Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.990
Filtrar
1.
Food Funct ; 15(7): 3411-3419, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38470815

RESUMO

Tetrabromobisphenol A (TBBPA) is a global pollutant. When TBBPA is absorbed by the body through various routes, it can have a wide range of harmful effects on the body. Green tea polyphenols (GTPs) can act as antioxidants, resisting the toxic effects of TBBPA on animals. The effects and mechanisms of GTP and TBBPA on oxidative stress, inflammation and apoptosis in the mouse lung are unknown. Therefore, we established in vivo and in vitro models of TBBPA exposure and GTP antagonism using C57 mice and A549 cells and examined the expression of factors related to oxidative stress, autophagy, inflammation and apoptosis. The results of the study showed that the increase in reactive oxygen species (ROS) levels after TBBPA exposure decreased the expression of autophagy-related factors Beclin1, LC3-II, ATG3, ATG5, ATG7 and ATG12 and increased the expression of p62; oxidative stress inhibits autophagy levels. The increased expression of the pro-inflammatory factors IL-1ß, IL-6 and TNF-α decreased the expression of the anti-inflammatory factor IL-10 and activation of the NF-κB p65/TNF-α pathway. The increased expression of Bax, caspase-3, caspase-7 and caspase-9 and the decreased expression of Bcl-2 activate apoptosis-related pathways. The addition of GTP attenuated oxidative stress levels, restored autophagy inhibition and reduced the inflammation and apoptosis levels. Our results suggest that GTP can attenuate the toxic effects of TBBPA by modulating ROS, reducing oxidative stress levels, increasing autophagy and attenuating inflammation and apoptosis in mouse lung and A549 cells. These results provide fundamental information for exploring the antioxidant mechanism of GTP and further for studying the toxic effects of TBBPA.


Assuntos
Lesão Pulmonar , NF-kappa B , Bifenil Polibromatos , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Estresse Oxidativo , Apoptose , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Polifenóis/farmacologia , Chá , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia
2.
Am J Nephrol ; 55(1): 86-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37734331

RESUMO

INTRODUCTION: Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer. Studies have revealed that DEHP exposure can cause kidney damage. Green tea is among the most popular beverages in China. Green tea polyphenols (GTPs) have been proven to have therapeutic effects on organ damage induced by heavy metal exposure. However, few studies have reported on GTP-relieving DEHP-induced kidney damage. METHODS: C57BL/6J male mice aged 6-8 weeks were treated with distilled water (control group), 1,500 mg/kg/d DEHP + corn oil (model group), 1,500 mg/kg/d DEHP + corn oil + 70 mg/kg GTP (treatment group), corn oil (oil group), and 70 mg/kg GTP (GTP group) by gavage for 8 weeks, respectively. The renal function of mice and renal tissue histopathology of each group were evaluated. The renal tissues of mice in the model, treatment, and control groups were analyzed using high-throughput sequencing. We calculated the differentially expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) using the limma R package, the CIBERSORT algorithm was used to predict immune infiltration, the starBase database was used to screen the miRNA-mRNA regulatory axis, and immunohistochemical analyses were performed to verify protein expression. RESULTS: GTP alleviated the deterioration of renal function, renal inflammation and fibrosis, and mitochondrial and endoplasmic reticulum lesions induced by DEHP in mice. Differential immune infiltrations of plasma, dendritic, T, and B cells were noted between the model and treatment groups. We found that three differentially expressed miRNAs (mmu-miR-383-5p, mmu-miR-152-3p, and mmu-miR-144-3p), three differentially expressed mRNAs (Ddit4, Dusp1, and Snx18), and three differentially expressed proteins (Ddit4, Dusp1, and Snx18) played crucial roles in the miRNA-mRNA-protein regulatory axes when GTPs mitigate DEHP-induced kidney damage in mice. CONCLUSION: GTP can alleviate DEHP-induced kidney damage and regulate immune cell infiltration. We screened four important miRNA-mRNA-protein regulatory axes of GTP, mitigating DEHP-induced kidney damage in mice.


Assuntos
Dietilexilftalato , MicroRNAs , Ácidos Ftálicos , Animais , Camundongos , Masculino , Dietilexilftalato/toxicidade , Óleo de Milho/farmacologia , Camundongos Endogâmicos C57BL , Antioxidantes , Rim , MicroRNAs/genética , MicroRNAs/farmacologia , RNA Mensageiro , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Guanosina Trifosfato/farmacologia
3.
Biol Pharm Bull ; 47(1): 14-22, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37880111

RESUMO

Though the physiological effects of adenosine and adenine nucleotides on purinergic receptors in cancer cells have been well studied, the influence of extracellular guanosine and guanine nucleotides on breast cancer cells remains unclear. Here, we show that extracellular guanosine and guanine nucleotides decrease the viability and proliferation of human breast cancer SKBR-3 cells. Treatment with guanosine or guanine nucleotides increased mitochondrial production of reactive oxygen species (ROS), and modified the cell cycle. Guanosine-induced cell death was suppressed by treatment with adenosine or the equilibrium nucleoside transporter (ENT) 1/2 inhibitor dipyridamole, but was not affected by adenosine receptor agonists or antagonists. These results suggest that guanosine inhibits adenosine uptake through ENT1/2, but does not antagonize adenosine receptors. In contrast, guanosine triphosphate (GTP)-induced cell death was suppressed not only by adenosine and dipyridamole, but also by the A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA), suggesting that GTP-induced cell death is mediated in part by an antagonistic effect on adenosine A1 receptor. Thus, both guanosine and GTP induce apoptosis of breast cancer cells, but via at least partially different mechanisms.


Assuntos
Neoplasias da Mama , Nucleotídeos de Guanina , Humanos , Feminino , Nucleotídeos de Guanina/metabolismo , Nucleotídeos de Guanina/farmacologia , Guanosina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Guanosina Trifosfato/farmacologia , Adenosina/farmacologia , Adenosina/metabolismo , Dipiridamol
4.
J Ethnopharmacol ; 323: 117616, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38142877

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rice (Oryza sativa L.), a staple food for a significant portion of the global population, has been recognized for its traditional medicinal properties for centuries. Rice bran, a by-product of rice milling, contains many bioactive compounds with potential pharmaceutical and therapeutic benefits. In recent years, research has highlighted the anti-inflammatory potential of rice bran, contributed by the bioactive components concentrated in their bran but, unfortunately, entrapped in the bran matrix, with limited bioavailability. Previous studies have reported that the enzymatic treatment of rice bran improves the bran's bioactive compound profile but did not investigate its impact on chronic conditions such as inflammation. AIM OF THE STUDY: This study investigates the anti-inflammatory effects of endo-1,4-ß-xylanase (ERB) and Viscozyme (VRB) treated red rice bran extracts against lipopolysaccharide-induced inflammation in RAW264.7 macrophages in comparison with non-enzyme-treated bran (CRB). Further established their efficacy with known anti-inflammatory compounds-ferulic acid (FA), catechin (CAT), γ-tocopherol (GTP), and γ-oryzanol (ORZ). MATERIALS AND METHODS: The RAW 264.7 macrophage cells were pre-treated with non-toxic concentrations (10-200 µg/mL) of FA, CAT, GTP, ORZ, CRB, ERB, and VRB, followed by inflammatory stimulation with LPS for 24 h. Further, the cell supernatant and pellets were harvested to study the anti-inflammatory effects by evaluating and measuring their efficacy in inhibiting pro-inflammatory cytokines (TNF-α, IL-6, IL-10, IL-1ß) and mediators (ROS, NO, PGE2, COX2, iNOS) through biochemical, ELISA, and mRNA expression studies. RESULTS: The findings showed that both ERB and VRB effectively inhibited the production of pro-inflammatory markers (TNF-α, IL-6) and mediators (ROS, NO, PGE2) by downregulating mRNA expressions of inflammatory genes (TNF-α, IL-1ß, IL-6, IL-10, COX2, iNOS) and demonstrated anti-inflammatory efficacy higher than CRB. On comparison, ERB demonstrated exceptional efficacy by causing a reduction of 48% in ROS, 20% in TNF-α, and 23% in PGE2 at 10 µg/mL, surpassing the anti-inflammatory capabilities of all the bioactive compounds, FA and ORZ, respectively. At the same time, VRB exhibited remarkable efficacy by reducing NO production by 52% at 200 µg/mL and IL-6 by 66% at 10 µg/mL, surpassing FA, CAT, ORZ, and GTP. Further, ERB downregulated the mRNA expression of IL-10 and iNOS, while VRB downregulated TNF-α, IL-1ß, and COX2 expression. Both extracts equally downregulated IL-6 expression at 10 µg/mL, demonstrating the efficacy more remarkable/on par with established anti-inflammatory compounds. CONCLUSIONS: Overall, enzyme-treated rice bran/extract, particularly ERB, possesses excellent anti-inflammatory properties, making them promising agents for alternatives to contemporary nutraceuticals/functional food against inflammatory diseases.


Assuntos
Catequina , Ácidos Cumáricos , Oryza , Fenilpropionatos , Oryza/química , gama-Tocoferol/metabolismo , gama-Tocoferol/farmacologia , gama-Tocoferol/uso terapêutico , Interleucina-10/metabolismo , Catequina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Dinoprostona/metabolismo , Ciclo-Oxigenase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Anti-Inflamatórios/uso terapêutico , Extratos Vegetais/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos , RNA Mensageiro/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Guanosina Trifosfato/uso terapêutico , Lipopolissacarídeos/farmacologia
5.
J Toxicol Environ Health B Crit Rev ; 26(7): 371-386, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37306405

RESUMO

This review is based upon evidence from the published effects of green tea polyphenols (GTP) on genotoxic damage induced by metals with carcinogenic potential. First, the relationship between GTP and antioxidant defense system is provided. Subsequently, the processes involved in the oxidative stress generated by metals and their relationship to oxidative DNA damage is examined. The review demonstrated that GTP generally decrease oxidative DNA damage induced by exposure to metals such as arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), iron (Fe), and lead (Pb). The pathways involved in these effects are related to: (1) direct scavenging of free radicals (FR); (2) activation of mechanisms to repair oxidative DNA damage; (3) regulation of the endogenous antioxidant system; and (4) elimination of cells with genetic damage via apoptosis. The results obtained in the studies reviewed demonstrate potential for possible use of GTP to prevent and treat oxidative damage in populations exposed to metals. Further, GTP may be considered as adjuvants to treatments for metal-associated diseases related to oxidative stress and DNA damage.


Assuntos
Antioxidantes , Estresse Oxidativo , Antioxidantes/farmacologia , Metais/toxicidade , Dano ao DNA , Polifenóis/farmacologia , Chá , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia
6.
Chem Biol Interact ; 381: 110560, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37244398

RESUMO

Mitochondrial ATP-sensitive K+ channels (mitoKATP) have been recently characterized structurally, and possess a protein through which K+ enters mitochondria (MitoKIR), and a regulatory subunit (mitoSUR). The mitoSUR regulatory subunit is an ATP-binding cassette (ABC) protein isoform 8 (ABCB8). Opening these channels is known to be cardioprotective, but the molecular and physiological mechanisms that activate them are not fully known. Here, to better understand the molecular and physiological mechanisms of activators (GTP) and inhibitors (ATP) on the activity of mitoKATP, we exposed isolated mitochondria to both nucleotides. We also used molecular docking directed to the nucleotide-binding domain of human ABCB8/mitoSUR to test a comparative model of ATP and GTP effects. As expected, we find that ATP dose-dependently inhibits mitoKATP activity (IC50 = 21.24 ± 1.4 µM). However, simultaneous exposure of mitochondria to GTP dose-dependently (EC50 = 13.19 ± 1.33 µM) reversed ATP inhibition. Pharmacological and computational studies suggest that GTP reverses ATP activity competitively. Docking directed to the site of crystallized ADP reveals that both nucleotides bind to mitoSUR with high affinity, with their phosphates directed to the Mg2+ ion and the walker A motif of the protein (SGGGKTT). These effects, when combined, result in GTP binding, ATP displacement, mitochondrial ATP-sensitive K+ transport, and lower formation of reactive oxygen species. Overall, our findings demonstrate the basis for ATP and GTP binding in mitoSUR using a combination of biochemical, pharmacological, and computational experiments. Future studies may reveal the extent to which the balance between ATP and GTP actions contributes toward cardioprotection against ischemic events.


Assuntos
Trifosfato de Adenosina , Canais KATP , Humanos , Canais KATP/metabolismo , Simulação de Acoplamento Molecular , Trifosfato de Adenosina/metabolismo , Mitocôndrias , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Potássio/metabolismo
7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(5): 385-390, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37248831

RESUMO

Objective To investigate the effect of Echinococcus granulosus cyst fluid(EgCF) on the cytoskeletal rearrangement and phagocytosis and the migration of macrophages induced by lipopolysaccharide(LPS). Methods Peritoneal macrophages of C57BL/6 mice were isolated and cultured in vitro, and divided into control group and LPS group and LPS combined with EgCF group. After 48 hours of treatment, filamentous actin (F-actin) changes were observed with rhodamine-labelled phalloidin staining and fluorescence microscopy; TranswellTM chamber was used to test cell migration ability and flow cytometry to test cell phagocytosis. After 1 hour of treatment, PI3K and AKT, phosphorylated AKT (p-AKT), Rac1, guanosine triphospho-Rac1 (GTP-Rac1), WASP and Arp2 protein expressions were detected with Western blot analysis. Results Compared with the control group, after LPS stimulation, macrophages were deformed significantly; pseudopodia increased; actin cytoskeleton increased and was more distributed in pseudopodia; the ability of migration and phagocytosis were significantly improved, and the expression of PI3K, p-AKT, GTP-Rac1, WASP and Arp2 proteins significantly increased. EgCF treatment caused cell shrinkage and disappearance of pseudopodia protrusions of LPS-activated cells, and led to the reduced phagocytic and migratory of cells; the protein expression of PI3K, p-AKT, GTP-Rac1, WASP and Arp2 decreased significantly compared with the LPS group. Conclusion LPS induces the migration and enhances phagocytosis of macrophages while EgCF inhibits these effects, which is related to actin cytoskeleton rearrangement.


Assuntos
Echinococcus granulosus , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Echinococcus granulosus/metabolismo , Proteínas Proto-Oncogênicas c-akt , Líquido Cístico/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Fagocitose , Actinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Guanosina Trifosfato/farmacologia
8.
Phys Biol ; 20(3)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36893471

RESUMO

Microtubule (MT) severing enzymes Katanin and Spastin cut the MT into smaller fragments and are being studied extensively usingin-vitroexperiments due to their crucial role in different cancers and neurodevelopmental disorders. It has been reported that the severing enzymes are either involved in increasing or decreasing the tubulin mass. Currently, there are a few analytical and computational models for MT amplification and severing. However, these models do not capture the action of MT severing explicitly, as these are based on partial differential equations in one dimension. On the other hand, a few discrete lattice-based models were used earlier to understand the activity of severing enzymes only on stabilized MTs. Hence, in this study, discrete lattice-based Monte Carlo models that included MT dynamics and severing enzyme activity have been developed to understand the effect of severing enzymes on tubulin mass, MT number, and MT length. It was found that the action of severing enzyme reduces average MT length while increasing their number; however, the total tubulin mass can decrease or increase depending on the concentration of GMPCPP (Guanylyl-(α,ß)-methylene-diphosphonate)-which is a slowly hydrolyzable analogue of GTP (Guanosine triphosphate). Further, relative tubulin mass also depends on the detachment ratio of GTP/GMPCPP and Guanosine diphosphate tubulin dimers and the binding energies of tubulin dimers covered by the severing enzyme.


Assuntos
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/farmacologia , Simulação por Computador , Microtúbulos/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Guanosina Difosfato/metabolismo , Guanosina Difosfato/farmacologia
9.
Front Cell Infect Microbiol ; 13: 1118801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891156

RESUMO

Background: An increase in the demand for a functional cure has accelerated research on new methods of therapy for chronic hepatitis B, which is mainly focused on restoring antiviral immunity for controlling viral infections. Previously, we had described elongation factor Tu GTP-binding domain containing 2 (EFTUD2) as an innate immune regulator and suggested that it might be an antiviral target. Methods: In this study, we generated the Epro-LUC-HepG2 cell model for screening compounds that target EFTUD2. Plerixafor and resatorvid were screened from 261 immunity and inflammation-related compounds due to their ability to highly upregulate EFTUD2. The effects of plerixafor and resatorvid on hepatitis B virus (HBV) were examined in HepAD38 cells and HBV-infected HepG2-NTCP cells. Results: The dual-luciferase reporter assays showed that the EFTUD2 promoter hEFTUD2pro-0.5 kb had the strongest activity. In Epro-LUC-HepG2 cells, plerixafor and resatorvid significantly upregulated the activity of the EFTUD2 promoter and the expression of the gene and protein. In HepAD38 cells and HBV-infected HepG2-NTCP cells, treatment with plerixafor and resatorvid strongly inhibited HBsAg, HBV DNA, HBV RNAs, and cccDNA in a dose-dependent manner. Furthermore, the anti-HBV effect was enhanced when entecavir was administered along with either of the previous two compounds, and the effect could be blocked by knocking down EFTUD2. Conclusion: We established a convenient model for screening compounds that target EFTUD2 and further identified plerixafor and resatorvid as novel HBV inhibitors in vitro. Our findings provided information on the development of a new class of anti-HBV agents that act on host factors rather than viral enzymes.


Assuntos
Hepatite B , Compostos Heterocíclicos , Humanos , Vírus da Hepatite B/fisiologia , Fator Tu de Elongação de Peptídeos/farmacologia , Mobilização de Células-Tronco Hematopoéticas , Compostos Heterocíclicos/farmacologia , Células Hep G2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Guanosina Trifosfato/farmacologia , Guanosina Trifosfato/uso terapêutico , Hepatite B/tratamento farmacológico , Replicação Viral , DNA Viral , Fatores de Alongamento de Peptídeos/farmacologia , Ribonucleoproteína Nuclear Pequena U5/farmacologia
10.
Anim Biotechnol ; 34(2): 365-374, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34459707

RESUMO

The rapid healing of impaired intestinal surface plays a role in maintaining intestinal homeostasis. This study investigated the effect of calcium-sensing receptor (CaSR) on the migration and proliferation of intestinal porcine epithelial cells (IPEC-J2). Results showed that cell migration area and width were increased by R568 (CaSR activator) and decreased by NPS2143 (CaSR inhibitor). The protein level of GTP-rac1 and the phosphorylation of phospholipase C gamma 1 (PLCγ1) were increased by 2 µM R568. Furthermore, R568 + 120 µM NSC23766 (Rac1 inhibitor) and R568 + 1 µM U73122 (PLCγ1 inhibitor) decreased the protein level of GTP-rac1 and the phosphorylated PLCγ1, respectively, and both inhibited cell migration compared with R568. In addition, spermine increased the protein expression levels of CaSR and the levels of GTP-rac1 and the phosphorylated PLCγ1 and thereby promoted the migration of IPEC-J2 cells. Moreover, R568 improved the proliferation of the IPEC-J2 cells. Spermine increased cell proliferation, but NPS2143 incubated with spermine decreased cell proliferation compared with the spermine group. This study suggests that CaSR activation increased cell migration by activating Rac1 and PLCγ1 signaling and improved cell proliferation, and both effects were regulated by spermine by activating CaSR.


Assuntos
Receptores de Detecção de Cálcio , Espermina , Suínos , Animais , Espermina/metabolismo , Espermina/farmacologia , Proliferação de Células , Células Epiteliais/metabolismo , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia
11.
Curr Med Sci ; 42(5): 981-990, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35896932

RESUMO

OBJECTIVE: Epidemiology studies indicate that green tea polyphenols (GTP) perform a protective effect on cardiovascular diseases, but the underlying mechanisms are complex. The present study aimed to investigate the effect of GTP on high-fat diets (HFD) induced-early vascular aging. METHODS: Six-week young adult Wistar rats were fed with standard chow or HFD in the presence and absence of GTP (200 mg/kg body weight) for 18 weeks. In vitro experiment, human umbilical vascular endothelial cells (HUVECs) were treated with palmitic acid (PA) and GTP. RESULTS: The results showed that GTP alleviated the disorganized arterial wall and the increased intima-media thickness induced by HFD. In addition, the vascular oxidative injury was suppressed following GTP treatment. Furthermore, GTP elevated the ratio of LC3-II/LC3-I and suppressed expression of p62/SQSTM1, and restored SIRT3 expression in the aorta of HFD rats. Consistently, in cultured HUVECs, GTP inhibited cell senescence indicated by SA-ß-gal and promoted endothelial autophagy compared with the PA treatment group. The activity of SIRT3 was specifically inhibited by 3-TYP, and the protective effect of GTP was consequently abolished. CONCLUSION: The findings indicated that GTP protected against early vascular senescence in young HFD rats via ameliorating oxidative injury and promoting autophagy which was partially regulated by the SIRT3 pathway.


Assuntos
Dieta Hiperlipídica , Sirtuína 3 , Animais , Ratos , Envelhecimento , Antioxidantes/farmacologia , Autofagia , Espessura Intima-Media Carotídea , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais/metabolismo , Guanosina Trifosfato/farmacologia , Ácido Palmítico/farmacologia , Polifenóis/farmacologia , Ratos Wistar , Proteína Sequestossoma-1/metabolismo , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Chá/metabolismo
12.
Nutr Cancer ; 74(10): 3769-3778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770917

RESUMO

Infection with human papillomavirus (HPV) is relatively common and certain high-risk HPV strains can induce epithelial dysplasia, increasing the risk of cervical cancer. Green tea polyphenol (GTP) preparations exhibit diverse anti-inflammatory, antioxidative, and antitumor properties In Vitro and In Vivo. Topical GTP application has been recommended as a treatment for genital warts, but the effect of GTP treatment on HPV infection and HPV-associated cancer remains to be established. The present study aimed to explore the mechanism by which GTP affected HPV type 16 (HPV-16)-positive immortalized human cervical epithelial cells. Survival, apoptosis, and autophagocytosis of these cells following GTP treatment was assessed using CCK-8 assay, flow cytometry, and monodansylcadaverine (MDC) staining. These cells were further transfected with an shRNA specific for Nrf2 to generate stable Nrf2-knockdown cells. The levels of Caspase-3, Bcl-2, Bax, P53, Rb, HPV-16 E6, HPV-16 E7, P62, Beclin1 and LC3B were determined via Western blotting. These analyses revealed that GTP treatment induced autophagy and apoptosis in HPV-16-positive cells, while Nrf2 gene knockdown reversed GTP-induced autophagic and apoptotic effects. Together, these results suggested that GTP could alleviate HPV infection and HPV-associated precancerous lesions In Vitro by regulating the Nrf2 pathway, highlighting the therapeutic potential of GTP in treating HPV infection.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Apoptose , Autofagia , Células Epiteliais/metabolismo , Feminino , Guanosina Trifosfato/farmacologia , Guanosina Trifosfato/uso terapêutico , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/genética , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proteínas Oncogênicas Virais/farmacologia , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Proteínas E7 de Papillomavirus/farmacologia , Infecções por Papillomavirus/tratamento farmacológico , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Chá , Neoplasias do Colo do Útero/patologia
13.
Curr Microbiol ; 79(5): 147, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397017

RESUMO

Enterococcus faecalis (E. faecalis) belongs to lactic acid bacteria which can be used as a probiotic additive and feed, bringing practical value to the health of humans and animals. The prebiotic function of tea polyphenols lays a foundation for green tea polyphenols (GTP) to repair the adverse changes of E. faecalis under stress conditions. In this study, RNA-sequence analysis was used to explore the protective effect of GTP on E. faecalis under bile salt stress. A total of 50 genes were found to respond to GTP under bile salts stress, containing 18 up-regulated and 32 down-regulated genes. The results showed that multiple genes associated with cell wall and membrane, transmembrane transport, nucleotide transport and metabolism were significantly differentially expressed (P < 0.05), while GTP intervention can partly alleviate the detrimental effects of bile salt on amino acid metabolism and transport. The present study provides the whole genome transcriptomics of E. faecalis under bile salt stress and GTP intervention which help us understand the growth and mechanism of continuous adaptation of E. faecalis under stress conditions.


Assuntos
Enterococcus faecalis , Polifenóis , Animais , Antioxidantes/farmacologia , Bile , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Enterococcus faecalis/genética , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Polifenóis/farmacologia , RNA-Seq , Estresse Salino , Chá/química , Transcriptoma
14.
FEBS J ; 289(16): 4869-4887, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35152545

RESUMO

Tuberculosis claims significantly more than one million lives each year. A feasible way to face the issue of drug resistance is the development of new antibiotics. Bacterial uridine 5'-monophosphate (UMP) kinase is a promising target for novel antibiotic discovery as it is essential for bacterial survival and has no counterpart in human cells. The UMP kinase from M. tuberculosis is also a model of particular interest for allosteric regulation with two effectors, GTP (positive) and UTP (negative). In this study, using X-ray crystallography and cryo-electron microscopy, we report for the first time a detailed description of the negative effector UTP-binding site of a typical Gram-positive behaving UMP kinase. Comparison between this snapshot of low affinity for Mg-ATP with our previous 3D-structure of the GTP-bound complex of high affinity for Mg-ATP led to a better understanding of the cooperative mechanism and the allosteric regulation of UMP kinase. Thermal shift assay and circular dichroism experiments corroborate our model of an inhibition by UTP linked to higher flexibility of the Mg-ATP-binding domain. These new structural insights provide valuable knowledge for future drug discovery strategies targeting bacterial UMP kinases.


Assuntos
Antibacterianos , Bactérias Gram-Positivas , Trifosfato de Adenosina , Regulação Alostérica , Sequência de Aminoácidos , Antibacterianos/farmacologia , Microscopia Crioeletrônica , Guanosina Trifosfato/farmacologia , Humanos , Núcleosídeo-Fosfato Quinase , Uridina Monofosfato/farmacologia , Uridina Trifosfato/farmacologia
15.
Cell Biochem Biophys ; 79(2): 221-229, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33733369

RESUMO

Defects in inosine monophosphate dehydrogenase-1 (IMPDH1) lead to insufficient biosyntheses of purine nucleotides. In eyes, these defects are believed to cause retinitis pigmentosa (RP). Major retinal isoforms of IMPDH1 are structurally distinct from those in other tissues, by bearing terminal extensions. Using recombinant mouse IMPDH1 (mH1), we evaluated the kinetics and oligomerization states of the retinal isoforms. Moreover, we adopted molecular simulation tools to study the possible effect of terminal tails on the function of major enzyme isoforms with the aim to find structural evidence in favor of contradictory observations on retinal IMPDH1 function. Our findings indicated higher catalytic activity for the major mouse retinal isoform (mH1603) along with lower fibrillation capacity under the influence of ATP. However, higher mass oligomerization products were formed by the mH1 (603) isoform in the presence of the enzyme inhibitors such as GTP and/or MPA. Collectively, our findings demonstrate that the structural differences between the retinal isoforms have led to functional variations possibly to justify the retinal cells' requirements.


Assuntos
IMP Desidrogenase/metabolismo , Retina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Humanos , Ligação de Hidrogênio , IMP Desidrogenase/antagonistas & inibidores , IMP Desidrogenase/química , IMP Desidrogenase/genética , Cinética , Camundongos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
16.
Chembiochem ; 20(17): 2227-2231, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-30985989

RESUMO

Although naturally occurring low-molecular-weight compounds have many known roles within the cell, these do not usually involve the direct inhibition of protein-protein interactions. Based on the results of high-throughput screening of a library of bioactive compounds and neurotransmitters, we report here that the four nucleoside triphosphates ATP, GTP, CTP and UTP inhibit the SH2 domain of the tumor-related transcription factor STAT5b. ATP and GTP are the most active nucleoside triphosphates and show specificity for STAT5b over STAT5a, STAT3, STAT6 and the p53-binding protein HDM2. As the inhibition constant of ATP against STAT5b is significantly lower than published values for the intracellular ATP concentration, our data suggest that ATP might inhibit the protein-protein interactions of STAT5b in living cells.


Assuntos
Trifosfato de Adenosina/farmacologia , Fator de Transcrição STAT5/antagonistas & inibidores , Guanosina Trifosfato/farmacologia , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Bibliotecas de Moléculas Pequenas , Domínios de Homologia de src
17.
Elife ; 72018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30015615

RESUMO

For many proteins, aggregation is one part of a structural equilibrium that can occur. Balancing productive aggregation versus pathogenic aggregation that leads to toxicity is critical and known to involve adenosine triphosphate (ATP) dependent action of chaperones and disaggregases. Recently a second activity of ATP was identified, that of a hydrotrope which, independent of hydrolysis, was sufficient to solubilize aggregated proteins in vitro. This novel function of ATP was postulated to help regulate proteostasis in vivo. We tested this hypothesis on aggregates found in Xenopus oocyte nucleoli. Our results indicate that ATP has dual roles in the maintenance of protein solubility. We provide evidence of endogenous hydrotropic action of ATP but show that hydrotropic solubilization of nucleolar aggregates is preceded by a destabilizing event. Destabilization is accomplished through an energy dependent process, reliant upon ATP and one or more soluble nuclear factors, or by disruption of a co-aggregate like RNA.


Assuntos
Trifosfato de Adenosina/metabolismo , Nucléolo Celular/metabolismo , Oócitos/metabolismo , Agregados Proteicos , Xenopus laevis/metabolismo , Adenilil Imidodifosfato/farmacologia , Animais , Nucléolo Celular/efeitos dos fármacos , Difusão , Proteínas de Fluorescência Verde/metabolismo , Guanosina Trifosfato/farmacologia , Hidrólise , Modelos Biológicos , Oócitos/efeitos dos fármacos , Ribonuclease Pancreático/metabolismo , Solubilidade
18.
Z Naturforsch C J Biosci ; 72(11-12): 459-465, 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-28672764

RESUMO

A polypeptide band with an apparent molecular weight of 55,000 was phosphorylated in vitro in whole-cell lysates of Trypanosoma equiperdum. This band corresponds to tubulin as demonstrated by immunoprecipitation of the phosphorylated polypeptide from T. equiperdum extracts when anti-α and anti-ß tubulin monoclonal antibodies were employed. A parasite protein kinase CK2 was in charge of modifying tubulin given that common mammalian CK2 inhibitors such as emodin and GTP, hindered the phosphorylation of tubulin and exogenously added casein. Interestingly, a divalent cation-dependent translocation of the T. equiperdum tubulin and the CK2 responsible for its phosphorylation was noticed, suggesting a direct interaction between these two proteins. Additionally, this fraction of tubulin and its kinase coeluted using separations based on parameters as different as charge (DEAE-Sepharose anion-exchange chromatography) and size (Sephacryl S-300 gel filtration chromatography). Analyses by non-denaturing polyacrylamide gel electrophoresis and immunoblot of the purified and radioactively labeled fraction containing both tubulin and the CK2 enzyme, established the phosphorylation of a single band that was recognized by anti-CK2 α-subunit and anti-tubulin antibodies. All these findings revealed a physical association between a pool of tubulin and a CK2 in T. equiperdum.


Assuntos
Caseína Quinase II/genética , Proteínas de Protozoários/genética , Trypanosoma/genética , Tubulina (Proteína)/genética , Anticorpos Monoclonais/farmacologia , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Emodina/farmacologia , Regulação da Expressão Gênica , Guanosina Trifosfato/farmacologia , Peso Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Eletricidade Estática , Trypanosoma/metabolismo , Tubulina (Proteína)/metabolismo
19.
Reprod Fertil Dev ; 29(4): 768-777, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26748416

RESUMO

The aim of the present study was to clarify the roles of the mammalian target of rapamycin (mTOR) signalling pathway in follicular growth and development of thecal cells. Using in vivo-grown and in vitro-cultured ovaries, histological changes were evaluated using haematoxylin and eosin (HE) staining. Differentially expressed genes (DEGs) from 0 day post partum (d.p.p.) to 8 d.p.p. ovaries were screened by microarray and verified by quantitative real-time polymerase chain reaction. Forty-two DEGs related to cell proliferation and differentiation were screened out, with most DEGs being related to the to mTOR signalling pathway. Then, 3 d.p.p. ovaries were retrieved and used to verify the role of mTOR signalling in follicle and thecal cell development using its activators (Ras homologue enriched in brain (Rheb) and GTP) and inhibitor (rapamycin). The development of follicles and thecal cells was significantly impaired in ovaries cultured in vitro Day 3 to Day 8. In in vitro-cultured ovaries, Rheb and GTP (is 100ngmL-1 Rheb and 500ngmL-1 GTP for 48h) significantly increased follicle diameter, the percentage of primary and secondary follicles and the umber of thecal cells, and upregulated expression of mTOR, phosphorylated eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), eukaryotic initiation factor (eIF) 4F and cytochrome P450, family 17, subfamily A, polypeptide 1 (CYP17A1). Rapamycin (10nM rapamycin for 24h) had opposite effects to those of Rheb and GTP, and partly abrogated (significant) the effects of Rheb and GTP when added to the culture in combination with these drugs. Thus, mTOR signalling plays an important role in follicle growth and thecal cell development.


Assuntos
Fator de Iniciação 4F em Eucariotos/metabolismo , Folículo Ovariano/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Células Tecais/metabolismo , Animais , Feminino , Perfilação da Expressão Gênica , Guanosina Trifosfato/farmacologia , Camundongos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Fosforilação/efeitos dos fármacos , Proteína Enriquecida em Homólogo de Ras do Encéfalo/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Células Tecais/efeitos dos fármacos
20.
Biochemistry ; 55(47): 6568-6576, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27808506

RESUMO

Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of l-glutamate and in animals is highly regulated. GDH in hyperinsulinism/hyperammonemia syndrome patients lacks GTP inhibition, resulting in hypersecretion of insulin upon protein consumption. This suggests insulin secretion could be stimulated with GDH activators. A high-throughput screen yielded one potent activator, N1-[4-(2-aminopyrimidin-4-yl)phenyl]-3-(trifluoromethyl)benzene-1-sulfonamide (75-E10). 75-E10 is ∼1000-fold more efficacious than the synthetic activator, BCH, and is at least as effective as ADP. 75-E10 compound is highly effective at alleviating GTP inhibition and may be binding to the ADP site. Unlike ADP, 75-E10 is activated over a broad range of conditions.


Assuntos
Ativadores de Enzimas/farmacologia , Glutamato Desidrogenase/metabolismo , Ácido Glutâmico/metabolismo , NAD/metabolismo , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Regulação Alostérica/efeitos dos fármacos , Aminoácidos Cíclicos/metabolismo , Aminoácidos Cíclicos/farmacologia , Animais , Ligação Competitiva , Biocatálise/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativadores de Enzimas/metabolismo , Glutamato Desidrogenase/química , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Pirimidinas/metabolismo , Espectrometria de Fluorescência , Sulfonamidas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA