer between Cy5 and the Zr(IV)/Cu(II) bimetal center of the NMOF, the Cu-Mi-UiO-66/aptamer exhibits a fluorescence turn-off status. The Michael addition reaction between the thiol group of GSH and the maleimide on the NMOF skeleton results in turning on of the blue fluorescence of Cu-Mi-UiO-66. Meanwhile, upon specific interaction with ATP, the aptamer changes into internal loop structures and detaches from Cu-Mi-UiO-66, resulting in turning on of the red fluorescence of Cy5. The nanoprobe demonstrated an excellent sensing performance with a good linear range (GSH, 5.0-450.0 µM; ATP, 1.0-50.0 µM) and a low detection limit (GSH, 2.17 µM; ATP, 0.635 µM). More importantly, the Cu-Mi-UiO-66/aptamer exhibits good performance for tracing intracellular concentration variations of GSH and ATP in living HepG2 cells under different stimulations. This study highlights the potential of NMOFs for multiplexed analysis and provides a valuable tool for tumor microenvironment research and early cancer diagnosis.


Assuntos
Trifosfato de Adenosina , Cobre , Corantes Fluorescentes , Glutationa , Estruturas Metalorgânicas , Glutationa/análise , Glutationa/química , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Humanos , Corantes Fluorescentes/química , Cobre/química , Estruturas Metalorgânicas/química , Aptâmeros de Nucleotídeos/química , Zircônio/química , Carbocianinas/química , Espectrometria de Fluorescência , Ácidos Ftálicos
18.
Anal Chem ; 96(29): 11932-11941, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38984509

RESUMO

Oxidative stress, characterized by an imbalance between oxidative and antioxidant processes, results in excessive accumulation of intracellular reactive oxygen species. Among these responses, the regulation of intracellular hydroxyl radicals (•OH) and glutathione (GSH) is vital for physiological processes. Real-time in situ monitoring these two opposing bioactive species and their redox interactions is essential for understanding physiological balance and imbalance. In this study, we developed a dual-site fluorescence chemosensor OG-3, which can independently image both exogenous and endogenous •OH and GSH in separate channels both within cells and in vivo, eliminating issues of spatiotemporal inhomogeneous distribution and cross-interference. With its imaging capabilities of monitoring •OH-GSH redox, OG-3 elucidated two different pathways for ferroptosis induction: (i) inhibition of system xc- to block cystine uptake (extrinsic pathway) and (ii) GPX4 inactivation, leading to the loss of antioxidant defense (intrinsic pathway). Moreover, we assessed the antiferroptotic function and effects of ferroptosis inhibitors by monitoring •OH and GSH fluctuations during ferroptosis. This method provides a reliable platform for identifying potential ferroptosis inhibitors, contributing to our understanding of relevant metabolic and physiological mechanisms. It shows potential for elucidating the regulation of ferroptosis mechanisms and investigating further strategies for therapeutic applications.


Assuntos
Ferroptose , Corantes Fluorescentes , Glutationa , Radical Hidroxila , Oxirredução , Ferroptose/efeitos dos fármacos , Glutationa/metabolismo , Glutationa/análise , Humanos , Radical Hidroxila/metabolismo , Animais , Corantes Fluorescentes/química , Camundongos , Imagem Óptica
19.
Talanta ; 278: 126541, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39018760

RESUMO

A polyethyleneimine capped silver nanoclusters (PEI-AgNCs) based turn-off-on fluorescence sensor has been developed to determine glutathione (GSH) effectively. The fluorescence intensity of silver nanoclusters (AgNCs) has been quenched by Cu(II) and recovered by adding GSH. The quenching of fluorescence intensity of PEI-AgNCs by Cu(II) and recovery of the emission intensity of PEI-AgNCs after the addition of GSH is supposed to be ground state adduct formation. Due to the greater affinity of Cu(II) towards GSH compared to that to PEI-AgNCs, the defragmentation of PEI-AgNCs-Cu(II) adduct occurs after the addition of GSH to the solution, resulting in the recovery of emission intensity of PEI-AgNCs. Characterisation studies of the probe have been done using FT-IR spectroscopy, XPS analysis, XRD analysis, UV-visible and Fluorescence spectrophotometry, EDX spectroscopy and TEM analysis. Different experimental parameters were optimised. Under optimised analytical conditions, the sensor showed a wide linear range for the quantification of GSH from 1.00 × 10-4 M to 3.00 × 10-6 M with a detection limit (LOD) of 8.00 × 10-7 M. Selectivity and interference studies were done in the presence of different structurally similar and coexisting species of GSH in blood. The practical utility of the proposed sensor has been validated in artificial blood serum.


Assuntos
Glutationa , Nanopartículas Metálicas , Polietilenoimina , Prata , Espectrometria de Fluorescência , Polietilenoimina/química , Glutationa/química , Glutationa/sangue , Glutationa/análise , Prata/química , Nanopartículas Metálicas/química , Espectrometria de Fluorescência/métodos , Limite de Detecção , Humanos , Cobre/química
20.
Analyst ; 149(15): 3961-3970, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38980709

RESUMO

Manganese dioxide (MnO2) nanosheets possess unique physical and chemical properties, making them widely applicable in various fields, such as chemistry and biomedicine. Although MnO2 nanosheets are produced using bottom-up wet chemistry synthesis methods, their scale is below the gram level and requires a long processing time, restricting their effective scale-up from laboratory to market. We report a facile, green and scalable synthesis of MnO2 nanosheets by mixing Shiranui mandarin orange juice and KMnO4 for 30 minutes. We produced more than one gram (1.095) of MnO2 nanosheets with a 0.65 nm mean thickness and a 50 nm mean lateral size. Furthermore, we established a visual colorimetric biosensing strategy based on MnO2 nanosheets for the assay of glutathione (GSH) and cardiac troponin I (cTnI), offering high sensitivity and feasibility in clinical samples. For GSH, the limit of detection was 0.08 nM, and for cTnI, it was 0.70 pg mL-1. Meanwhile, the strategy can be used for real-time analysis by applying a smartphone-enabled biosensing strategy, which can provide point-of-care testing in remote areas.


Assuntos
Colorimetria , Glutationa , Química Verde , Limite de Detecção , Compostos de Manganês , Nanoestruturas , Óxidos , Troponina I , Óxidos/química , Compostos de Manganês/química , Colorimetria/métodos , Glutationa/química , Glutationa/análise , Troponina I/análise , Troponina I/sangue , Nanoestruturas/química , Humanos , Química Verde/métodos , Técnicas Biossensoriais/métodos , Permanganato de Potássio/química , Smartphone , Sucos de Frutas e Vegetais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA