Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
1.
Biomolecules ; 14(10)2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39456162

RESUMO

Adenosine Deaminases Acting on RNA (ADARs) are members of a family of RNA editing enzymes that catalyze the conversion of adenosine into inosine in double-stranded RNA (dsRNA). ADARs' selective activity on dsRNA presents the ability to correct mutations at the transcriptome level using guiding oligonucleotides. However, this approach is limited by ADARs' preference for specific sequence contexts to achieve efficient editing. Substrates with a guanosine adjacent to the target adenosine in the 5' direction (5'-GA) are edited less efficiently compared to substrates with any other canonical nucleotides at this position. Previous studies showed that a G/purine mismatch at this position results in more efficient editing than a canonical G/C pair. Herein, we investigate a series of modified oligonucleotides containing purine or size-expanded nucleoside analogs on guide strands opposite the 5'-G (-1 position). The results demonstrate that modified adenosine and inosine analogs enhance editing at 5'-GA sites. Additionally, the inclusion of a size-expanded cytidine analog at this position improves editing over a control guide bearing cytidine. High-resolution crystal structures of ADAR:/RNA substrate complexes reveal the manner by which both inosine and size-expanded cytidine are capable of activating editing at 5'-GA sites. Further modification of these altered guide sequences for metabolic stability in human cells demonstrates that the incorporation of specific purine analogs at the -1 position significantly improves editing at 5'-GA sites.


Assuntos
Adenosina Desaminase , Adenosina , Edição de RNA , Adenosina Desaminase/metabolismo , Adenosina Desaminase/química , Adenosina Desaminase/genética , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/química , Inosina/química , Inosina/metabolismo , Nucleosídeos/química , Nucleosídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , RNA Guia de Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas/química , RNA Guia de Sistemas CRISPR-Cas/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/genética , Células HEK293 , Guanosina/química , Guanosina/metabolismo , Guanosina/análogos & derivados
2.
PLoS Biol ; 22(8): e3002743, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39190717

RESUMO

Bemnifosbuvir (AT-527) and AT-752 are guanosine analogues currently in clinical trials against several RNA viruses. Here, we show that these drugs require a minimal set of 5 cellular enzymes for activation to their common 5'-triphosphate AT-9010, with an obligate order of reactions. AT-9010 selectively inhibits essential viral enzymes, accounting for antiviral potency. Functional and structural data at atomic resolution decipher N6-purine deamination compatible with its metabolic activation. Crystal structures of human histidine triad nucleotide binding protein 1, adenosine deaminase-like protein 1, guanylate kinase 1, and nucleoside diphosphate kinase at 2.09, 2.44, 1.76, and 1.9 Å resolution, respectively, with cognate precursors of AT-9010 illuminate the activation pathway from the orally available bemnifosbuvir to AT-9010, pointing to key drug-protein contacts along the activation pathway. Our work provides a framework to integrate the design of antiviral nucleotide analogues, confronting requirements and constraints associated with activation enzymes along the 5'-triphosphate assembly line.


Assuntos
Antivirais , Antivirais/farmacologia , Antivirais/química , Humanos , Cristalografia por Raios X , Modelos Moleculares , Núcleosídeo-Difosfato Quinase/metabolismo , Núcleosídeo-Difosfato Quinase/química , Núcleosídeo-Difosfato Quinase/genética , Guanosina/análogos & derivados , Guanosina/metabolismo , Guanosina/química
3.
J Chem Inf Model ; 64(15): 6230-6240, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39011571

RESUMO

N-7methylguanosine (m7G) modification plays a crucial role in various biological processes and is closely associated with the development and progression of many cancers. Accurate identification of m7G modification sites is essential for understanding their regulatory mechanisms and advancing cancer therapy. Previous studies often suffered from insufficient research data, underutilization of motif information, and lack of interpretability. In this work, we designed a novel motif-based interpretable method for m7G modification site prediction, called Moss-m7G. This approach enables the analysis of RNA sequences from a motif-centric perspective. Our proposed word-detection module and motif-embedding module within Moss-m7G extract motif information from sequences, transforming the raw sequences from base-level into motif-level and generating embeddings for these motif sequences. Compared with base sequences, motif sequences contain richer contextual information, which is further analyzed and integrated through the Transformer model. We constructed a comprehensive m7G data set to implement the training and testing process to address the data insufficiency noted in prior research. Our experimental results affirm the effectiveness and superiority of Moss-m7G in predicting m7G modification sites. Moreover, the introduction of the word-detection module enhances the interpretability of the model, providing insights into the predictive mechanisms.


Assuntos
Aprendizado Profundo , Guanosina , Motivos de Nucleotídeos , RNA , Guanosina/análogos & derivados , Guanosina/química , RNA/química
4.
ChemistryOpen ; 13(10): e202400141, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38884382

RESUMO

Isoguanosine (isoG) is a natural structural isomer of guanosine (G) with significant potential for applications in ionophores, genetics, gel formation, and cancer therapy. However, the cost of commercially available isoG on a gram scale is relatively high. To date, a detailed method for the large-scale preparation of high-purity isoG has not been reported. This study presented a simple and convenient approach for the large-scale synthesis of isoG through the diazotization of 2,6-diaminopurine riboside with sodium nitrite and acetic acid at room temperature. Further, this method could synthesize isoG derivatives (2'-fluoro-isoguanosine (1) and 2'-deoxy-isoguanosine (2)) from 2,6-diaminopurine nucleoside derivatives using diazotization. The structural information of natural and modified nucleosides is crucial for the modification and substitution of DNA/RNA. This study obtained the single-crystal structure of isoG for the first time and analyzed it in detail using microcrystal electron diffraction. The three-dimensional supramolecular structure of isoG adopted similarly base-pair motifs from π-π stacking interaction of diverse layers, intramolecular hydrogen bonding, and distinct hydrogen bonding interactions from sugar residues. This study has contributed to further isoG modification and its applications in medicinal chemistry and materials.


Assuntos
Guanosina , Guanosina/química , Guanosina/análogos & derivados , Cristalografia por Raios X , Modelos Moleculares , Ligação de Hidrogênio , Adenosina
5.
Nucleic Acids Res ; 50(19): 10857-10868, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36243986

RESUMO

ADARs (adenosine deaminases acting on RNA) can be directed to sites in the transcriptome by complementary guide strands allowing for the correction of disease-causing mutations at the RNA level. However, ADARs show bias against editing adenosines with a guanosine 5' nearest neighbor (5'-GA sites), limiting the scope of this approach. Earlier studies suggested this effect arises from a clash in the RNA minor groove involving the 2-amino group of the guanosine adjacent to an editing site. Here we show that nucleosides capable of pairing with guanosine in a syn conformation enhance editing for 5'-GA sites. We describe the crystal structure of a fragment of human ADAR2 bound to RNA bearing a G:G pair adjacent to an editing site. The two guanosines form a Gsyn:Ganti pair solving the steric problem by flipping the 2-amino group of the guanosine adjacent to the editing site into the major groove. Also, duplexes with 2'-deoxyadenosine and 3-deaza-2'-deoxyadenosine displayed increased editing efficiency, suggesting the formation of a Gsyn:AH+anti pair. This was supported by X-ray crystallography of an ADAR complex with RNA bearing a G:3-deaza dA pair. This study shows how non-Watson-Crick pairing in duplex RNA can facilitate ADAR editing enabling the design of next generation guide strands for therapeutic RNA editing.


Assuntos
Guanosina , Proteínas de Ligação a RNA , Humanos , Guanosina/química , Proteínas de Ligação a RNA/metabolismo , Adenosina Desaminase/metabolismo , Edição de RNA , RNA/química , Conformação de Ácido Nucleico
6.
J Inorg Biochem ; 226: 111660, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801970

RESUMO

Nucleos(t)ide analogues (NA) belong to a family of compounds widely used in anticancer/antiviral treatments. They generally exhibit a cell toxicity limited by cellular uptake levels and the resulting nucleos(t)ides metabolism modifications, interfering with the cell machinery for nucleic acids synthesis. We previously synthesized purine nucleos(t)ide analogues N7-coordinated to a platinum centre with unaltered sugar moieties of the type: [Pt(dien)(N7-dGuo)]2+ (1; dien = diethylenetriamine; dGuo = 2'-deoxy-guanosine), [Pt(dien)(N7-dGMP)] (2; dGMP = 5'-(2'-deoxy)-guanosine monophosphate), and [Pt(dien)(N7-dGTP)]2- (3; dGTP = 5'-(2'-deoxy)-guanosine triphosphate), where the indicated electric charge is calculated at physiological pH (7.4). In this work, we specifically investigated the uptake of these complexes (1-3) at the plasma membrane level. Specific experiments on HeLa cervical cancer cells indicated a relevant cellular uptake of the model platinated deoxynucleos(t)ide 1 and 3 while complex 2 appeared unable to cross the cell plasma membrane. Obtained data buttress an uptake mechanism involving Na+-dependent concentrative transporters localized at the plasma membrane level. Consistently, 1 and 3 showed higher cytotoxicity with respect to complex 2 also suggesting selective possible applications as antiviral/antitumor drugs among the used model compounds.


Assuntos
Membrana Celular/metabolismo , Citotoxinas , Guanosina , Compostos Organoplatínicos , Transporte Biológico , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacocinética , Citotoxinas/farmacologia , Guanosina/análogos & derivados , Guanosina/química , Guanosina/farmacocinética , Guanosina/farmacologia , Células HeLa , Humanos , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacocinética , Compostos Organoplatínicos/farmacologia
7.
J Biol Chem ; 297(5): 101294, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634303

RESUMO

Tandem mass spectrometry (MS/MS) is an accurate tool to assess modified ribonucleosides and their dynamics in mammalian cells. However, MS/MS quantification of lowly abundant modifications in non-ribosomal RNAs is unreliable, and the dynamic features of various modifications are poorly understood. Here, we developed a 13C labeling approach, called 13C-dynamods, to quantify the turnover of base modifications in newly transcribed RNA. This turnover-based approach helped to resolve mRNA from ncRNA modifications in purified RNA or free ribonucleoside samples and showed the distinct kinetics of the N6-methyladenosine (m6A) versus 7-methylguanosine (m7G) modification in polyA+-purified RNA. We uncovered that N6,N6-dimethyladenosine (m62A) exhibits distinct turnover in small RNAs and free ribonucleosides when compared to known m62A-modified large rRNAs. Finally, combined measurements of turnover and abundance of these modifications informed on the transcriptional versus posttranscriptional sensitivity of modified ncRNAs and mRNAs, respectively, to stress conditions. Thus, 13C-dynamods enables studies of the origin of modified RNAs at steady-state and subsequent dynamics under nonstationary conditions. These results open new directions to probe the presence and biological regulation of modifications in particular RNAs.


Assuntos
Adenosina , Isótopos de Carbono , Guanosina/análogos & derivados , Processamento Pós-Transcricional do RNA , RNA , Adenosina/química , Adenosina/metabolismo , Adenosina/farmacologia , Isótopos de Carbono/química , Isótopos de Carbono/farmacologia , Guanosina/química , Guanosina/metabolismo , Guanosina/farmacologia , Marcação por Isótopo , RNA/química , RNA/metabolismo , Espectrometria de Massas em Tandem
8.
Nucleic Acids Res ; 49(19): 10851-10867, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34648028

RESUMO

We recently reported that RNAi-mediated off-target effects are important drivers of the hepatotoxicity observed for a subset of GalNAc-siRNA conjugates in rodents, and that these findings could be mitigated by seed-pairing destabilization using a single GNA nucleotide placed within the seed region of the guide strand. Here, we report further investigation of the unique and poorly understood GNA/RNA cross-pairing behavior to better inform GNA-containing siRNA design. A reexamination of published GNA homoduplex crystal structures, along with a novel structure containing a single (S)-GNA-A residue in duplex RNA, indicated that GNA nucleotides universally adopt a rotated nucleobase orientation within all duplex contexts. Such an orientation strongly affects GNA-C and GNA-G but not GNA-A or GNA-T pairing in GNA/RNA heteroduplexes. Transposition of the hydrogen-bond donor/acceptor pairs using the novel (S)-GNA-isocytidine and -isoguanosine nucleotides could rescue productive base-pairing with the complementary G or C ribonucleotides, respectively. GalNAc-siRNAs containing these GNA isonucleotides showed an improved in vitro activity, a similar improvement in off-target profile, and maintained in vivo activity and guide strand liver levels more consistent with the parent siRNAs than those modified with isomeric GNA-C or -G, thereby expanding our toolbox for the design of siRNAs with minimized off-target activity.


Assuntos
Adenosina/química , Citidina/química , Glicóis/química , Guanosina/química , Oligorribonucleotídeos/química , RNA de Cadeia Dupla/química , RNA Interferente Pequeno/química , Acetilgalactosamina , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Pareamento de Bases , Células COS , Chlorocebus aethiops , Dimetilformamida/análogos & derivados , Dimetilformamida/química , Etilaminas/química , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Ligação de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Compostos Organofosforados/química , Pré-Albumina/antagonistas & inibidores , Pré-Albumina/genética , Pré-Albumina/metabolismo , Cultura Primária de Células , Estabilidade de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
9.
Molecules ; 26(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207872

RESUMO

Five new compounds including three pairs of enantiomeric xanthine analogues, parvaxanthines D-F (1-3), two new guanosine derivatives, asponguanosines C and D (6 and 7), along with two known adenine derivatives were isolated from the insect Cyclopelta parva. Racemic 1-3 were further separated by chiral HPLC. Their absolute configurations were assigned by spectroscopic and computational methods. It is interesting that all of these isolates are natural product hybrids. Antiviral, immunosuppressive, antitumor and anti-inflammatory properties of all the isolates were evaluated.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Guanosina/química , Insetos/química , Xantinas/química , Animais , Produtos Biológicos/química , Células Cultivadas , Chlorocebus aethiops , Cromatografia Líquida de Alta Pressão/métodos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Estereoisomerismo
10.
Curr Opin Chem Biol ; 63: 28-37, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33684855

RESUMO

The messenger RNA (mRNA) methylations in mammalian cells have been found to contain N6-methyladenosine (m6A), N6-2'-O-dimethyladenosine (m6Am), 7-methylguanosine (m7G), 1-methyladenosine (m1A), 5-methylcytosine (m5C), and 2'-O-methylation (2'-OMe). Their regulatory functions in control of mRNA fate and gene expression are being increasingly uncovered. To unambiguously understand the critical roles of mRNA methylations in physiological and pathological processes, mapping these methylations at single base resolution is highly required. Here, we will review the progresses made in methylation sequencing methodologies developed mainly in recent two years, with an emphasis on chemical labeling-assisted single base resolution methods, and discuss the problems and prospects as well.


Assuntos
Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/química , Imagem Individual de Molécula/métodos , Adenosina/análogos & derivados , Adenosina/química , Aldeídos/química , Aminas/química , Sequência de Bases , Linhagem Celular , Epigênese Genética , Regulação da Expressão Gênica , Guanosina/análogos & derivados , Guanosina/química , Humanos , Metilação , Coloração e Rotulagem
11.
Nucleic Acids Res ; 49(1): 38-52, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33290562

RESUMO

Acquired drug resistance is a major obstacle in cancer therapy. Recent studies revealed that reprogramming of tRNA modifications modulates cancer survival in response to chemotherapy. However, dynamic changes in tRNA modification were not elucidated. In this study, comparative analysis of the human cancer cell lines and their taxol resistant strains based on tRNA mapping was performed by using UHPLC-MS/MS. It was observed for the first time in all three cell lines that 4-demethylwyosine (imG-14) substitutes for hydroxywybutosine (OHyW) due to tRNA-wybutosine synthesizing enzyme-2 (TYW2) downregulation and becomes the predominant modification at the 37th position of tRNAphe in the taxol-resistant strains. Further analysis indicated that the increase in imG-14 levels is caused by downregulation of TYW2. The time courses of the increase in imG-14 and downregulation of TYW2 are consistent with each other as well as consistent with the time course of the development of taxol-resistance. Knockdown of TYW2 in HeLa cells caused both an accumulation of imG-14 and reduction in taxol potency. Taken together, low expression of TYW2 enzyme promotes the cancer survival and resistance to taxol therapy, implying a novel mechanism for taxol resistance. Reduction of imG-14 deposition offers an underlying rationale to overcome taxol resistance in cancer chemotherapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Paclitaxel/farmacologia , Processamento Pós-Transcricional do RNA/genética , RNA Neoplásico/química , RNA de Transferência de Fenilalanina/química , Células A549 , Sequência de Bases , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Guanosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Células HeLa , Humanos , Estrutura Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Conformação de Ácido Nucleico , Neoplasias Ovarianas/patologia , RNA Neoplásico/fisiologia , RNA de Transferência de Fenilalanina/fisiologia , Espectrometria de Massas em Tandem , Ensaio Tumoral de Célula-Tronco
12.
Molecules ; 25(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255230

RESUMO

Herein, we report the design and characterization of guanosine-containing self-assembling nucleopeptides that form nanosheets and nanofibers. Through spectroscopy and microscopy analysis, we propose that the peptide component of the nucleopeptide drives the assembly into ß-sheet structures with hydrogen-bonded guanosine forming additional secondary structures cooperatively within the peptide framework. Interestingly, the distinct supramolecular morphologies are driven not by metal cation responsiveness common to guanine-based materials, but by the C-terminal peptide chemistry. This work highlights the structural diversity of self-assembling nucleopeptides and will help advance the development of applications for these supramolecular guanosine-containing nucleopeptides.


Assuntos
Guanosina/química , Ácidos Nucleicos Peptídicos/química , Peptídeos/química , Técnicas de Química Sintética , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
13.
Biopolymers ; 111(12): e23410, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33216981

RESUMO

Inosine is an important RNA modification, furthermore RNA oxidation has gained interest due, in part, to its potential role in the development/progression of disease as well as on its impact on RNA structure and function. In this report we established the base pairing abilities of purine nucleobases G, I, A, as well as their corresponding, 8-oxo-7,8-dihydropurine (common products of oxidation at the C8-position of purines), and 8-bromopurine (as probes to explore conformational changes), derivatives, namely 8-oxoG, 8-oxoI, 8-oxoA, 8-BrG, and 8-BrI. Dodecamers of RNA were obtained using standard phosphoramidite chemistry via solid-phase synthesis, and used as models to establish the impact that each of these nucleobases have on the thermal stability of duplexes, when base pairing to canonical and noncanonical nucleobases. Thermal stabilities were obtained from thermal denaturation transition (Tm ) measurements, via circular dichroism (CD). The results were then rationalized using models of base pairs between two monomers, via density functional theory (DFT), that allowed us to better understand potential contributions from H-bonding patterns arising from distinct conformations. Overall, some of the important results indicate that: (a) an anti-I:syn-A base pair provides thermal stability, due to the absence of the exocyclic amine; (b) 8-oxoG base pairs like U, and does not induce destabilization within the duplex when compared to the pyrimidine ring; (c) a U:G wobble-pair is only stabilized by G; and (d) 8-oxoA displays an inherited base pairing promiscuity in this sequence context. Gaining a better understanding of how this oxidatively generated lesions potentially base pair with other nucleobases will be useful to predict various biological outcomes, as well as in the design of biomaterials and/or nucleotide derivatives with biological potential.


Assuntos
Adenosina/química , Guanosina/química , Inosina/química , RNA/química , Adenosina/genética , Pareamento de Bases , Guanina/análogos & derivados , Guanina/química , Guanosina/genética , Ligação de Hidrogênio , Inosina/genética , Modelos Químicos , Modelos Genéticos , Estrutura Molecular , Conformação de Ácido Nucleico , RNA/genética , Termodinâmica
14.
Proc Natl Acad Sci U S A ; 117(43): 26773-26783, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33055213

RESUMO

Methyl-7-guanosine (m7G) "capping" of coding and some noncoding RNAs is critical for their maturation and subsequent activity. Here, we discovered that eukaryotic translation initiation factor 4E (eIF4E), itself a cap-binding protein, drives the expression of the capping machinery and increased capping efficiency of ∼100 coding and noncoding RNAs. To quantify this, we developed enzymatic (cap quantification; CapQ) and quantitative cap immunoprecipitation (CapIP) methods. The CapQ method has the further advantage that it captures information about capping status independent of the type of 5' cap, i.e., it is not restricted to informing on m7G caps. These methodological advances led to unanticipated revelations: 1) Many RNA populations are inefficiently capped at steady state (∼30 to 50%), and eIF4E overexpression increased this to ∼60 to 100%, depending on the RNA; 2) eIF4E physically associates with noncoding RNAs in the nucleus; and 3) approximately half of eIF4E-capping targets identified are noncoding RNAs. eIF4E's association with noncoding RNAs strongly positions it to act beyond translation. Coding and noncoding capping targets have activities that influence survival, cell morphology, and cell-to-cell interaction. Given that RNA export and translation machineries typically utilize capped RNA substrates, capping regulation provides means to titrate the protein-coding capacity of the transcriptome and, for noncoding RNAs, to regulate their activities. We also discovered a cap sensitivity element (CapSE) which conferred eIF4E-dependent capping sensitivity. Finally, we observed elevated capping for specific RNAs in high-eIF4E leukemia specimens, supporting a role for cap dysregulation in malignancy. In all, levels of capping RNAs can be regulated by eIF4E.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Guanosina/análogos & derivados , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Guanosina/química , Guanosina/genética , Guanosina/metabolismo , Humanos , Polirribossomos/metabolismo , Capuzes de RNA/química , Capuzes de RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Transcriptoma/genética
15.
Carbohydr Res ; 497: 108138, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32911205

RESUMO

The behavior of the inclusion behavior of guanosine (GU) with beta-cyclodextrin (ß-CD) in the liquid, solid and virtual state were investigated. The absorption and fluorescence spectral were used to determine the inclusion behavior in liquid state. FT-IR, NMR, TGA, DSC, PXRD and FESEM techniques were used to investigate the inclusion behavior in solid-state, meanwhile the virtual state studies are done by molecular docking. The solid inclusion complex (GU: ß-CD) was prepared by using the co-precipitation method. The binding constant (K) of (GU: ß-CD) was calculated by using Benesi-Hildebrand. Besides that, the 1:1 stoichiometric ratio of inclusion complex was confirmed by using the Benesi-Hildebrand plot and Job's plot of continuous variation method. The most preferable model of GU: ß-CD that suggested via molecular docking studies was in good agreement with experimental results. The inclusion complex of GU: ß-CD exerted its toxicity effects towards HepG2 cell lines based on the reduced number of cell viability and lowest IC50 value compared to the GU and ß-CD viability.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Guanosina/química , Guanosina/farmacologia , beta-Ciclodextrinas/química , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular
16.
Biochem Biophys Res Commun ; 533(3): 417-423, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32972754

RESUMO

Structural transformation of the canonical right-handed helix, B-DNA, to the non-canonical left-handed helix, Z-DNA, can be induced by the Zα domain of the human RNA editing enzyme ADAR1 (hZαADAR1). To characterize the site-specific preferences of binding and structural changes in DNA containing the 2'-O-methyl guanosine derivative (mG), titration of the imino proton spectra and chemical shift perturbations were performed on hZαADAR1 upon binding to Z-DNA. The structural transition between B-Z conformation as the changing ratio between DNA and protein showed a binding affinity of the modified DNA onto the Z-DNA binding protein similar to wild-type DNA or RNA. The chemical shift perturbation results showed that the overall structure and environment of the modified DNA revealed DNA-like properties rather than RNA-like characteristics. Moreover, we found evidence for two distinct regimes, "Z-DNA Sensing" and "Modification Sensing", based on the site-specific chemical shift perturbation between the DNA (or RNA) binding complex and the modified DNA-hZαADAR1 complex. Thus, we propose that modification of the sugar backbone of DNA with 2'-O-methyl guanosine promotes the changes in the surrounding α3 helical structural segment as well as the non-perturbed feature of the ß-hairpin region.


Assuntos
Adenosina Desaminase/química , DNA de Forma B/química , DNA Forma Z/química , Proteínas de Ligação a RNA/química , Adenosina Desaminase/metabolismo , DNA/química , DNA de Forma B/metabolismo , DNA Forma Z/metabolismo , Guanosina/química , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Proteínas de Ligação a RNA/metabolismo
17.
PLoS One ; 15(8): e0235102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32857764

RESUMO

Inosine is ubiquitous and essential in many biological processes, including RNA-editing. In addition, oxidative stress on RNA has been a topic of increasing interest due, in part, to its potential role in the development/progression of disease. In this work we probed the ability of three reverse transcriptases (RTs) to catalyze the synthesis of cDNA in the presence of RNA templates containing inosine (I), 8-oxo-7,8-dihydroinosine (8oxo-I), guanosine (G), or 8-oxo-7,8-dihydroguanosine (8-oxoG), and explored the impact that these purine derivatives have as a function of position. To this end, we used 29-mers of RNA (as template) containing the modifications at position-18 and reverse transcribed DNA using 17-mers, 18-mers, or 19-mers (as primers). Generally reactivity of the viral RTs, AMV / HIV / MMLV, towards cDNA synthesis was similar for templates containing G or I as well as for those with 8-oxoG or 8-oxoI. Notable differences are: 1) the use of 18-mers of DNA (to explore cDNA synthesis past the lesion/modification) led to inhibition of DNA elongation in cases where a G:dA wobble pair was present, while the presence of I, 8-oxoI, or 8-oxoG led to full synthesis of the corresponding cDNA, with the latter two displaying a more efficient process; 2) HIV RT is more sensitive to modified base pairs in the vicinity of cDNA synthesis; and 3) the presence of a modification two positions away from transcription initiation has an adverse impact on the overall process. Steady-state kinetics were established using AMV RT to determine substrate specificities towards canonical dNTPs (N = G, C, T, A). Overall we found evidence that RNA templates containing inosine are likely to incorporate dC > dT > > dA, where reactivity in the presence of dA was found to be pH dependent (process abolished at pH 7.3); and that the absence of the C2-exocyclic amine, as displayed with templates containing 8-oxoI, leads to increased selectivity towards incorporation of dA over dC. The data will be useful in assessing the impact that the presence of inosine and/or oxidatively generated lesions have on viral processes and adds to previous reports where I codes exclusively like G. Similar results were obtained upon comparison of AMV and MMLV RTs.


Assuntos
Vírus da Mieloblastose Aviária/enzimologia , Transcriptase Reversa do HIV/metabolismo , Vírus da Leucemia Murina de Moloney/enzimologia , DNA Polimerase Dirigida por RNA/metabolismo , Animais , Sequência de Bases , DNA Complementar/biossíntese , DNA Complementar/química , DNA Complementar/genética , Guanosina/análogos & derivados , Guanosina/química , Guanosina/metabolismo , Humanos , Técnicas In Vitro , Inosina/análogos & derivados , Inosina/química , Inosina/metabolismo , Cinética , Camundongos , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Moldes Genéticos
18.
Acta Crystallogr C Struct Chem ; 76(Pt 5): 513-523, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32367834

RESUMO

The positional change of nitrogen-7 of the RNA constituent guanosine to the bridgehead position-5 leads to the base-modified nucleoside 5-aza-7-deazaguanosine. Contrary to guanosine, this molecule cannot form Hoogsteen base pairs and the Watson-Crick proton donor site N3-H becomes a proton-acceptor site. This causes changes in nucleobase recognition in nucleic acids and has been used to construct stable `all-purine' DNA and DNA with silver-mediated base pairs. The present work reports the single-crystal X-ray structure of 7-iodo-5-aza-7-deazaguanosine, C10H12IN5O5 (1). The iodinated nucleoside shows an anti conformation at the glycosylic bond and an N conformation (O4'-endo) for the ribose moiety, with an antiperiplanar orientation of the 5'-hydroxy group. Crystal packing is controlled by interactions between nucleobase and sugar moieties. The 7-iodo substituent forms a contact to oxygen-2' of the ribose moiety. Self-pairing of the nucleobases does not take place. A Hirshfeld surface analysis of 1 highlights the contacts of the nucleobase and sugar moiety (O-H...O and N-H...O). The concept of pK-value differences to evaluate base-pair stability was applied to purine-purine base pairing and stable base pairs were predicted for the construction of `all-purine' RNA. Furthermore, the 7-iodo substituent of 1 was functionalized with benzofuran to detect motional constraints by fluorescence spectroscopy.


Assuntos
DNA/química , Guanosina/análogos & derivados , Ácidos Nucleicos/química , Purinas/química , Ribonucleosídeos/química , Prata/química , Pareamento de Bases , Cristalografia por Raios X , Guanosina/química , Conformação Molecular
19.
Bioorg Med Chem ; 28(13): 115523, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32362385

RESUMO

Eukaryotic translation initiation factor 4E (eIF4E) is overexpressed in many cancers deregulating translational control of the cell cycle. mRNA 5' cap analogs targeting eIF4E are small molecules with the potential to counteract elevated levels of eIF4E in cancer cells. However, the practical utility of typical cap analogs is limited because of their reduced cell membrane permeability. Transforming the active analogs into their pronucleotide derivatives is a promising approach to overcome this obstacle. 7-Benzylguanosine monophosphate (bn7GMP) is a cap analog that has been successfully transformed into a cell-penetrating pronucleotide by conjugation of the phosphate moiety with tryptamine. In this work, we explored whether a similar strategy is applicable to other cap analogs, particularly phosphate-modified 7-methylguanine nucleotides. We report the synthesis of six new tryptamine conjugates containing N7-methylguanosine mono- and diphosphate and their analogs modified with thiophosphate moiety. These new potential pronucleotides and the expected products of their activation were characterized by biophysical and biochemical methods to determine their affinity towards eIF4E, their ability to inhibit translation in vitro, their susceptibility to enzymatic degradation and their turnover in cell extract. The results suggest that compounds containing the thiophosphate moiety may act as pronucleotides that release low but sustainable concentrations of 7-methylguanosine 5'-phosphorothioate (m7GMPS), which is a translation inhibitor with in vitro potency higher than bn7GMP.


Assuntos
Fator de Iniciação 4E em Eucariotos/genética , Guanina/análogos & derivados , Nucleotídeos/química , Fosfatos/química , Triptaminas/química , Endorribonucleases/metabolismo , Variação Genética , Guanina/química , Guanosina/análogos & derivados , Guanosina/química , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Motivos de Nucleotídeos , Nucleotídeos/genética , Biossíntese de Proteínas , Análogos de Capuz de RNA/química , Análogos de Capuz de RNA/genética , RNA Mensageiro/química , RNA Mensageiro/genética
20.
Proc Natl Acad Sci U S A ; 117(17): 9338-9348, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32284409

RESUMO

Oxidation of guanine generates several types of DNA lesions, such as 8-oxoguanine (8OG), 5-guanidinohydantoin (Gh), and spiroiminodihydantoin (Sp). These guanine-derived oxidative DNA lesions interfere with both replication and transcription. However, the molecular mechanism of transcription processing of Gh and Sp remains unknown. In this study, by combining biochemical and structural analysis, we revealed distinct transcriptional processing of these chemically related oxidized lesions: 8OG allows both error-free and error-prone bypass, whereas Gh or Sp causes strong stalling and only allows slow error-prone incorporation of purines. Our structural studies provide snapshots of how polymerase II (Pol II) is stalled by a nonbulky Gh lesion in a stepwise manner, including the initial lesion encounter, ATP binding, ATP incorporation, jammed translocation, and arrested states. We show that while Gh can form hydrogen bonds with adenosine monophosphate (AMP) during incorporation, this base pair hydrogen bonding is not sufficient to hold an ATP substrate in the addition site and is not stable during Pol II translocation after the chemistry step. Intriguingly, we reveal a unique structural reconfiguration of the Gh lesion in which the hydantoin ring rotates ∼90° and is perpendicular to the upstream base pair planes. The perpendicular hydantoin ring of Gh is stabilized by noncanonical lone pair-π and CH-π interactions, as well as hydrogen bonds. As a result, the Gh lesion, as a functional mimic of a 1,2-intrastrand crosslink, occupies canonical -1 and +1 template positions and compromises the loading of the downstream template base. Furthermore, we suggest Gh and Sp lesions are potential targets of transcription-coupled repair.


Assuntos
Guanidinas/química , Guanosina/análogos & derivados , Hidantoínas/química , RNA Polimerase II/metabolismo , Compostos de Espiro/química , Pareamento de Bases , DNA/química , DNA/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Guanidinas/metabolismo , Guanina/metabolismo , Guanosina/química , Guanosina/metabolismo , Hidantoínas/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Purinas/metabolismo , RNA Polimerase II/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Compostos de Espiro/metabolismo , Transcrição Gênica/fisiologia , Ativação Transcricional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA