Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.429
Filtrar
1.
J Am Chem Soc ; 146(21): 14785-14798, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743019

RESUMO

Selective RNA delivery is required for the broad implementation of RNA clinical applications, including prophylactic and therapeutic vaccinations, immunotherapies for cancer, and genome editing. Current polyanion delivery relies heavily on cationic amines, while cationic guanidinium systems have received limited attention due in part to their strong polyanion association, which impedes intracellular polyanion release. Here, we disclose a general solution to this problem in which cationic guanidinium groups are used to form stable RNA complexes upon formulation but at physiological pH undergo a novel charge-neutralization process, resulting in RNA release. This new delivery system consists of guanidinylated serinol moieties incorporated into a charge-altering releasable transporter (GSer-CARTs). Significantly, systematic variations in structure and formulation resulted in GSer-CARTs that exhibit highly selective mRNA delivery to the lung (∼97%) and spleen (∼98%) without targeting ligands. Illustrative of their breadth and translational potential, GSer-CARTs deliver circRNA, providing the basis for a cancer vaccination strategy, which in a murine model resulted in antigen-specific immune responses and effective suppression of established tumors.


Assuntos
Guanidina , RNA Mensageiro , Animais , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/química , Guanidina/química , Humanos , Serina/química
2.
Bioorg Chem ; 147: 107410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688197

RESUMO

A new series of benzene-sulfonamide derivatives 3a-i was designed and synthesized via the reaction of N-(pyrimidin-2-yl)cyanamides 1a-i with sulfamethazine sodium salt 2 as dual Src/Abl inhibitors. Spectral data IR, 1H-, 13C- NMR and elemental analyses were used to confirm the structures of all the newly synthesized compounds 3a-i and 4a-i. Crucially, we screened all the synthesized compounds 3a-i against NCI 60 cancer cell lines. Among all, compound 3b was the most potent, with IC50 of 0.018 µM for normoxia, and 0.001 µM for hypoxia, compared to staurosporine against HL-60 leukemia cell line. To verify the selectivity of this derivative, it was assessed against a panel of tyrosine kinase EGFR, VEGFR-2, B-raf, ERK, CK1, p38-MAPK, Src and Abl enzymes. Results revealed that compound 3b can effectively and selectively inhibit Src/Abl with IC500.25 µM and Abl inhibitory activity with IC500.08 µM, respectively, and was found to be more potent on these enzymes than other kinases that showed the following results: EGFR IC500.31 µM, VEGFR-2 IC500.68 µM, B-raf IC500.33 µM, ERK IC501.41 µM, CK1 IC500.29 µM and p38-MAPK IC500.38 µM. Moreover, cell cycle analysis and apoptosis performed to compound 3b against HL-60 suggesting its antiproliferative activity through Src/Abl inhibition. Finally, molecular docking studies and physicochemical properties prediction for compounds 3b, 3c, and 3 h were carried out to investigate their biological activities and clarify their bioavailability.


Assuntos
Antineoplásicos , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-abl , Quinases da Família src , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Guanidina/farmacologia , Guanidina/química , Guanidina/síntese química , Guanidina/análogos & derivados , Células HL-60 , Leucemia/tratamento farmacológico , Leucemia/patologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo , Relação Estrutura-Atividade , Cianamida/síntese química , Cianamida/química , Cianamida/farmacologia
3.
Chemistry ; 30(30): e202401109, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38507249

RESUMO

A new class of superbasic, bifunctional peptidyl guanidine catalysts is presented, which enables the organocatalytic, atroposelective synthesis of axially chiral quinazolinediones. Computational modeling unveiled the conformational modulation of the catalyst by a novel phenyl urea N-cap, that preorganizes the structure into the active, folded state. A previously unanticipated noncovalent interaction involving a difluoroacetamide acting as a hybrid mono- or bidentate hydrogen bond donor emerged as a decisive control element inducing atroposelectivity. These discoveries spurred from a scaffold-oriented project inspired from a fascinating investigational BTK inhibitor featuring two stable chiral axes and relies on a mechanistic framework that was foreign to the extant lexicon of asymmetric catalysis.


Assuntos
Ligação de Hidrogênio , Conformação Molecular , Catálise , Estereoisomerismo , Quinazolinonas/química , Guanidina/química , Peptídeos/química , Modelos Moleculares , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/química , Tirosina Quinase da Agamaglobulinemia/metabolismo
4.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141010, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38490456

RESUMO

The structures of apo-metallothioneins (apo-MTs) have been relatively elusive due to their fluxional, disordered state which has been difficult to characterize. However, intrinsically disordered protein (IDP) structures are rather diverse, which raises questions about where the structure of apo-MTs fit into the protein structural spectrum. In this paper, the unfolding transitions of apo-MT1a are discussed with respect to the effect of the chemical denaturant GdmCl, temperature conditions, and pH environment. Cysteine modification in combination with electrospray ionization mass spectrometry was used to probe the unfolding transition of apo-MT1a in terms of cysteine exposure. Circular dichroism spectroscopy was also used to monitor the change in secondary structure as a function of GdmCl concentration. For both of these techniques, cooperative unfolding was observed, suggesting that apo-MT1a is not a random coil. More GdmCl was required to unfold the protein backbone than to expose the cysteines, indicating that cysteine exposure is likely an early step in the unfolding of apo-MT1a. MD simulations complement the experimental results, suggesting that apo-MT1a adopts a more compact structure than expected for a random coil. Overall, these results provide further insight into the intrinsically disordered structure of apo-MT.


Assuntos
Guanidina , Metalotioneína , Desdobramento de Proteína , Concentração de Íons de Hidrogênio , Humanos , Metalotioneína/química , Metalotioneína/metabolismo , Guanidina/química , Cisteína/química , Dicroísmo Circular , Temperatura Alta , Apoproteínas/química , Apoproteínas/metabolismo , Estrutura Secundária de Proteína , Desnaturação Proteica , Proteínas Intrinsicamente Desordenadas/química
5.
Mol Pharm ; 21(3): 1256-1271, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38324380

RESUMO

Delivery of macromolecular drugs inside cells has been a huge challenge in the field of oligonucleotide therapeutics for the past few decades. Earliest natural inspirations included the arginine rich stretch of cell permeable HIV-TAT peptide, which led to the design of several molecular transporters with varying numbers of rigid or flexible guanidinium units with different tethering groups. These transporters have been shown to efficiently deliver phosphorodiamidate morpholino oligonucleotides, which have a neutral backbone and cannot form lipoplexes. In this report, PMO based delivery agents having 3 or 4 guanidinium groups at the C5 position of the nucleobases of cytosine and uracil have been explored, which can be assimilated within the desired stretch of the antisense oligonucleotide. Guanidinium units have been connected by varying the flexibility with either a saturated (propyl) or an unsaturated (propargyl) spacer, which showed different serum dependency along with varied cytoplasmic distribution. The effect of cholesterol conjugation in the delivery agent as well as at the 5'-end of full length PMO in cellular delivery has also been studied. Finally, the efficacy of the delivery has been studied by the PMO mediated downregulation of the stemness marker Sox2 in the triple-negative breast cancer cell line MDA-MB 231. These results have validated the use of this class of delivery agents, which permit at a stretch PMO synthesis where the modified bases can also participate in Watson-Crick-Franklin base pairing for enhanced mRNA binding and protein downregulation and could solve the delivery problem of PMO.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/terapia , Regulação para Baixo , Pirimidinas , Guanidina , Morfolinos/química , Oligonucleotídeos
6.
Ecotoxicol Environ Saf ; 272: 116084, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350217

RESUMO

Polyhexamethylene guanidine (PHMG) is manufactured and applied extensively due to its superior disinfectant capabilities. However, the inhalatory exposure to PHMG aerosols is increasingly recognized as a potential instigator of pulmonary fibrosis, prompting an urgent call for elucidation of the underlying pathophysiological mechanisms. Within this context, alveolar macrophages play a pivotal role in the primary immune defense in the respiratory tract. Dysregulated lipid metabolism within alveolar macrophages leads to the accumulation of foam cells, a process that is intimately linked with the pathogenesis of pulmonary fibrosis. Therefore, this study examines PHMG's effects on alveolar macrophage foaminess and its underlying mechanisms. We conducted a 3-week inhalation exposure followed by a 3-week recovery period in C57BL/6 J mice using a whole-body exposure system equipped with a disinfection aerosol generator (WESDAG). The presence of lipid-laden alveolar macrophages and downregulation of pulmonary tissue lipid transport proteins ABCA1 and ABCG1 were observed in mice. In cell culture models involving lipid-loaded macrophages, we demonstrated that PHMG promotes foam cell formation by inhibiting lipid efflux in mouse alveolar macrophages. Furthermore, PHMG-induced foam cells were found to promote an increase in the release of TGF-ß1, fibronectin deposition, and collagen remodeling. In vivo interventions were subsequently implemented on mice exposed to PHMG aerosols, aiming to restore macrophage lipid efflux function. Remarkably, this intervention demonstrated the potential to retard the progression of pulmonary fibrosis. In conclusion, this study underscores the pivotal role of macrophage foaming in the pathogenesis of PHMG disinfectants-induced pulmonary fibrosis. Moreover, it provides compelling evidence to suggest that the regulation of macrophage efflux function holds promise for mitigating the progression of pulmonary fibrosis, thereby offering novel insights into the mechanisms underlying inhaled PHMG disinfectants-induced pulmonary fibrosis.


Assuntos
Desinfetantes , Fibrose Pulmonar , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Guanidina/toxicidade , Guanidina/metabolismo , Camundongos Endogâmicos C57BL , Aerossóis e Gotículas Respiratórios , Pulmão , Guanidinas/metabolismo , Macrófagos , Desinfetantes/farmacologia , Lipídeos
7.
ChemMedChem ; 19(3): e202300493, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38126619

RESUMO

Amidinoureas are an understudied class of molecules with unique structural properties and biological activities. A simple methodology has been developed for the synthesis of aliphatic substituted amidinoureas via unexpected cycle opening of benzothiazolo-1,3,5-triazine-2-ones and transamination reaction of N-(N-(benzo[d]thiazol-2-yl)carbamimidoyl)aniline-1-carboxamide in good yields. A novel series of amidinoureas derivatives was designed, synthesized, and evaluated for its antiproliferative activity on an aggressive metastatic melanoma A375 cell line model. This evaluation reveals antiproliferative activities in the low micromolar range and establishes a first structure-activity relationship. In addition, analogues selected for their structural diversity were assayed on a panel of cancer cell lines through the DTP-NCI60, on which they showed effectiveness on various cancer types, with promising activities on melanoma cells for two hit compounds. This work paves the way for further optimization of this family of compounds towards the development of potent antimelanoma agents.


Assuntos
Antineoplásicos , Guanidina/análogos & derivados , Melanoma , Ureia/análogos & derivados , Humanos , Linhagem Celular Tumoral , Antineoplásicos/química , Triazinas/química , Relação Estrutura-Atividade , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
8.
ACS Appl Mater Interfaces ; 15(50): 58593-58604, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051013

RESUMO

Chemodynamic therapy (CDT) has emerged as a promising approach to cancer treatment, which can break the intracellular redox state balance and result in severe oxidative damage to biomolecules and organelles with the advantages of being less dependent on external stimulation, having deep tissue-healing abilities, and being resistant to drug resistance. There is considerable interest in developing CDT drugs with high efficiency and low toxicity. In this study, a new guanidinium-based biological metal covalent organic framework (Bio-MCOF), GZHMU-1@Mo, is rationally designed and synthesized as a multifunctional nanocatalyst in tumor cells for enhanced CDT. The DFT calculation and experimental results showed that due to the ability of MoO42- ion to promote electron transfer and increase the redox active site, Cu3 clusters and MoO42- ions in GZHMU-1@Mo can synergistically catalyze the production of reactive oxygen species (ROS) from oxygen and H2O2 in tumor cells, as well as degrade intracellular reducing substances, GSH and NADH, so as to disrupt the redox balance in tumor cells. Moreover, GZHMU-1@Mo exhibits a potent killing effect on tumor cells under both normal oxygen and anaerobic conditions. Further in vitro and in vivo antiproliferation studies revealed that the GZHMU-1@Mo nanoagent displays a remarkable antiproliferation effect and effectively inhibits tumor growth. Taken together, our study provides an insightful reference benchmark for the rational design of Bio-MCOF-based nanoagents with efficient CDT.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Guanidina/farmacologia , Peróxido de Hidrogênio , Catálise , Metais , Oxigênio , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Microambiente Tumoral , Glutationa
9.
Acta neurol. colomb ; 39(4)dic. 2023.
Artigo em Espanhol | LILACS | ID: biblio-1533513

RESUMO

Introducción: Las mioclonías son contracciones musculares paroxísticas de corta duración o pérdida abrupta del tono muscular, denominadas mioclonías positivas y negativas, respectivamente. Se presenta un caso clínico de mioclonías positivas y negativas generalizadas y se pretende describir los múltiples mecanismos fisiopatológicos y etiologías que lo desencadenan. Presentación del caso: Hombre de 35 años, con diabetes mellitus tipo 1 complicada con enfermedad renal diabética en hemodiálisis, desarrolló una bacteriemia asociada a catéter por Staphylococcus aureus y presentó mioclonías positivas y negativas. Se identificaron como posibles desencadenantes la uremia, la infección y los fármacos con potencial promioclónico; el hallazgo incidental de una lesión isquémica en núcleo caudado no explicaba la semiología encontrada en el paciente. Se hizo el control y retiro de todos los factores promioclónicos enunciados, junto a manejo farmacológico con levetiracetam, y con ello se logró el control de los síntomas. Discusión: Los pacientes con enfermedad renal crónica son susceptibles a la acumulación de productos tóxicos de tipo guanidinas, que tienen potencial para producir mioclonías. Además, las infecciones, el uso de fármacos con potencial promioclónico y lesiones estructurales como las isquemias corticales son etiologías que deben considerarse en el diagnóstico diferencial. El mayor impacto en los síntomas se observa con el control del factor desencadenante, y, en caso de persistir, la terapia farmacológica proporciona buenos resultados. Conclusión: Las mioclonías son trastornos del movimiento relativamente comunes en la enfermedad renal crónica. La identificación del desencadenante es crucial para su manejo junto al uso de fármacos con actividad antimioclónica.


Introduction: Myoclonus are paroxysmal muscle contractions of short duration or abrupt loss of muscle tone, called positive and negative myoclonus respectively. A clinical case of generalized positive and negative myoclonus is presented and the aim is to describe the multiple pathophysiological mechanisms and etiologies that trigger it. Case presentation: A 35-year-old man with type 1 diabetes mellitus complicated by diabetic kidney disease on hemodialysis developed catheter-associated bacteremia due to Staphylococcus aureus and presented positive and negative myoclonus. Uremia, infection, and drugs with pro-myoclonic potential were identified as possible triggers; The incidental finding of an ischemic lesion in the caudate nucleus did not explain the semiology found in the patient. The control and removal of all the pro-myoclonic factors mentioned was carried out, along with pharmacological management with levetiracetam, thus achieving control of the symptoms. Discussion: Patients with chronic kidney disease are susceptible to the accumulation of guanidine-type toxic products, which have the potential to produce myoclonus. Furthermore, infections, the use of drugs with pro-myoclonic potential and structural lesions such as cortical ischemia are etiologies that should be considered in the differential diagnosis. The greatest impact on symptoms is observed with the control of the triggering factor and if it persists, pharmacological therapy provides good results. Conclusion: Myoclonus are relatively common movement disorders in chronic kidney disease. Identification of the trigger is crucial for its management along with the use of drugs with anti-myoclonic activity.


Assuntos
Uremia , Cefalosporinas , Insuficiência Renal Crônica , Guanidina , Gabapentina , Levetiracetam , Analgésicos Opioides
10.
Biomacromolecules ; 24(12): 5551-5562, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37828909

RESUMO

Helicobacter pylori, the world's most common chronic infection-causing pathogen, is responsible for causing gastric ulcers, the fourth-leading cause of cancer-related death globally in 2020. In recent years, the effectiveness of the current treatment regimen (two antibiotics and one proton pump inhibitor) has often been plagued with problems such as resistance and the undesired elimination of commensal bacteria. Herein, we report the synthesis of block and random copolycarbonates, functionalized with cationic guanidinium and anionic acetate functional groups, aimed at selectively killing H. pylori in the acidic environment of the stomach, while remaining nontoxic to the commensal bacteria in the gut. The compositions of the polymers were fine-tuned so that the polymers were readily dispersed in water without any difficulty at both pH 3.0 and 7.4. The self-assembly behavior of the polymers at different pH values by dynamic light scattering showed that the random and block copolymers formed stable micelles in a simulated gastric environment (pH 3.0) while aggregated at pH 7.4. Both polymers demonstrated stronger antibacterial activity against H. pylori than the guanidinium-functionalized homopolymer without any acetate functional group at pH 3.0. The block copolymer was significantly more bactericidal at pH 3.0 across the concentrations tested, as compared to the random copolymer, while it did not show significant toxicity toward rat red blood cells (rRBCs) and HK-2 cells or bactericidal effect toward E. coli (a common gut bacterium) and nor caused aggregation of rRBCs at its effective concentration and at physiological pH of 7.4. Additionally, both the block and random copolymers were much more stable against hydrolysis at pH 3.0 than at pH 7.4. This study provides insight into the influence of both polymer architecture and dynamic assembly on the bioactivities of antimicrobial polymers, where the disassembly of coacervates into narrowly dispersed micelles at pH 3 make them potent antimicrobials aided by the protonated carboxylic acid block.


Assuntos
Helicobacter pylori , Micelas , Ratos , Animais , Guanidina/farmacologia , Escherichia coli , Polímeros/farmacologia , Polímeros/química , Antibacterianos/farmacologia , Concentração de Íons de Hidrogênio , Acetatos
11.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762123

RESUMO

The modular synthesis of the guanidine core by guanylation reactions using commercially available ZnEt2 as a catalyst has been exploited as a tool for the rapid development of antitumoral guanidine candidates. Therefore, a series of phenyl-guanidines were straightforwardly obtained in very high yields. From the in vitro assessment of the antitumoral activity of such structurally diverse guanidines, the guanidine termed ACB3 has been identified as the lead compound of the series. Several biological assays, an estimation of AMDE values, and an uptake study using Fluorescence Lifetime Imaging Microscopy were conducted to gain insight into the mechanism of action. Cell death apoptosis, induction of cell cycle arrest, and reduction in cell adhesion and colony formation have been demonstrated for the lead compound in the series. In this work, and as a proof of concept, we discuss the potential of the catalytic guanylation reactions for high-throughput testing and the rational design of guanidine-based cancer therapeutic agents.


Assuntos
Guanidinas , Neoplasias , Humanos , Guanidina , Guanidinas/farmacologia , Apoptose , Morte Celular , Neoplasias/tratamento farmacológico
12.
J Med Chem ; 66(19): 13646-13664, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37754066

RESUMO

Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) is a highly attractive therapeutic target for treating Kirsten rat sarcoma viral oncogene (KRAS) mutant cancers. In this work, a series of guanidine-based SHP2 allosteric inhibitors were discovered via virtual screening and rational structural optimization. Notably, lead compound 23 with potent SHP2 inhibitory activity (IC50 = 17.7 nM) effectively inhibited the proliferation, migration, and invasion of MIA PaCa-2 pancreatic cancer cells. Furthermore, compound 23 featured great in vivo pharmacokinetic properties (AUCpo = 4320 nM·h; F = 66.3%) and exhibited significant antitumor efficacy in the MIA PaCa-2 xenograft mouse model. This demonstrates that compound 23 is a potential lead compound for the development of SHP2 allosteric inhibitors to treat KRAS mutant cancers. Moreover, these guanidine-based scaffolds may provide an opportunity to mitigate the potential safety risks of the alkyl amine motif predominately incorporated in current SHP2 allosteric inhibitors.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Guanidina/farmacologia , Detecção Precoce de Câncer , Neoplasias Pancreáticas/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Inibidores Enzimáticos/farmacologia
13.
J Org Chem ; 88(16): 11694-11701, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37530571

RESUMO

Oxoanions such as carboxylates, phosphates, and sulfates play important roles in both chemistry and biology and are abundant on the cell surface. We report on the synthesis and properties of a rationally designed guanidinium-containing oxoanion binder, 1-guanidino-8-amino-2,7-diazacarbazole (GADAC). GADAC binds to a carboxylate, phosphate, and sulfate in pure water with affinities of 3.6 × 104, 1.1 × 103, and 4.2 × 103 M-1, respectively. Like 2-azacarbazole, which is a natural product that enables scorpions to fluoresce, GADAC is fluorescent in water (λabs = 356 nm, λem = 403 nm, ε = 13,400 M-1 cm-1). The quantum yield of GADAC is pH-sensitive, increasing from Φ = 0.12 at pH 7.4 to Φ = 0.53 at pH 4.0 as a result of the protonation of the aminopyridine moiety. The uptake of GADAC into live human melanoma cells is detectable in the DAPI channel at low micromolar concentrations. Its properties make GADAC a promising candidate for applications in oxoanion binding and fluorescence labeling in biological (e.g., the delivery of cargo into cells) and other contexts.


Assuntos
Fosfatos , Água , Humanos , Guanidina/química , Água/química , Ácidos Carboxílicos/química , Corantes
14.
Invest New Drugs ; 41(5): 688-698, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37556022

RESUMO

Medulloblastoma (MB) is the most common pediatric brain tumor. The therapy frequently causes serious side effects, and new selective therapies are needed. MB expresses hyper sialylation, a possible target for selective therapy. The cytotoxic efficacy of a poly guanidine conjugate (GuaDex) incubated with medulloblastoma cell cultures (DAOY and MB-LU-181) was investigated. The cells were incubated with 0.05-8 µM GuaDex from 15 min to 72 h. A fluorometric cytotoxicity assay (FMCA) measured the cytotoxicity. Labeled GuaDex was used to study tumor cell interaction. FITC-label Sambucus nigra confirmed high expression of sialic acid (Sia). Immunofluorescence microscopy was used to visualize the cell F-actin and microtubules. The cell interactions were studied by confocal and fluorescence microscopy. Annexin-V assay was used to detect apoptosis. Cell cycle analysis was done by DNA content determination. A wound-healing migration assay determined the effects on the migratory ability of DAOY cells after GuaDex treatment. IC50 for GuaDex was 223.4 -281.1 nM. FMCA showed potent growth inhibition on DAOY and MB-LU-181 cells at 5 uM GuaDex after 4 h of incubation. GuaDex treatment induced G2/M phase cell cycle arrest. S. nigra FITC-label lectin confirmed high expression of Sia on DAOY medulloblastoma cells. The GuaDex treatment polymerized the cytoskeleton (actin filaments and microtubules) and bound to DNA, inducing condensation. The Annexin V assay results were negative. Cell migration was inhibited at 0.5 µM GuaDex concentration after 24 h of incubation. GuaDex showed potent cytotoxicity and invasion-inhibitory effects on medulloblastoma cells at low micromolar concentrations. GuaDex efficacy was significant and warrants further studies.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Guanidina/farmacologia , Guanidina/uso terapêutico , Fluoresceína-5-Isotiocianato/farmacologia , Fluoresceína-5-Isotiocianato/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , DNA
15.
Drug Deliv ; 30(1): 2219433, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37434438

RESUMO

Aiming to address the insufficient endocytosis ability of traditional albumin drug conjugates, this paper reports elegant guanidine modification to improve efficacy for the first time. A series of modified albumin drug conjugates were designed and synthesized with different structures, including guanidine (GA), biguanides (BGA) and phenyl (BA), and different quantities of modifications. Then, the endocytosis ability and in vitro/vivo potency of albumin drug conjugates were systematically studied. Finally, a preferred conjugate A4 was screened, which contained 15 BGA modifications. Conjugate A4 maintains spatial stability similar to that of the unmodified conjugate AVM and could significantly enhance endocytosis ability (p*** = 0.0009) compared with the unmodified conjugate AVM. Additionally, the in vitro potency of conjugate A4 (EC50 = 71.78 nmol in SKOV3 cells) was greatly enhanced (approximately 4 times) compared with that of the unmodified conjugate AVM (EC50 = 286.00 nmol in SKOV3 cells). The in vivo efficacy of conjugate A4 completely eliminated 50% of tumors at 33 mg/kg, which was significantly better than the efficacy of conjugate AVM at the same dose (P** = 0.0026). In addition, theranostic albumin drug conjugate A8 was designed to intuitively realize drug release and maintain antitumor activity similar to conjugate A4. In summary, the guanidine modification strategy could provide new ideas for the development of new generational albumin drug conjugates.


Assuntos
Endocitose , Guanidina/química , Endocitose/efeitos dos fármacos , Albuminas/química , Humanos , Animais , Camundongos , Linhagem Celular , Feminino , Camundongos Endogâmicos BALB C
16.
Chem Biodivers ; 20(8): e202300350, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37377049

RESUMO

This work firstly reported a new polycaprolactone based material functionalized with guanidinium ionic liquid (PCL-GIL) as the stationary phase with high resolution performance for capillary gas chromatography (GC). It is composed of polycaprolactone (PCL) and guanidinium ionic liquid (GIL) with amphiphilic conformation. The PCL-GIL capillary column coated by static method exhibited high column efficiency of 3942 plates/m and moderate polarity. As a result, the PCL-GIL column exhibited high-resolution capability. For a mixture of 27 analytes with a wide ranging polarity and outperformed the PCL-2OH and HP-35 columns, showing its advantageous separation capability for analytes of diverse types. Moreover, the PCL-GIL column showed high resolving capability for various positional isomers and cis-/trans-isomers, including alkylbenzenes, chlorobenzenes, naphthalenes, bromonitrobenzenes, chloronitrobenzenes, benzaldehydes, phenols, alcohols, respectively. In a word, PCL derivatized by GIL units as a new type of stationary phase has a promising future in GC separations.


Assuntos
Líquidos Iônicos , Guanidina , Reprodutibilidade dos Testes , Cromatografia Gasosa/métodos
17.
Biomed Pharmacother ; 164: 114982, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37311278

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is one of the subtypes of breast cancer (BC) that is associated with poor survival rates and failure to respond to hormonal and targeted therapies. OBJECTIVE: The aim of this study was to identify a specific gene at the expression level for TNBC and targeting of this type of breast cancer based on it. Using TCGA database, genes that are particularly high expression in TNBC subtypes compared to other BC subtypes (in terms of receptor status) and normal samples were identified and their sensitivity and specificity were evaluated. Using PharmacoGX and Drug Bank data, drug sensitivity and drug-appropriate genes were identified, respectively. The effects of the identified drug on triple-negative cell lines (MDA-MB-468) were evaluated in comparison with the cell line of other subtypes (MCF7) by apoptosis and MTS tests. RESULTS: Data analyzes showed that the expression level of KCNG1 gene in the TNBC subgroup was significantly higher compared to other BC subtypes from the KCN gene family and ROC results showed that this gene had highest sensitivity and specificity in TNBC subtype. The results of drug resistance and sensitivity showed that an increase in the expression level of KCNG1 was associated with sensitivity to Cisplatin and Oxaliplatin. Moreover, Drug Bank results showed that Guanidine hydrochloride (GuHCl) was a suitable inhibitor for KCNG1. In vitro results showed that the expression level of KCNG1 was higher in MDA-MB-468 compared to MCF7. In addition, the rate of apoptosis in response to GuHCl treatment in MDA-MB-468 cell line as TNBC cell model was higher than MCF7 in the same concentration. CONCLUSION: This study revealed that GuHCl could be a suitable treatment for TNBC subtype by targeting of KCNG1.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Guanidina/farmacologia , Guanidina/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Apoptose , Proliferação de Células
18.
Environ Res ; 231(Pt 2): 116172, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201704

RESUMO

The current study aimed to investigate the toxicity of positively charged polyhexamethylene guanidine (PHMG) polymer and its complexation with different anionic natural polymers such as k-carrageenan (kCG), chondroitin sulfate (CS), sodium alginate (Alg.Na), polystyrene sulfonate sodium (PSS.Na) and hydrolyzed pectin (HP). The physicochemical properties of the synthesized PHMG and its combination with anionic polyelectrolyte complexes (PECs) namely PHMG:PECs were characterized using zeta potential, XPS, FTIR, and TG analysis. Furthermore, cytotoxic behavior of the PHMG and PHMG:PECs, respectively, were evaluated using human liver cancer cell line (HepG2). The study results revealed that the PHMG alone had slightly higher cytotoxicity to the HepG2 cells than the prepared polyelectrolyte complexes such as PHMG:PECs. The PHMG:PECs showed a significant reduction of cytotoxicity to the HepG2 cells than the pristine PHMG alone. A reduction of PHMG toxicity was observed may be due to the facile formation of complexation between the positively charged PHMG and negatively charged anionic natural polymers such as kCG, CS, Alg. Na, PSS.Na and HP, respectively, via charge balance or neutralization. The experimental results indicate that the suggested method might significantly lower PHMG toxicity while improving biocompatibility.


Assuntos
Desinfetantes , Humanos , Guanidina , Polieletrólitos/toxicidade , Guanidinas/toxicidade , Guanidinas/química , Linhagem Celular
19.
Bioorg Chem ; 138: 106600, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37209561

RESUMO

Guanidines are fascinating small nitrogen-rich organic compounds, which have been frequently associated with a wide range of biological activities. This is mainly due to their interesting chemical features. For these reasons, for the past decades, researchers have been synthesizing and evaluating guanidine derivatives. In fact, there are currently on the market several guanidine-bearing drugs. Given the broad panoply of pharmacological activities displayed by guanidine compounds, in this review, we chose to focus on antitumor, antibacterial, antiviral, antifungal, and antiprotozoal activities presented by several natural and synthetic guanidine derivatives, which are undergoing preclinical and clinical studies from January 2010 to January 2023. Moreover, we also present guanidine-containing drugs currently in the market for the treatment of cancer and several infectious diseases. In the preclinical and clinical setting, most of the synthesized and natural guanidine derivatives are being evaluated as antitumor and antibacterial agents. Even though DNA is the most known target of this type of compounds, their cytotoxicity also involves several other different mechanisms, such as interference with bacterial cell membranes, reactive oxygen species (ROS) formation, mitochondrial-mediated apoptosis, mediated-Rac1 inhibition, among others. As for the compounds already used as pharmacological drugs, their main application is in the treatment of different types of cancer, such as breast, lung, prostate, and leukemia. Guanidine-containing drugs are also being used for the treatment of bacterial, antiprotozoal, antiviral infections and, recently, have been proposed for the treatment of COVID-19. To conclude, the guanidine group is a privileged scaffold in drug design. Its remarkable cytotoxic activities, especially in the field of oncology, still make it suitable for a deeper investigation to afford more efficient and target-specific drugs.


Assuntos
Anti-Infecciosos , Antineoplásicos , COVID-19 , Neoplasias , Masculino , Humanos , Guanidina/farmacologia , Guanidina/química , Guanidinas/química , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antibacterianos/farmacologia , Neoplasias/tratamento farmacológico , Anti-Hipertensivos , Antivirais/farmacologia
20.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37108473

RESUMO

Isopropoxy benzene guanidine (IBG) is a guanidine derivative with antibacterial activity against multidrug-resistant bacteria. A few studies have revealed the metabolism of IBG in animals. The aim of the current study was to identify potential metabolic pathways and metabolites of IBG. The detection and characterization of metabolites were performed with high-performance liquid chromatography tandem mass spectrometry (UHPLC-Q-TOF-MS/MS). Seven metabolites were identified from the microsomal incubated samples by using the UHPLC-Q-TOF-MS/MS system. The metabolic pathways of IBG in the rat liver microsomes involved O-dealkylation, oxygenation, cyclization, and hydrolysis. Hydroxylation was the main metabolic pathway of IBG in the liver microsomes. This research investigated the in vitro metabolism of IBG to provide a basis for the further pharmacology and toxicology of this compound.


Assuntos
Microssomos Hepáticos , Espectrometria de Massas em Tandem , Ratos , Animais , Espectrometria de Massas em Tandem/métodos , Microssomos Hepáticos/metabolismo , Benzeno , Guanidina/farmacologia , Cromatografia Líquida de Alta Pressão/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA