Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
1.
Front Immunol ; 15: 1367019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686389

RESUMO

Background: Although hyperuricemia is not always associated with acute gouty arthritis, uric acid is a significant risk factor for gout. Therefore, we investigated the specific mechanism of uric acid activity. Methods: Using the gout-associated transcriptome dataset GSE160170, we conducted differential expression analysis to identify differentially expressed genes (DEGs). Moreover, we discovered highly linked gene modules using weighted gene coexpression network analysis (WGCNA) and evaluated their intersection. Subsequently, we screened for relevant biomarkers using the cytoHubba and Mcode algorithms in the STRING database, investigated their connection to immune cells and constructed a competitive endogenous RNA (ceRNA) network to identify upstream miRNAs and lncRNAs. We also collected PBMCs from acute gouty arthritis patients and healthy individuals and constructed a THP-1 cell gout inflammatory model, RT-qPCR and western blotting (WB) were used to detect the expression of C-X-C motif ligand 8 (CXCL8), C-X-C motif ligand 2 (CXCL2), and C-X-C motif ligand 1 (CXCL1). Finally, we predicted relevant drug targets through hub genes, hoping to find better treatments. Results: According to differential expression analysis, there were 76 upregulated and 28 downregulated mRNAs in GSE160170. Additionally, WGCNA showed that the turquoise module was most strongly correlated with primary gout; 86 hub genes were eventually obtained upon intersection. IL1ß, IL6, CXCL8, CXCL1, and CXCL2 are the principal hub genes of the protein-protein interaction (PPI) network. Using RT-qPCR and WB, we found that there were significant differences in the expression levels of CXCL8, CXCL1, and CXCL2 between the gouty group and the healthy group, and we also predicted 10 chemicals related to these proteins. Conclusion: In this study, we screened and validated essential genes using a variety of bioinformatics tools to generate novel ideas for the diagnosis and treatment of gout.


Assuntos
Biomarcadores , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Gota , Humanos , Gota/genética , Quimiocina CXCL1/genética , Quimiocina CXCL2/genética , Quimiocina CXCL2/metabolismo , Biologia Computacional/métodos , Transcriptoma , Células THP-1 , Interleucina-8/genética , MicroRNAs/genética , Ácido Úrico , Mapas de Interação de Proteínas , Regulação da Expressão Gênica , Bases de Dados Genéticas , Artrite Gotosa/genética
2.
PLoS One ; 19(1): e0296498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38206925

RESUMO

INTRODUCTION: Allopurinol, the first-line treatment for chronic gout, is a common causative drug for severe cutaneous adverse reactions (SCAR). HLA-B*58:01 allele was strongly associated with allopurinol-induced SCAR in Asian countries such as Taiwan, Japan, Thailand and Malaysia. HLA-B*58:01 screening before allopurinol initiation is conditionally recommended in the Southeast-Asian population, but the uptake of this screening is slow in primary care settings, including Malaysia. This study aimed to explore the views and experiences of primary care doctors and patients with gout on implementing HLA-B*58:01 testing in Malaysia as part of a more extensive study exploring the feasibility of implementing it routinely. METHODS: This qualitative study used in-depth interviews and focus group discussions to obtain information from patients with gout under follow-up in primary care and doctors who cared for them. Patients and doctors shared their gout management experiences and views on implementing HLA-B*58:01 screening in primary care. Data were coded and analysed using thematic analysis. RESULTS: 18 patients and 18 doctors from three different healthcare settings (university hospital, public health clinics, private general practitioner clinics) participated. The acceptability to HLA-B*58:01 screening was good among the doctors and patients. We discovered inadequate disclosure of severe side effects of allopurinol by doctors due to concerns about medication refusal by patients, which could potentially be improved by introducing HLA-B*58:01 testing. Barriers to implementation included out-of-pocket costs for patients, the cost-effectiveness of this implementation, lack of established alternative treatment pathway besides allopurinol, counselling burden and concern about genetic data security. Our participants preferred targeted screening for high-risk populations instead of universal screening. CONCLUSION: Implementing HLA-B*58:01 testing in primary care is potentially feasible if a cost-effective, targeted screening policy on high-risk groups can be developed. A clear treatment pathway for patients who test positive should be made available.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Gota , Humanos , Alopurinol/efeitos adversos , Gota/tratamento farmacológico , Gota/genética , Antígenos HLA-B/genética , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Tailândia , Atenção Primária à Saúde
3.
Dis Markers ; 2024: 5930566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38222853

RESUMO

Genetic variations in urate transporters play a significant role in determining human urate levels and have been implicated in developing hyperuricemia or gout. Polymorphism in the key urate transporters, such as ABCG2, URAT1, or GLUT9 was well-documented in the literature. Therefore in this study, our objective was to determine the frequency and effect of rare nonsynonymous allelic variants of SLC22A11, SLC22A13, and SLC17A1 on urate transport. In a cohort of 150 Czech patients with primary hyperuricemia and gout, we examined all coding regions and exon-intron boundaries of SLC22A11, SLC22A13, and SLC17A1 using PCR amplification and Sanger sequencing. For comparison, we used a control group consisting of 115 normouricemic subjects. To examine the effects of the rare allelic nonsynonymous variants on the expression, intracellular processing, and urate transporter protein function, we performed a functional characterization using the HEK293A cell line, immunoblotting, fluorescent microscopy, and site directed mutagenesis for preparing variants in vitro. Variants p.V202M (rs201209258), p.R343L (rs75933978), and p.P519L (rs144573306) were identified in the SLC22A11 gene (OAT4 transporter); variants p.R16H (rs72542450), and p.R102H (rs113229654) in the SLC22A13 gene (OAT10 transporter); and the p.W75C variant in the SLC17A1 gene (NPT1 transporter). All variants minimally affected protein levels and cytoplasmic/plasma membrane localization. The functional in vitro assay revealed that contrary to the native proteins, variants p.P519L in OAT4 (p ≤ 0.05), p.R16H in OAT10 (p ≤ 0.05), and p.W75C in the NPT1 transporter (p ≤ 0.01) significantly limited urate transport activity. Our findings contribute to a better understanding of (1) the risk of urate transporter-related hyperuricemia/gout and (2) uric acid handling in the kidneys.


Assuntos
Gota , Hiperuricemia , Transportadores de Ânions Orgânicos Sódio-Independentes , Transportadores de Ânions Orgânicos , Proteínas Cotransportadoras de Sódio-Fosfato Tipo I , Humanos , Gota/genética , Hiperuricemia/genética , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Ácido Úrico/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo I/genética
4.
PLoS One ; 18(12): e0295038, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38060535

RESUMO

Gout-a very painful inflammatory arthritis caused by the deposition of monosodium urate crystals in the joints-is influenced by several factors. We identified the association of single- nucleotide polymorphisms (SNPs) that link gout with health-related lifestyle factors using genomic data from the Korean Genome and Epidemiology Study. We conducted a genome-wide association study (GWAS) on 18,927 samples of 438 Korean patients with gout and 18,489 controls for the discovery stage. For the replication stage, another batch containing samples of 326 patients with gout and 2,737 controls were analyzed. Lastly, a meta-analysis was performed using these two cohorts. We analyzed the effects of health-related lifestyle factors, including eating habits, physical activity, drinking behavior, and smoking behavior, on gout. After identifying the association between GWAS-derived SNPs and health-related lifestyle factors, we confirmed the interaction between the polygenic risk score (PRS) and health-related lifestyle factors. We identified 15 SNPs related to gout, among which rs1481012 of ABCG2 located on chromosome 4 has been newly discovered (P = 2.46e-11). On examining the interaction between SNPs and health-related lifestyles, rs3109823-located in ABCG2-was found to be associated with smoking status. In addition, rs11936395-located in SLC2A9-was significantly associated with the average momentum of exercise per session, whereas rs11066325 located in PTPN11, showed a significant association with the number of exercise sessions per week, smoking status, drinking status, and amount of soju drink per session. rs9421589-located in FAM35A-was significantly associated with the duration of smoking. In addition, we verified that the association between PRS and duration of smoking affects gout. Thus, in this study, we identified novel SNPs that link gout with health-related lifestyle factors in the Korean population.


Assuntos
Gota , Polimorfismo de Nucleotídeo Único , Humanos , Estudo de Associação Genômica Ampla , Ácido Úrico , Gota/epidemiologia , Gota/genética , Estilo de Vida , República da Coreia/epidemiologia , Predisposição Genética para Doença , Fatores de Risco , Proteínas Facilitadoras de Transporte de Glucose/genética
5.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(2): 230-236, 2023 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37283108

RESUMO

A 24-year-old male was admitted due to recurrent redness, swelling, fever and pain in the ankle, frequently accompanied by hungry feeling. Dual energy CT scans showed multiple small gouty stones in the posterior edge of the bilateral calcaneus and in the space between the bilateral metatarsophalangeal joints. The laboratory examination results indicated hyperlipidemia, high lactate lipids, and low fasting blood glucose. Histopathology of liver biopsy showed significant glycogen accumulation. The results of gene sequencing revealed the compound heterozygous mutations of the G6PC gene c.248G>A (p.Arg83His) and c.238T>A (p.Phe80Ile) in the proband. The c.248G>A mutation was from mother and the c.238T>A mutation was from father. The diagnosis of glycogen storage disease type Ⅰa was confirmed. After giving a high starch diet and limiting monosaccharide intake, as well as receiving uric acid and blood lipids lowering therapy, the condition of the patient was gradually stabilized. After a one-year follow-up, there were no acute episodes of gout and a significant improvement in hungry feeling in the patient.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Gota , Masculino , Humanos , Adulto Jovem , Adulto , Doença de Depósito de Glicogênio Tipo I/complicações , Doença de Depósito de Glicogênio Tipo I/diagnóstico , Doença de Depósito de Glicogênio Tipo I/genética , Gota/diagnóstico , Gota/complicações , Gota/genética , Mutação , Lipídeos
6.
J Hum Genet ; 68(10): 699-704, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37308567

RESUMO

Although chronic kidney disease (CKD) is recognized as a major public health concern, effective treatment strategies have yet to be developed. Identification and validation of drug targets are key issues in the development of therapeutic agents for CKD. Uric acid (UA), a major risk factor for gout, has also been suggested to be a risk factor for CKD, but the efficacy of existing urate-lowering therapies for CKD is controversial. We focused on five uric acid transporters (ABCG2, SLC17A1, SLC22A11, SLC22A12, SLC2A9) as potential drug targets and evaluated the causal association between serum UA levels and estimated glomerular filtration rate (eGFR) using single-SNP Mendelian Randomization. The results showed a causal association between genetically predicted changes in serum UA levels and eGFR when genetic variants were selected from the SLC2A9 locus. Estimation based on a loss-of-function mutation (rs16890979) showed that the changes in eGFR per unit increase in serum UA level was -0.0082 ml/min/1.73 m2 (95% CI -0.014 to -0.0025, P = 0.0051). These results indicate that SLC2A9 may be a novel drug target for CKD that preserves renal function through its urate-lowering effect.


Assuntos
Gota , Transportadores de Ânions Orgânicos , Insuficiência Renal Crônica , Humanos , Ácido Úrico , Análise da Randomização Mendeliana , Gota/genética , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética , Fatores de Risco , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas Facilitadoras de Transporte de Glucose/genética
7.
FASEB J ; 37(6): e22940, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37243314

RESUMO

Gout is caused by monosodium urate (MSU) crystal deposition within joints. This leads to acute episodes of inflammation ("gout flares") driven by NLRP3 inflammasome activation in macrophages. Gout flares are frequently present during late night/early morning. The reason for this timing is unclear. Recent evidence suggests the NLRP3 inflammasome is under circadian control. The purpose of this study was to determine whether MSU crystals cause changes in the circadian clock in macrophages leading to time-of-day differences in NLRP3 inflammasome activation. Levels of circadian clock components were measured in undifferentiated "monocytic" and PMA-differentiated "macrophagic" THP-1 cells cultured with/without MSU crystals. Caspase-1 activity was measured to assess NLRP3 inflammasome activity. MSU crystal exposure resulted in minimal effects on clock genes in THP-1 monocytes but BMAL1, CRY1, PER2, and REV-ERBα showed altered expression with reduced protein levels of BMAL1 and REV-ERBα in THP-1 macrophages. REV-ERBα activation or BMAL1 over-expression resulted in reduced MSU crystal-induced caspase-1 activity. BMAL1 knockdown resulted in a further increase in MSU crystal-induced caspase-1 activity, but only at times of day when BMAL1 levels were naturally high. MSU crystal-induced NLRP3 inflammasome activation was greatest at the time of day when BMAL1 levels were naturally low. MSU crystals alter the expression of circadian clock components in THP-1 macrophages leading to loss of BMAL1 and REV-ERBα-mediated repression of NLRP3 inflammasome activity and time-of-day differences in susceptibility to inflammasome activation. Our findings suggest that the nocturnal risk of gout flare is at least partially a consequence of altered circadian control of immune cell function.


Assuntos
Relógios Circadianos , Gota , Humanos , Gota/genética , Inflamassomos/metabolismo , Ácido Úrico/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos/genética , Exacerbação dos Sintomas , Macrófagos/metabolismo , Caspases/metabolismo , Interleucina-1beta/metabolismo
8.
Br J Clin Pharmacol ; 89(10): 2964-2976, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37202871

RESUMO

AIMS: The aim of this study was to quantify identifiable sources of variability, including key pharmacogenetic variants in oxypurinol pharmacokinetics and their pharmacodynamic effect on serum urate (SU). METHODS: Hmong participants (n = 34) received 100 mg allopurinol twice daily for 7 days followed by 150 mg allopurinol twice daily for 7 days. A sequential population pharmacokinetic pharmacodynamics (PKPD) analysis with non-linear mixed effects modelling was performed. Allopurinol maintenance dose to achieve target SU was simulated based on the final PKPD model. RESULTS: A one-compartment model with first-order absorption and elimination best described the oxypurinol concentration-time data. Inhibition of SU by oxypurinol was described with a direct inhibitory Emax model using steady-state oxypurinol concentrations. Fat-free body mass, estimated creatinine clearance and SLC22A12 rs505802 genotype (0.32 per T allele, 95% CI 0.13, 0.55) were found to predict differences in oxypurinol clearance. Oxypurinol concentration required to inhibit 50% of xanthine dehydrogenase activity was affected by PDZK1 rs12129861 genotype (-0.27 per A allele, 95% CI -0.38, -0.13). Most individuals with both PDZK1 rs12129861 AA and SLC22A12 rs505802 CC genotypes achieve target SU (with at least 75% success rate) with allopurinol below the maximum dose, regardless of renal function and body mass. In contrast, individuals with both PDZK1 rs12129861 GG and SLC22A12 rs505802 TT genotypes would require more than the maximum dose, thus requiring selection of alternative medications. CONCLUSIONS: The proposed allopurinol dosing guide uses individuals' fat-free mass, renal function and SLC22A12 rs505802 and PDZK1 rs12129861 genotypes to achieve target SU.


Assuntos
Gota , Hiperuricemia , Transportadores de Ânions Orgânicos , Adulto , Humanos , Oxipurinol , Alopurinol/farmacocinética , Hiperuricemia/tratamento farmacológico , Hiperuricemia/genética , Supressores da Gota/farmacocinética , Farmacogenética , Gota/tratamento farmacológico , Gota/genética , Transportadores de Ânions Orgânicos/uso terapêutico , Proteínas de Transporte de Cátions Orgânicos/genética
9.
Sci Rep ; 13(1): 5603, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020014

RESUMO

Our previous study has shown that ATP action on P2X7R could be the second signal to induce the onset of gouty arthritis. However, the functional changes of P2X7R single nucleotide polymorphisms (SNPs) on the effects of ATP-P2X7R-IL-1ß signaling pathway and uric acid remained unknown. We aimed to investigate the association between the functional change of P2X7R containing the Ala348 to Thr polymorphisms (rs1718119) and the pathogenesis of gout. First, 270 gout patients and 70 hyperuricemic patients (without gout attack history in recent 5 years) were recruited for genotyping. In addition, the changes of ATP-induced pore formation were assessed in HEK-293T cells overexpressing different mutants in P2RX7, and the effects on P2X7R-NLRP3-IL-1ß pathway activation were explored in P2RX7 overexpression THP-1 cells. The risk allele for gout was A at rs1718119, and the AA and AG genotypes exhibited a higher risk of gout. Furthermore, Ala348 to Thr mutants increased P2X7-dependent ethidium+ bromide uptake, upregulated IL-1ß and NLRP3 levels as compared to the wild-type. We suggest that genetic polymorphisms of P2X7R containing the Ala348 to Thr are associated with the increased risk of gout, showing an enhanced gain-of-function effect on the development of this disease.


Assuntos
Gota , Hiperuricemia , Receptores Purinérgicos P2X7 , Humanos , Trifosfato de Adenosina/metabolismo , Gota/genética , Hiperuricemia/genética , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores Purinérgicos P2X7/genética
10.
Pharmacogenet Genomics ; 33(2): 24-34, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729770

RESUMO

OBJECTIVE: To evaluate Chinese long-term economic impact of universal human leukocyte antigen B (HLA-B)*58:01 genotyping-guided urate-lowering therapy or febuxostat initiation therapy for gout patients with mild to moderate chronic kidney disease (CKD) from perspective of healthcare system. METHODS: A Markov model embedded in a decision tree was structured including four mutually exclusive health states (uncontrolled-on-therapy, controlled-on-therapy, uncontrolled-off-therapy, and death). Mainly based on Chinese real-world data, the incremental costs per quality-adjusted life years (QALYs) gained were evaluated from three groups (universal HLA-B*58:01 testing strategy, and no genotyping prior to allopurinol or febuxostat initiation therapy) at 25-year time horizon. All costs were adjusted to 2021 levels based on Chinese Consumer Price Index and were discounted by 5% annually. One-way and probability sensitivity analysis were performed. RESULTS: Among these three groups, universal HLA-B*58:01 genotyping was the most cost-effective strategy in base-case analysis according to Chinese average willingness-to-pay threshold of $37 654.50 per QALY. The based incremental cost-effectiveness ratio was $31784.55 per QALY, associated with 0.046 additional QALYs and $1463.81 increment costs per patient at a 25-year time horizon compared with no genotyping prior to allopurinol initiation strategy. Sensitivity analysis showed 64.3% robustness of these results. CONCLUSION: From Chinese perspective of healthcare system, HLA-B*58:01 genotyping strategy was cost-effective for gout patients with mild to moderate CKD in mainland China, especially in the most developed area, such as Beijing and Shanghai. Therefore, we suggest China's health authorities choose the genotyping strategy and make different recommendations according to the differences of local conditions.


Assuntos
Gota , Antígenos HLA-B , Insuficiência Renal Crônica , Humanos , Alopurinol/uso terapêutico , China , Análise Custo-Benefício , População do Leste Asiático , Febuxostat/uso terapêutico , Gota/tratamento farmacológico , Gota/genética , Supressores da Gota/uso terapêutico , Antígenos HLA-B/genética , Anos de Vida Ajustados por Qualidade de Vida , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/genética
11.
Immunol Invest ; 52(3): 364-397, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36745138

RESUMO

Gout is a disease caused by uric acid (UA) accumulation in the joints, causing inflammation. Two UA forms - monosodium urate (MSU) and soluble uric acid (sUA) have been shown to interact physically with inflammasomes, especially with the nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3), albeit the role of the immune response to UA is poorly understood, given that asymptomatic hyperuricemia does also exist. Macrophage phagocytosis of UA activate NLRP3, lead to cytokines release, and ultimately, lead to chemoattract neutrophils and lymphocytes to the gout flare joint spot. Genetic variants of inflammasome genes and of genes encoding their molecular partners may influence hyperuricemia and gout susceptibility, while also influencing other comorbidities such as metabolic syndrome and cardiovascular diseases. In this review, we summarize the inflammatory responses in acute and chronic gout, specifically focusing on innate immune cell mechanisms and genetic and epigenetic characteristics of participating molecules. Unprecedently, a novel UA binding protein - the neuronal apoptosis inhibitor protein (NAIP) - is suggested as responsible for the asymptomatic hyperuricemia paradox.Abbreviation: ß2-integrins: leukocyte-specific adhesion molecules; ABCG2: ATP-binding cassete family/breast cancer-resistant protein; ACR: American college of rheumatology; AIM2: absent in melanoma 2, type of pattern recognition receptor; ALPK1: alpha-protein kinase 1; ANGPTL2: angiopoietin-like protein 2; ASC: apoptosis-associated speck-like protein; BIR: baculovirus inhibitor of apoptosis protein repeat; BIRC1: baculovirus IAP repeat-containing protein 1; BIRC2: baculoviral IAP repeat-containing protein 2; C5a: complement anaphylatoxin; cAMP: cyclic adenosine monophosphate; CARD: caspase activation and recruitment domains; CARD8: caspase recruitment domain-containing protein 8; CASP1: caspase 1; CCL3: chemokine (C-C motif) ligand 3; CD14: cluster of differentiation 14; CD44: cluster of differentiation 44; Cg05102552: DNA-methylation site, usually cytosine followed by guanine nucleotides; contains arbitrary identification code; CIDEC: cell death-inducing DNA fragmentation factor-like effector family; CKD: chronic kidney disease; CNV: copy number variation; CPT1A: carnitine palmitoyl transferase - type 1a; CXCL1: chemokine (CXC motif) ligand 1; DAMPs: damage associated molecular patterns; DC: dendritic cells; DNMT(1): maintenance DNA methyltransferase; eQTL: expression quantitative trait loci; ERK1: extracellular signal-regulated kinase 1; ERK2: extracellular signal-regulated kinase 2; EULAR: European league against rheumatism; GMCSF: granulocyte-macrophage colony-stimulating factor; GWAS: global wide association studies; H3K27me3: tri-methylation at the 27th lysine residue of the histone h3 protein; H3K4me1: mono-methylation at the 4th lysine residue of the histone h3 protein; H3K4me3: tri-methylation at the 4th lysine residue of the histone h3 protein; HOTAIR: human gene located between hoxc11 and hoxc12 on chromosome 12; IκBα: cytoplasmatic protein/Nf-κb transcription inhibitor; IAP: inhibitory apoptosis protein; IFNγ: interferon gamma; IL-1ß: interleukin 1 beta; IL-12: interleukin 12; IL-17: interleukin 17; IL18: interleukin 18; IL1R1: interleukin-1 receptor; IL-1Ra: interleukin-1 receptor antagonist; IL-22: interleukin 22; IL-23: interleukin 23; IL23R: interleukin 23 receptor; IL-33: interleukin 33; IL-6: interleukin 6; IMP: inosine monophosphate; INSIG1: insulin-induced gene 1; JNK1: c-jun n-terminal kinase 1; lncRNA: long non-coding ribonucleic acid; LRR: leucine-rich repeats; miR: mature non-coding microRNAs measuring from 20 to 24 nucleotides, animal origin; miR-1: miR followed by arbitrary identification code; miR-145: miR followed by arbitrary identification code; miR-146a: miR followed by arbitrary identification code, "a" stands for mir family; "a" family presents similar mir sequence to "b" family, but different precursors; miR-20b: miR followed by arbitrary identification code; "b" stands for mir family; "b" family presents similar mir sequence to "a" family, but different precursors; miR-221: miR - followed by arbitrary identification code; miR-221-5p: miR followed by arbitrary identification code; "5p" indicates different mature miRNAs generated from the 5' arm of the pre-miRNA hairpin; miR-223: miR followed by arbitrary identification code; miR-223-3p: mir followed by arbitrary identification code; "3p" indicates different mature miRNAs generated from the 3' arm of the pre-miRNA hairpin; miR-22-3p: miR followed by arbitrary identification code, "3p" indicates different mature miRNAs generated from the 3' arm of the pre-miRNA hairpin; MLKL: mixed lineage kinase domain-like pseudo kinase; MM2P: inductor of m2-macrophage polarization; MSU: monosodium urate; mTOR: mammalian target of rapamycin; MyD88: myeloid differentiation primary response 88; n-3-PUFAs: n-3-polyunsaturated fatty-acids; NACHT: acronym for NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC class 2 transcription activator), HET-E (incompatibility locus protein from podospora anserina) and TP1 (telomerase-associated protein); NAIP: neuronal apoptosis inhibitory protein (human); Naip1: neuronal apoptosis inhibitory protein type 1 (murine); Naip5: neuronal apoptosis inhibitory protein type 5 (murine); Naip6: neuronal apoptosis inhibitory protein type 6 (murine); NBD: nucleotide-binding domain; Nek7: smallest NIMA-related kinase; NET: neutrophil extracellular traps; Nf-κB: nuclear factor kappa-light-chain-enhancer of activated b cells; NFIL3: nuclear-factor, interleukin 3 regulated protein; NIIMA: network of immunity in infection, malignancy, and autoimmunity; NLR: nod-like receptor; NLRA: nod-like receptor NLRA containing acidic domain; NLRB: nod-like receptor NLRA containing BIR domain; NLRC: nod-like receptor NLRA containing CARD domain; NLRC4: nod-like receptor family CARD domain containing 4; NLRP: nod-like receptor NLRA containing PYD domain; NLRP1: nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 1; NLRP12: nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 12; NLRP3: nod-like receptor family pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain; NRBP1: nuclear receptor-binding protein; Nrf2: nuclear factor erythroid 2-related factor 2; OR: odds ratio; P2X: group of membrane ion channels activated by the binding of extracellular; P2X7: p2x purinoceptor 7 gene; p38: member of the mitogen-activated protein kinase family; PAMPs: pathogen associated molecular patters; PBMC: peripheral blood mononuclear cells; PGGT1B: geranylgeranyl transferase type-1 subunit beta; PHGDH: phosphoglycerate dehydrogenase; PI3-K: phospho-inositol; PPARγ: peroxisome proliferator-activated receptor gamma; PPARGC1B: peroxisome proliferative activated receptor, gamma, coactivator 1 beta; PR3: proteinase 3 antigen; Pro-CASP1: inactive precursor of caspase 1; Pro-IL1ß: inactive precursor of interleukin 1 beta; PRR: pattern recognition receptors; PYD: pyrin domain; RAPTOR: regulatory associated protein of mTOR complex 1; RAS: renin-angiotensin system; REDD1: regulated in DNA damage and development 1; ROS: reactive oxygen species; rs000*G: single nuclear polymorphism, "*G" is related to snp where replaced nucleotide is guanine, usually preceded by an id number; SLC2A9: solute carrier family 2, member 9; SLC7A11: solute carrier family 7, member 11; SMA: smooth muscular atrophy; Smac: second mitochondrial-derived activator of caspases; SNP: single nuclear polymorphism; Sp3: specificity protein 3; ST2: serum stimulation-2; STK11: serine/threonine kinase 11; sUA: soluble uric acid; Syk: spleen tyrosine kinase; TAK1: transforming growth factor beta activated kinase; Th1: type 1 helper T cells; Th17: type 17 helper T cells; Th2: type 2 helper T cells; Th22: type 22 helper T cells; TLR: tool-like receptor; TLR2: toll-like receptor 2; TLR4: toll-like receptor 4; TNFα: tumor necrosis factor alpha; TNFR1: tumor necrosis factor receptor 1; TNFR2: tumor necrosis factor receptor 2; UA: uric acid; UBAP1: ubiquitin associated protein; ULT: urate-lowering therapy; URAT1: urate transporter 1; VDAC1: voltage-dependent anion-selective channel 1.


Assuntos
Gota , Hiperuricemia , MicroRNAs , Humanos , Animais , Camundongos , Proteína Inibidora de Apoptose Neuronal/metabolismo , Histonas/metabolismo , Interleucina-1beta/metabolismo , Ácido Úrico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Leucócitos Mononucleares/metabolismo , NF-kappa B/metabolismo , Gota/genética , Caspase 1/metabolismo , Lisina/metabolismo , Variações do Número de Cópias de DNA , Epigênese Genética , Leucina/metabolismo , Exacerbação dos Sintomas , Imunidade Inata/genética , Receptores de Interleucina-1/metabolismo , Nucleotídeos/metabolismo , Interleucina-23 , Transferases/metabolismo , DNA , Mamíferos/metabolismo
12.
Sci Rep ; 13(1): 93, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639673

RESUMO

Two-thirds of urate is excreted via the renal pathway and the remaining one-third via the extra-renal pathway, the latter mainly via the intestine in healthy individuals. ABCG2, a urate exporter, is expressed in various tissues including the kidney and intestine, and its dysfunction leads to hyperuricemia and gout. ABCG2 is regarded as being responsible for most of the extra-renal urate excretion. However, the extra-renal urate excretion capacity via ABCG2 remains undefined in end-stage kidney diseases. Therefore, we evaluated the capacity of extra-renal ABCG2 using 123 anuric hemodialysis patients whose urate excretion depended on only the extra-renal pathway. ABCG2 function in each participant was estimated based on ABCG2 dysfunctional variants. We computed the uric acid pool (PoolUA) from bodyweight and serum urate level (SUA) using previously reported radio-isotopic data, and we analyzed the association between ABCG2 function and the PoolUA. SUA and PoolUA increased significantly with ABCG2 dysfunction, and extra-renal ABCG2 could excrete up to approximately 60% of the daily uric acid turnover in hemodialysis patients. Our findings indicate that the extra-renal urate excretion capacity can expand with renal function decline and highlight that the extra-renal pathway is particularly important in the uric acid homeostasis for patients with renal dysfunction.


Assuntos
Gota , Hiperuricemia , Humanos , Ácido Úrico , Rim/metabolismo , Gota/genética , Gota/metabolismo , Diálise Renal , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
13.
Immunol Invest ; 52(3): 319-331, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36719801

RESUMO

BACKGROUND AND AIMS: Gout is a chronic self-limiting inflammatory arthritis. An increase in metallothionein-1 (MT-1) has been reported in rheumatoid arthritis and osteoarthritis, and it attenuates inflammation and the pathology of diseases. This study aims to detect MT-1 levels in patients with gout and to explore its correlation with disease activity, clinical indexes, and inflammatory cytokines. METHODS: The expression of MT-1 messenger RNAs (mRNAs) and protein levels in patients with gout were measured using real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Correlations between MT-1 and clinical indexes or inflammatory mediators were analyzed using Spearman's correlation test. RESULTS: Compared with healthy controls (HCs, n = 43), patients with active gout (n = 27) showed higher levels of MT-1 mRNA in peripheral blood mononuclear cells and protein in serum, particularly those with tophi. No significant difference in serum MT-1 levels was observed among patients with inactive gout, HCs, and patients with hyperuricemia without gout. Furthermore, no significant difference was observed between patients with gout with kidney damage and HCs. In addition, serum interleukin (IL)-1ß, IL-6, and IL-8 levels were significantly increased in patients with active gout, particularly in those with tophi. The serum MT-1 level was positively correlated with C-reactive protein, as well as with IL-1ß, IL-6, and IL-18. CONCLUSION: The higher levels of MT-1 were found in patients with gout, which were correlated with disease activity and gout related pro-inflammatory cytokines. Indicating MT-1 may serve as a new marker for predicting disease activity.Abbreviations: IL-1ß: Interleukin 1ß; MT-1: Metallothionein-1; CRP: C-Reactive Protein; ROS: Reactive Oxygen Species; IL-10: Interleukin 10; TGF-ß: Transforming Growth Factor Beta.


Assuntos
Gota , Interleucina-6 , Humanos , Interleucina-6/genética , Leucócitos Mononucleares/metabolismo , Proteína C-Reativa/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Gota/genética , Citocinas/metabolismo
14.
Clin Transl Sci ; 16(3): 422-428, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36398357

RESUMO

The genetic determinants of the allopurinol dose-concentration relationship have not been extensively studied. We aimed to clarify what factors, including genetic variation in urate transporters, influence oxypurinol pharmacokinetics (PKs). A population PK model for oxypurinol was developed with NONMEM (version 7.3). The influence of urate transporter genetic variants for ABCG2 (rs2231142 and rs10011796), SLC2A9/GLUT9 (rs11942223), SLC17A1/NPT1 (rs1183201), SLC22A12/URAT1 (rs3825018), SLC22A11/OAT4 (rs17300741), and ABCC4/MRP4 (rs4148500), as well as other participant factors on oxypurinol PKs was assessed. Data from 325 people with gout were available. The presence of the T allele for ABCG2 (rs2231142) and SLC17A1/NPT1 (rs1183201) was associated with a 24% and 22% increase in oxypurinol clearance, respectively, in univariate analysis. This effect was not significant in the multivariate analysis. In the final model, oxypurinol PKs were predicted by creatinine clearance, diuretic use, ethnicity, and body weight. We have found that genetic variability in the transporters examined does not appear to influence oxypurinol PKs.


Assuntos
Gota , Transportadores de Ânions Orgânicos , Humanos , Oxipurinol/farmacocinética , Ácido Úrico , Gota/tratamento farmacológico , Gota/genética , Alopurinol/farmacocinética , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas Facilitadoras de Transporte de Glucose/genética
15.
Int J Rheum Dis ; 26(2): 379-382, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36346163

RESUMO

Amyloidosis is a large group of diseases that occur through misfolding of extracellular proteins that accumulate in tissues and organs. Gout is the most common inflammatory arthritis worldwide and starts with the crystallization of uric acid within the joints and soft tissues. Although gouty arthritis is accompanied by inflammation, AA amyloidosis is rarely seen in patients with gout. Here we present a case of AA amyloidosis on the medullary sponge kidney in a 28-year-old man with gout. Our case had been diagnosed with gout 3 years previously, and his older brother was also diagnosed with early-onset gout. As a result of the hyperuricemic nephropathy clinic and familial history, a whole gene sequence analysis was performed on the HPRT1 gene and UMOD gene, but no pathogenic changes were detected. Renal ultrasound revealed a bilateral medullary sponge kidney and amyloidosis was detected in the renal needle biopsy performed for the etiology of proteinuria. In our literature review, we found 16 cases in which gout was accompanied by AA amyloidosis. We present a 17th case and compare it with the other 16 cases.


Assuntos
Amiloidose , Gota , Nefropatias , Rim em Esponja Medular , Masculino , Humanos , Adulto , Rim em Esponja Medular/complicações , Rim em Esponja Medular/diagnóstico , Rim em Esponja Medular/genética , Nefropatias/diagnóstico , Amiloidose/complicações , Amiloidose/diagnóstico , Gota/genética , Rim/patologia , Ácido Úrico/metabolismo
16.
Clin Exp Med ; 23(4): 1277-1284, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35939175

RESUMO

Gout is a common crystal induced disease of high personal and social burden, characterised by severe arthritis and comorbidity if untreated. Impaired function of ABCG2 transporter is causative in gout and may be responsible for renal-overload type hyperuricemia. Despite its importance, there is limited information on how clinical parameters correlate with protein expression and that with genetic changes. Urate and clinical parameters of 78 gouty patients and healthy controls were measured among standardised circumstances from a Hungarian population. ABCG2 membrane expression of red blood cells was determined by flow cytometry-based method and SNPs of this protein were analysed by TaqMan-based qPCR. The prevalence of ABCG2 functional polymorphisms in gouty and control patients were 32.1 and 13.7%, respectively. Most common SNP was Q141K while one sample with R236X, R383C and the lately described M71V were found in the gouty population. These polymorphisms showed strong linkage with decreased protein expression while the latter was also associated with higher fractional urate excretion (FUE) and urinary urate excretion (UUE). This study firstly evaluated ABCG2 protein expression in a clinically defined gouty population while also proving its associations between ABCG2 genetic changes and renal-overload hyperuricemia. The paper also highlighted relations between ABCG2 SNPs, gout susceptibility and disease severity characterised by an early onset disease with frequent flares and tophi formation.


Assuntos
Gota , Hiperuricemia , Humanos , Hiperuricemia/genética , Hiperuricemia/tratamento farmacológico , Ácido Úrico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Gota/genética , Gota/tratamento farmacológico , Gota/metabolismo , Polimorfismo de Nucleotídeo Único , Gravidade do Paciente
17.
Front Public Health ; 11: 1269426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259784

RESUMO

Objective: To investigate the causal relationship between educational attainment (EA) and gout, as well as the potential mediating effects of individual physical status (IPS) such as body mass index (BMI) and systolic blood pressure (SBP) and lifestyle habits (LH) including alcohol intake frequency (drinking), current tobacco smoking (smoking), and time spent watching television (TV). Methods: Utilizing two-sample Mendelian randomization (MR), we analyzed the causal effects of EA on gout risk, and of IPS (BMI and SBP) and LH (smoking, drinking, and TV time) on gout risk. Multivariable MR (MVMR) was employed to explore and quantify the mediating effects of IPS and LH on the causal relationship between EA and gout risk. Results: An elevation of educational attainment by one standard deviation (4.2 years) exhibited a protective effect against gout (odds ratio 0.724, 95% confidence interval 0.552-0.950; p = 0.020). We did not observe a causal relationship between smoking and gout, but BMI, SBP, drinking, and TV time were found to be causal risk factors for gout. Moreover, BMI, SBP, drinking, and TV time acted as mediating factors in the causal relationship between EA and gout risk, explaining 27.17, 14.83, 51.33, and 1.10% of the causal effects, respectively. Conclusion: Our study indicates that having a genetically predicted higher level of EA may provide protection against gout. We found that this relationship is influenced by IPS factors such as BMI and SBP, as well as LH including drinking and TV time.


Assuntos
Gota , Análise da Randomização Mendeliana , Humanos , Escolaridade , Fumar/efeitos adversos , Hábitos , Gota/epidemiologia , Gota/genética
18.
Genes (Basel) ; 13(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36553446

RESUMO

Gout is caused by elevated serum urate leading to the deposition of monosodium urate (MSU) crystals that can trigger episodes of acute inflammation. Humans are sensitive to developing gout because they lack a functional urate-metabolizing enzyme called uricase/urate oxidase (encoded by the UOX gene). A hallmark of long-standing disease is tophaceous gout, characterized by the formation of tissue-damaging granuloma-like structures ('tophi') composed of densely packed MSU crystals and immune cells. Little is known about how tophi form, largely due to the lack of suitable animal models in which the host response to MSU crystals can be studied in vivo long-term. We have previously described a larval zebrafish model of acute gouty inflammation where the host response to microinjected MSU crystals can be live imaged within an intact animal. Although useful for modeling acute inflammation, crystals are rapidly cleared following a robust innate immune response, precluding analysis at later stages. Here we describe a zebrafish uox null mutant that possesses elevated urate levels at larval stages. Uricase-deficient 'hyperuricemic' larvae exhibit a suppressed acute inflammatory response to MSU crystals and prolonged in vivo crystal persistence. Imaging of crystals at later stages reveals that they form granuloma-like structures dominated by macrophages. We believe that uox-/- larvae will provide a useful tool to explore the transition from acute gouty inflammation to tophus formation, one of the remaining mysteries of gout pathogenesis.


Assuntos
Gota , Ácido Úrico , Humanos , Animais , Peixe-Zebra/genética , Urato Oxidase/genética , Gota/genética , Inflamação
19.
Sci Rep ; 12(1): 22130, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550178

RESUMO

Cell subpopulations in the blood and joint fluid of patients with gout are poorly understood. Single-cell RNA sequencing and bioinformatic tools were used to identify cell subsets and their gene signatures in blood and synovial fluid (SF) cells, determine their relationships, characterize the diversity, and evaluate interactions among specific cell types. We identified 34 subpopulations (5 types of B cells, 16 types of T and natural killer cells, 9 types of monocytes, and 4 other cell types) in the blood of five healthy subjects and seven patients with acute gouty, and the SF of three patients with acute gout. We found that naïve CD4 T cells and classical monocytes cell populations were enriched in patients with gout, whereas plasmacytoid dendritic cells and intermediate monocytes were more abundant in healthy subjects. SF was enriched in Th1/Th17 cells, effector memory CD8 T cells, mucosal-associated invariant T cells, and macrophages. Subclusters of these cell subpopulations showed different compositions between healthy subjects and those with acute gout, according to blood and SF samples. At the cellular level, the inflammation score of a subpopulation or subcluster was highest in SF, following by the blood of acute gout patients and healthy person, whereas energy score showed the opposite trend. We also detected specific cell-cell interactions for interleukin-1, tumor necrosis factor-α, and transforming growth factor-ß1 expression in the cells of patients with acute gout. Our study reveals cellular and molecular insights on inflammatory responses to hyperuricemia or uric crystal and may provide therapeutic guidance to improve treatments for gout.


Assuntos
Artrite Gotosa , Gota , Hiperuricemia , Humanos , Gota/genética , Gota/metabolismo , Macrófagos/metabolismo , Análise de Sequência de RNA
20.
Medicine (Baltimore) ; 101(47): e31535, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36451451

RESUMO

BACKGROUND: Due to unhealthy diet and living habits, the incidence of gout is on the rise and has become a common disease with a high incidence. Danggui Niantong decoction (DGNTD), as a classic formula composed of 15 common herbs, has been widely used in clinical practice since ancient times to prevent and treat gout. However, the pharmacological mechanism and target of DGNTD are not clear. METHODS: The potential active compounds and targets of DGNTD were obtained by traditional Chinese medicine systems pharmacology (TCMSP) database, and the differential genes of gout patients and controls were analyzed in gene expression omnibus (GEO) database. GSEA analysis of differential genes with GSEA 4.1.0 software and then the differential genes were intersected with the gout-related disease targets searched by GeneCard, CTD and OMIM disease database to obtain the final disease target. The "Traditional Chinese medicine-Active compounds-Targets" network was constructed by Cytoscape3.7.2 software. The R packet is used for enrichment analysis. The molecular docking between the active compound of DGNTD and the core target was verified by AutoDockTools software. RESULTS: Two hundred eighty six and 244 targets of DGNTD-related active components and 652 targets of gout were obtained, of which 13 targets were potential targets of DGNTD in the treatment of gout. GSEA analysis showed that the differential genes were mainly involved in apoptosis, inflammatory reaction, and receptor metabolism and so on. Gene ontology (GO) functional enrichment analysis shows that DGNTD regulates many biological processes, such as the response to purine-containing compound and response to lipopolysaccharide, positive regulation of acute inflammatory response and other cellular components. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis shows that DGNTD treatment of gout is mainly related to interleukin-17 (IL-17), Toll-like receptor, rheumatoid arthritis, tumor necrosis factor (TNF) and so on. The results of molecular docking showed that the five active compounds in DGNTD had strong binding activity to core protein receptors. CONCLUSIONS: The active compounds of DGNTD may achieve the purpose of treating gout by acting on the core target (CASP8, CXCL8, FOS, IL1B, IL6, JUN, PTGS2, STAT1, MMP1, TNF) to regulate cell metabolism, proliferation and apoptosis, and improve inflammatory response, which is the result of multi-component, multi-target and multi-pathway interaction. It provides an idea for the development of new combined drugs for gout.


Assuntos
Gota , Farmacologia em Rede , Humanos , Simulação de Acoplamento Molecular , Gota/tratamento farmacológico , Gota/genética , Fator de Necrose Tumoral alfa , Ontologia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA