Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Elife ; 102021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33904396

RESUMO

HIV-1 replication commences inside the cone-shaped viral capsid, but timing, localization, and mechanism of uncoating are under debate. We adapted a strategy to visualize individual reverse-transcribed HIV-1 cDNA molecules and their association with viral and cellular proteins using fluorescence and correlative-light-and-electron-microscopy (CLEM). We specifically detected HIV-1 cDNA inside nuclei, but not in the cytoplasm. Nuclear cDNA initially co-localized with a fluorescent integrase fusion (IN-FP) and the viral CA (capsid) protein, but cDNA-punctae separated from IN-FP/CA over time. This phenotype was conserved in primary HIV-1 target cells, with nuclear HIV-1 complexes exhibiting strong CA-signals in all cell types. CLEM revealed cone-shaped HIV-1 capsid-like structures and apparently broken capsid-remnants at the position of IN-FP signals and elongated chromatin-like structures in the position of viral cDNA punctae lacking IN-FP. Our data argue for nuclear uncoating by physical disruption rather than cooperative disassembly of the CA-lattice, followed by physical separation from the pre-integration complex.


When viruses infect human cells, they hijack the cell's machinery to produce the proteins they need to replicate. Retroviruses like HIV-1 do this by entering the nucleus and inserting their genetic information into the genome of the infected cell. This requires HIV-1 to convert its genetic material into DNA, which is then released from the protective shell surrounding it (known as the capsid) via a process called uncoating. The nucleus is enclosed within an envelope containing pores that molecules up to a certain size can pass through. Until recently these pores were thought to be smaller than the viral capsid, which led scientists to believe that the HIV-1 genome must shed this coat before penetrating the nucleus. However, recent studies have found evidence for HIV-1 capsid proteins and capsid structures inside the nucleus of some infected cells. This suggests that the capsid may not be removed before nuclear entry or that it may even play a role in helping the virus get inside the nucleus. To investigate this further, Müller et al. attached fluorescent labels to the newly made DNA of HIV-1 and some viral and cellular proteins. Powerful microscopy tools were then used to monitor the uncoating process in various cells that had been infected with the virus. Müller et al. found large amounts of capsid protein inside the nuclei of all the infected cells studied. During the earlier stages of infection, the capsid proteins were mostly associated with viral DNA and the capsid structure appeared largely intact. At later time points, the capsid structure had been broken down and the viral DNA molecules were gradually separating themselves from these remnants. These findings suggest that the HIV-1 capsid helps the virus get inside the nucleus and may protect its genetic material during conversion into DNA until right before integration into the cell's genome. Further experiments studying this process could lead to new therapeutic approaches that target the capsid as a way to prevent or treat HIV-1.


Assuntos
Núcleo Celular/virologia , Replicação do DNA , DNA Viral/biossíntese , Infecções por HIV/virologia , HIV-1/crescimento & desenvolvimento , Internalização do Vírus , Replicação Viral , Desenvelopamento do Vírus , Linfócitos T CD4-Positivos/ultraestrutura , Linfócitos T CD4-Positivos/virologia , Proteínas do Capsídeo/metabolismo , Núcleo Celular/ultraestrutura , DNA Viral/genética , DNA Viral/ultraestrutura , Células HEK293 , Infecções por HIV/patologia , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , HIV-1/genética , HIV-1/ultraestrutura , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/ultraestrutura , Macrófagos/virologia , Microscopia Eletrônica , Microscopia de Fluorescência , Fatores de Tempo
2.
Viruses ; 14(1)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35062258

RESUMO

Retroviruses have a very complex and tightly controlled life cycle which has been studied intensely for decades. After a virus enters the cell, it reverse-transcribes its genome, which is then integrated into the host genome, and subsequently all structural and regulatory proteins are transcribed and translated. The proteins, along with the viral genome, assemble into a new virion, which buds off the host cell and matures into a newly infectious virion. If any one of these steps are faulty, the virus cannot produce infectious viral progeny. Recent advances in structural and molecular techniques have made it possible to better understand this class of viruses, including details about how they regulate and coordinate the different steps of the virus life cycle. In this review we summarize the molecular analysis of the assembly and maturation steps of the life cycle by providing an overview on structural and biochemical studies to understand these processes. We also outline the differences between various retrovirus families with regards to these processes.


Assuntos
Retroviridae/genética , Retroviridae/fisiologia , Retroviridae/ultraestrutura , Montagem de Vírus/fisiologia , Capsídeo/metabolismo , Microscopia Crioeletrônica , Genoma Viral , HIV-1/genética , HIV-1/fisiologia , HIV-1/ultraestrutura , Humanos , Modelos Moleculares , Vírion/metabolismo
3.
Sci Rep ; 10(1): 22278, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335248

RESUMO

During the first steps of HIV infection the Env subunit gp41 is thought to establish contact between the membranes and to be the main driver of fusion. Here we investigated in liquid crystalline membranes the structure and cholesterol recognition of constructs made of a gp41 external region carrying a cholesterol recognition amino acid consensus (CRAC) motif and a hydrophobic membrane anchoring sequence. CD- und ATR-FTIR spectroscopies indicate that the constructs adopt a high degree of helical secondary structure in membrane environments. Furthermore, 15N and 2H solid-state NMR spectra of gp41 polypeptides reconstituted into uniaxially oriented bilayers agree with the CRAC domain being an extension of the transmembrane helix. Upon addition of cholesterol the CRAC NMR spectra remain largely unaffected when being associated with the native gp41 transmembrane sequence but its topology changes when anchored in the membrane by a hydrophobic model sequence. The 2H solid-state NMR spectra of deuterated cholesterol are indicative of a stronger influence of the model sequence on this lipid when compared to the native gp41 sequence. These observations are suggestive of a strong coupling between the transmembrane and the membrane proximal region of gp41 possibly enforced by oligomerization of the transmembrane helical region.


Assuntos
Colesterol/química , Proteína gp41 do Envelope de HIV/ultraestrutura , Infecções por HIV/genética , HIV-1/ultraestrutura , Sequência de Aminoácidos/genética , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/genética , Infecções por HIV/fisiopatologia , Infecções por HIV/virologia , HIV-1/química , Humanos , Peptídeos/química , Peptídeos/genética , Estrutura Secundária de Proteína
4.
PLoS Pathog ; 16(1): e1008277, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31986188

RESUMO

Retrovirus assembly is driven by the multidomain structural protein Gag. Interactions between the capsid domains (CA) of Gag result in Gag multimerization, leading to an immature virus particle that is formed by a protein lattice based on dimeric, trimeric, and hexameric protein contacts. Among retroviruses the inter- and intra-hexamer contacts differ, especially in the N-terminal sub-domain of CA (CANTD). For HIV-1 the cellular molecule inositol hexakisphosphate (IP6) interacts with and stabilizes the immature hexamer, and is required for production of infectious virus particles. We have used in vitro assembly, cryo-electron tomography and subtomogram averaging, atomistic molecular dynamics simulations and mutational analyses to study the HIV-related lentivirus equine infectious anemia virus (EIAV). In particular, we sought to understand the structural conservation of the immature lentivirus lattice and the role of IP6 in EIAV assembly. Similar to HIV-1, IP6 strongly promoted in vitro assembly of EIAV Gag proteins into virus-like particles (VLPs), which took three morphologically highly distinct forms: narrow tubes, wide tubes, and spheres. Structural characterization of these VLPs to sub-4Å resolution unexpectedly showed that all three morphologies are based on an immature lattice with preserved key structural components, highlighting the structural versatility of CA to form immature assemblies. A direct comparison between EIAV and HIV revealed that both lentiviruses maintain similar immature interfaces, which are established by both conserved and non-conserved residues. In both EIAV and HIV-1, IP6 regulates immature assembly via conserved lysine residues within the CACTD and SP. Lastly, we demonstrate that IP6 stimulates in vitro assembly of immature particles of several other retroviruses in the lentivirus genus, suggesting a conserved role for IP6 in lentiviral assembly.


Assuntos
Anemia Infecciosa Equina/metabolismo , Produtos do Gene gag/química , Produtos do Gene gag/metabolismo , Vírus da Anemia Infecciosa Equina/fisiologia , Ácido Fítico/metabolismo , Vírion/fisiologia , Sequência de Aminoácidos , Animais , Tomografia com Microscopia Eletrônica , Anemia Infecciosa Equina/virologia , Produtos do Gene gag/genética , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , HIV-1/ultraestrutura , Cavalos , Interações Hospedeiro-Patógeno , Vírus da Anemia Infecciosa Equina/química , Vírus da Anemia Infecciosa Equina/genética , Vírus da Anemia Infecciosa Equina/ultraestrutura , Alinhamento de Sequência , Vírion/genética , Vírion/ultraestrutura , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
5.
Sci Rep ; 9(1): 17661, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776383

RESUMO

Human immunodeficiency virus type 1 (HIV-1) acquires its lipid envelope during budding from the plasma membrane of the host cell. Various studies indicated that HIV-1 membranes differ from producer cell plasma membranes, suggesting budding from specialized membrane microdomains. The phosphoinositide PI(4,5)P2 has been of particular interest since PI(4,5)P2 is needed to recruit the viral structural polyprotein Gag to the plasma membrane and thus facilitates viral morphogenesis. While there is evidence for an enrichment of PIP2 in HIV-1, fully quantitative analysis of all phosphoinositides remains technically challenging and therefore has not been reported, yet. Here, we present a comprehensive analysis of the lipid content of HIV-1 and of plasma membranes from infected and non-infected producer cells, resulting in a total of 478 quantified lipid compounds, including molecular species distribution of 25 different lipid classes. Quantitative analyses of phosphoinositides revealed strong enrichment of PIP2, but also of PIP3, in the viral compared to the producer cell plasma membrane. We calculated an average of ca. 8,000 PIP2 molecules per HIV-1 particle, three times more than Gag. We speculate that the high density of PIP2 at the HIV-1 assembly site is mediated by transient interactions with viral Gag polyproteins, facilitating PIP2 concentration in this microdomain. These results are consistent with our previous observation that PIP2 is not only required for recruiting, but also for stably maintaining Gag at the plasma membrane. We believe that this quantitative analysis of the molecular anatomy of the HIV-1 lipid envelope may serve as standard reference for future investigations.


Assuntos
Membrana Celular/química , HIV-1/química , Fosfatidilinositol 4,5-Difosfato/análise , Fosfatidilinositóis/análise , HIV-1/ultraestrutura , Humanos , Lipídeos/análise , Microdomínios da Membrana , Fosfatidilinositóis/metabolismo , Montagem de Vírus , Liberação de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
6.
PLoS Comput Biol ; 15(9): e1007345, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31545786

RESUMO

HIV-1 replicates via a low-fidelity polymerase with a high mutation rate; strong conservation of individual nucleotides is highly indicative of the presence of critical structural or functional properties. Identifying such conservation can reveal novel insights into viral behaviour. We analysed 3651 publicly available sequences for the presence of nucleic acid conservation beyond that required by amino acid constraints, using a novel scale-free method that identifies regions of outlying score together with a codon scoring algorithm. Sequences with outlying score were further analysed using an algorithm for producing local RNA folds whilst accounting for alignment properties. 11 different conserved regions were identified, some corresponding to well-known cis-acting functions of the HIV-1 genome but also others whose conservation has not previously been noted. We identify rational causes for many of these, including cis functions, possible additional reading frame usage, a plausible mechanism by which the central polypurine tract primes second-strand DNA synthesis and a conformational stabilising function of a region at the 5' end of env.


Assuntos
Sequência Conservada/genética , Genoma Viral/genética , HIV-1/genética , Algoritmos , Códon/genética , Biologia Computacional , HIV-1/química , HIV-1/ultraestrutura , Modelos Genéticos , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , RNA Viral/ultraestrutura
7.
Proc Natl Acad Sci U S A ; 115(50): E11751-E11760, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30478053

RESUMO

Retroviruses assemble and bud from infected cells in an immature form and require proteolytic maturation for infectivity. The CA (capsid) domains of the Gag polyproteins assemble a protein lattice as a truncated sphere in the immature virion. Proteolytic cleavage of Gag induces dramatic structural rearrangements; a subset of cleaved CA subsequently assembles into the mature core, whose architecture varies among retroviruses. Murine leukemia virus (MLV) is the prototypical γ-retrovirus and serves as the basis of retroviral vectors, but the structure of the MLV CA layer is unknown. Here we have combined X-ray crystallography with cryoelectron tomography to determine the structures of immature and mature MLV CA layers within authentic viral particles. This reveals the structural changes associated with maturation, and, by comparison with HIV-1, uncovers conserved and variable features. In contrast to HIV-1, most MLV CA is used for assembly of the mature core, which adopts variable, multilayered morphologies and does not form a closed structure. Unlike in HIV-1, there is similarity between protein-protein interfaces in the immature MLV CA layer and those in the mature CA layer, and structural maturation of MLV could be achieved through domain rotations that largely maintain hexameric interactions. Nevertheless, the dramatic architectural change on maturation indicates that extensive disassembly and reassembly are required for mature core growth. The core morphology suggests that wrapping of the genome in CA sheets may be sufficient to protect the MLV ribonucleoprotein during cell entry.


Assuntos
Capsídeo/química , Capsídeo/ultraestrutura , Vírus da Leucemia Murina/química , Vírus da Leucemia Murina/ultraestrutura , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Cristalografia por Raios X , Tomografia com Microscopia Eletrônica , Produtos do Gene gag/química , Produtos do Gene gag/genética , Produtos do Gene gag/ultraestrutura , Células HEK293 , HIV-1/química , HIV-1/genética , HIV-1/ultraestrutura , Humanos , Vírus da Leucemia Murina/genética , Camundongos , Modelos Moleculares , Domínios Proteicos , Estrutura Quaternária de Proteína , Homologia de Sequência de Aminoácidos , Vírion/química , Vírion/genética , Vírion/ultraestrutura
8.
Proc Natl Acad Sci U S A ; 115(45): 11519-11524, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30333189

RESUMO

The host factor protein TRIM5α plays an important role in restricting the host range of HIV-1, interfering with the integrity of the HIV-1 capsid. TRIM5 triggers an antiviral innate immune response by functioning as a capsid pattern recognition receptor, although the precise mechanism by which the restriction is imposed is not completely understood. Here we used an integrated magic-angle spinning nuclear magnetic resonance and molecular dynamics simulations approach to characterize, at atomic resolution, the dynamics of the capsid's hexameric and pentameric building blocks, and the interactions with TRIM5α in the assembled capsid. Our data indicate that assemblies in the presence of the pentameric subunits are more rigid on the microsecond to millisecond timescales than tubes containing only hexamers. This feature may be of key importance for controlling the capsid's morphology and stability. In addition, we found that TRIM5α binding to capsid induces global rigidification and perturbs key intermolecular interfaces essential for higher-order capsid assembly, with structural and dynamic changes occurring throughout the entire CA polypeptide chain in the assembly, rather than being limited to a specific protein-protein interface. Taken together, our results suggest that TRIM5α uses several mechanisms to destabilize the capsid lattice, ultimately inducing its disassembly. Our findings add to a growing body of work indicating that dynamic allostery plays a pivotal role in capsid assembly and HIV-1 infectivity.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , HIV-1/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Capsídeo/química , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , HIV-1/genética , HIV-1/ultraestrutura , Humanos , Macaca mulatta , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ubiquitina-Proteína Ligases
9.
Proc Natl Acad Sci U S A ; 115(40): E9401-E9410, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30217893

RESUMO

HIV-1 maturation occurs via multiple proteolytic cleavages of the Gag polyprotein, causing rearrangement of the virus particle required for infectivity. Cleavage results in beta-hairpin formation at the N terminus of the CA (capsid) protein and loss of a six-helix bundle formed by the C terminus of CA and the neighboring SP1 peptide. How individual cleavages contribute to changes in protein structure and interactions, and how the mature, conical capsid forms, are poorly understood. Here, we employed cryoelectron tomography to determine morphology and high-resolution CA lattice structures for HIV-1 derivatives in which Gag cleavage sites are mutated. These analyses prompt us to revise current models for the crucial maturation switch. Unlike previously proposed, cleavage on either terminus of CA was sufficient, in principle, for lattice maturation, while complete processing was needed for conical capsid formation. We conclude that destabilization of the six-helix bundle, rather than beta-hairpin formation, represents the main determinant of structural maturation.


Assuntos
HIV-1 , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Microscopia Crioeletrônica , Células HEK293 , HIV-1/genética , HIV-1/metabolismo , HIV-1/ultraestrutura , Humanos , Mutação , Domínios Proteicos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
10.
Elife ; 72018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29848441

RESUMO

The HIV capsid is semipermeable and covered in electropositive pores that are essential for viral DNA synthesis and infection. Here, we show that these pores bind the abundant cellular polyanion IP6, transforming viral stability from minutes to hours and allowing newly synthesised DNA to accumulate inside the capsid. An arginine ring within the pore coordinates IP6, which strengthens capsid hexamers by almost 10°C. Single molecule measurements demonstrate that this renders native HIV capsids highly stable and protected from spontaneous collapse. Moreover, encapsidated reverse transcription assays reveal that, once stabilised by IP6, the accumulation of new viral DNA inside the capsid increases >100 fold. Remarkably, isotopic labelling of inositol in virus-producing cells reveals that HIV selectively packages over 300 IP6 molecules per infectious virion. We propose that HIV recruits IP6 to regulate capsid stability and uncoating, analogous to picornavirus pocket factors. HIV-1/IP6/capsid/co-factor/reverse transcription.


Assuntos
Capsídeo/metabolismo , DNA Viral/biossíntese , HIV-1/metabolismo , Polímeros/metabolismo , Trifosfato de Adenosina/metabolismo , Capsídeo/ultraestrutura , Células HEK293 , HIV-1/ultraestrutura , Humanos , Nucleotídeos/metabolismo , Polieletrólitos , Inibidores da Transcriptase Reversa/farmacologia , Transcrição Reversa/efeitos dos fármacos , Transcrição Reversa/genética , Subtilisina/metabolismo , Vírion/efeitos dos fármacos , Vírion/metabolismo , Montagem de Vírus/efeitos dos fármacos
11.
Nat Commun ; 7: 13689, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27958264

RESUMO

HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Processing of Gag in vitro is accurate and efficient and results in both soluble capsid protein and conical or tubular capsid assemblies, seemingly converted from immature Gag particles. Computer simulations further reveal probable assembly pathways of HIV-1 capsid formation. Combining the experimental data and computer simulations, our results suggest a sequential combination of both displacive and disassembly/reassembly processes for HIV-1 maturation.


Assuntos
Proteínas do Capsídeo/metabolismo , HIV-1/fisiologia , Simulação por Computador , Microscopia Crioeletrônica , HIV-1/ultraestrutura , Vírion/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
12.
BMC Biol ; 14: 50, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27338237

RESUMO

BACKGROUND: In HIV-infected macrophages, newly formed progeny virus particles accumulate in intracellular plasma membrane-connected compartments (IPMCs). Although the virus is usually seen in these compartments, it is unclear whether HIV assembly is specifically targeted to IPMCs or whether some viruses may also form at the cell surface but are not detected, as particles budding from the latter site will be released into the medium. RESULTS: To investigate the fidelity of HIV-1 targeting to IPMCs compared to the cell surface directly, we generated mutants defective in recruitment of the Endosomal Sorting Complexes Required for Transport (ESCRT) proteins required for virus scission. For mutants unable to bind the ESCRT-I component Tsg101, HIV release was inhibited and light and electron microscopy revealed that budding was arrested. When expressed in human monocyte-derived macrophages (MDM), these mutants formed budding-arrested, immature particles at their assembly sites, allowing us to capture virtually all of the virus budding events. A detailed morphological analysis of the distribution of the arrested viruses by immunofluorescence staining and confocal microscopy, and by electron microscopy, demonstrated that HIV assembly in MDMs is targeted primarily to IPMCs, with fewer than 5 % of budding events seen at the cell surface. Morphometric analysis of the relative membrane areas at the cell surface and IPMCs confirmed a large enrichment of virus assembly events in IPMCs. Serial block-face scanning electron microscopy of macrophages infected with a budding-defective HIV mutant revealed high-resolution 3D views of the complex organisation of IPMCs, with in excess of 15,000 associated HIV budding sites, and multiple connections between IPMCs and the cell surface. CONCLUSIONS: Using detailed quantitative analysis, we demonstrate that HIV assembly in MDMs is specifically targeted to IPMCs. Furthermore, 3D analysis shows, for the first time, the detailed ultrastructure of an IPMC within a large cell volume, at a resolution that allowed identification of individual virus assembly events, and potential portals through which virus may be released during cell-cell transfer. These studies provide new insights to the organisation of the HIV assembly compartments in macrophages, and show how HIV particles accumulating in these protected sites may function as a virus reservoir.


Assuntos
Compartimento Celular , Membrana Celular/virologia , HIV-1/fisiologia , Espaço Intracelular/metabolismo , Macrófagos/patologia , Macrófagos/virologia , Montagem de Vírus/fisiologia , Microscopia Crioeletrônica , Células HEK293 , HIV-1/ultraestrutura , Humanos , Imageamento Tridimensional , Monócitos/patologia , Mutação/genética , Provírus/fisiologia , Transfecção
13.
Trends Biochem Sci ; 41(5): 410-420, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27039020

RESUMO

Retroviral capsid cores are proteinaceous containers that self-assemble to encase the viral genome and a handful of proteins that promote infection. Their function is to protect and aid in the delivery of viral genes to the nucleus of the host, and, in many cases, infection pathways are influenced by capsid-cellular interactions. From a mathematical perspective, capsid cores are polyhedral cages and, as such, follow well-defined geometric rules. However, marked morphological differences in shapes exist, depending on virus type. Given the specific roles of capsid in the viral life cycle, the availability of detailed molecular structures, particularly at assembly interfaces, opens novel avenues for targeted drug development against these pathogens. Here, we summarize recent advances in the structure and understanding of retroviral capsid, with particular emphasis on assemblies and the capsid cores.


Assuntos
Proteínas do Capsídeo/química , Capsídeo/ultraestrutura , HIV-1/ultraestrutura , Vírus da Leucemia Bovina/ultraestrutura , Vírus do Sarcoma de Rous/ultraestrutura , Vírion/ultraestrutura , Sítios de Ligação , Capsídeo/química , Capsídeo/fisiologia , Proteínas do Capsídeo/metabolismo , Cristalografia por Raios X , HIV-1/química , HIV-1/fisiologia , Vírus da Leucemia Bovina/química , Vírus da Leucemia Bovina/fisiologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Vírus do Sarcoma de Rous/química , Vírus do Sarcoma de Rous/fisiologia , Vírion/química , Vírion/fisiologia , Montagem de Vírus
14.
J Virol ; 90(10): 5205-5209, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26962222

RESUMO

Recent advances in fluorescence microscopy allow three-dimensional analysis of HIV-1 preintegration complexes in the nuclei of infected cells. To extend this investigation to gammaretroviruses, we engineered a fluorescent Moloney murine leukemia virus (MLV) system consisting of MLV-integrase fused to enhanced green fluorescent protein (MLV-IN-EGFP). A comparative analysis of lentiviral (HIV-1) and gammaretroviral (MLV) fluorescent complexes in the nuclei of infected cells revealed their different spatial distributions. This research tool has the potential to achieve new insight into the nuclear biology of these retroviruses.


Assuntos
Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , HIV-1/fisiologia , Vírus da Leucemia Murina de Moloney/fisiologia , Animais , Proteínas de Fluorescência Verde/genética , HIV-1/genética , HIV-1/ultraestrutura , Células HeLa , Humanos , Integrases/genética , Camundongos , Microscopia de Fluorescência , Vírus da Leucemia Murina de Moloney/ultraestrutura , Integração Viral
15.
J Virol ; 90(2): 972-8, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26537676

RESUMO

UNLABELLED: Upon release of HIV-1 particles from the infected cell, the viral protease cleaves the Gag polyprotein at specific sites, triggering maturation. During this process, which is essential for infectivity, the capsid protein (CA) reassembles into a conical core. Maturation inhibitors (MIs) block HIV-1 maturation by interfering with protease-mediated CA-spacer peptide 1 (CA-SP1) processing, concomitantly stabilizing the immature CA-SP1 lattice; virions from MI-treated cells retain an immature-like CA-SP1 lattice, whereas mutational abolition of cleavage at the CA-SP1 site results in virions in which the CA-SP1 lattice converts to a mature-like form. We previously reported that propagation of HIV-1 in the presence of MI PF-46396 selected for assembly-defective, compound-dependent mutants with amino acid substitutions in the major homology region (MHR) of CA. Propagation of these mutants in the absence of PF-46396 resulted in the acquisition of second-site compensatory mutations. These included a Thr-to-Ile substitution at SP1 residue 8 (T8I), which results in impaired CA-SP1 processing. Thus, the T8I mutation phenocopies PF-46396 treatment in terms of its ability to rescue the replication defect imposed by the MHR mutations and to impede CA-SP1 processing. Here, we use cryo-electron tomography to show that, like MIs, the T8I mutation stabilizes the immature-like CA-SP1 lattice. These results have important implications for the mechanism of action of HIV-1 MIs; they also suggest that T8I may provide a valuable tool for structural definition of the CA-SP1 boundary region, which has thus far been refractory to high-resolution analysis, apparently because of conformational flexibility in this region of Gag. IMPORTANCE: HIV-1 maturation involves dissection of the Gag polyprotein by the viral protease and assembly of a conical capsid enclosing the viral ribonucleoprotein. Maturation inhibitors (MIs) prevent the final cleavage step at the site between the capsid protein (CA) and spacer peptide 1 (SP1), apparently by binding at this site and denying the protease access. Additionally, MIs stabilize the immature-like CA-SP1 lattice, preventing release of CA into the soluble pool. We previously found that T8I, a mutation in SP1, rescues a PF-46396-dependent CA mutant and blocks CA-SP1 cleavage. In this study, we imaged T8I virions by cryo-electron tomography and showed that T8I mutants, like MI-treated virions, contain an immature CA-SP1 lattice. These results lay the groundwork needed to understand the structure of the CA-SP1 interface region and further illuminate the mechanism of action of MIs.


Assuntos
Proteína do Núcleo p24 do HIV/metabolismo , HIV-1/fisiologia , Mutação de Sentido Incorreto , Processamento de Proteína Pós-Traducional , Montagem de Vírus , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Proteína do Núcleo p24 do HIV/genética , HIV-1/genética , HIV-1/ultraestrutura , Peptídeos
16.
Sci Rep ; 5: 16833, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26582347

RESUMO

Dendritic cells are among the first cells to encounter sexually acquired human immunodeficiency virus (HIV-1), in the mucosa, and they can transmit HIV-1 to CD4(+) T-cells via an infectious synapse. Recent studies reveal that actin-rich membrane extensions establish direct contact between cells at this synapse and facilitate virus transmission. Genesis of these contacts involves signaling through c-Src and Cdc42, which modulate actin polymerization and filopodia formation via the Arp2/3 complex and Diaphanous 2 (Diaph2). We found that Slit2N, a ligand for the Roundabout (Robo) receptors, blocked HIV-1-induced signaling through Arp2/3 and Diaph2, decreased filopodial extensions on dendritic cells, and inhibited cell-to-cell transmission of HIV-1 in a Robo1-dependent manner. Employing proteomic analysis, we identified Flightless-1 as a novel, Robo1-interacting protein. Treatment with shRNAs reduced levels of Flightless-1 and demonstrated its role in efficient cell-to-cell transfer of HIV-1. These results suggest a novel strategy to limit viral infection in the host by targeting the Slit/Robo pathway with modulation of cytoskeletal elements previously unrecognized in HIV-1 transmission.


Assuntos
Citoesqueleto/metabolismo , Células Dendríticas/virologia , HIV-1/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Proteínas do Tecido Nervoso/farmacologia , Linfócitos T/virologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Proteínas de Transporte/metabolismo , Extensões da Superfície Celular/efeitos dos fármacos , Extensões da Superfície Celular/metabolismo , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/ultraestrutura , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/ultraestrutura , Ativação Enzimática/efeitos dos fármacos , Forminas , Células HEK293 , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/ultraestrutura , Humanos , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteína Proto-Oncogênica c-fli-1/metabolismo , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Receptores Imunológicos/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo , Proteínas Roundabout
17.
J Virol ; 89(20): 10294-302, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26223638

RESUMO

UNLABELLED: The polyprotein Gag is the primary structural component of retroviruses. Gag consists of independently folded domains connected by flexible linkers. Interactions between the conserved capsid (CA) domains of Gag mediate formation of hexameric protein lattices that drive assembly of immature virus particles. Proteolytic cleavage of Gag by the viral protease (PR) is required for maturation of retroviruses from an immature form into an infectious form. Within the assembled Gag lattices of HIV-1 and Mason-Pfizer monkey virus (M-PMV), the C-terminal domain of CA adopts similar quaternary arrangements, while the N-terminal domain of CA is packed in very different manners. Here, we have used cryo-electron tomography and subtomogram averaging to study in vitro-assembled, immature virus-like Rous sarcoma virus (RSV) Gag particles and have determined the structure of CA and the surrounding regions to a resolution of ∼8 Å. We found that the C-terminal domain of RSV CA is arranged similarly to HIV-1 and M-PMV, whereas the N-terminal domain of CA adopts a novel arrangement in which the upstream p10 domain folds back into the CA lattice. In this position the cleavage site between CA and p10 appears to be inaccessible to PR. Below CA, an extended density is consistent with the presence of a six-helix bundle formed by the spacer-peptide region. We have also assessed the affect of lattice assembly on proteolytic processing by exogenous PR. The cleavage between p10 and CA is indeed inhibited in the assembled lattice, a finding consistent with structural regulation of proteolytic maturation. IMPORTANCE: Retroviruses first assemble into immature virus particles, requiring interactions between Gag proteins that form a protein layer under the viral membrane. Subsequently, Gag is cleaved by the viral protease enzyme into separate domains, leading to rearrangement of the virus into its infectious form. It is important to understand how Gag is arranged within immature retroviruses, in order to understand how virus assembly occurs, and how maturation takes place. We used the techniques cryo-electron tomography and subtomogram averaging to obtain a detailed structural picture of the CA domains in immature assembled Rous sarcoma virus Gag particles. We found that part of Gag next to CA, called p10, folds back and interacts with CA when Gag assembles. This arrangement is different from that seen in HIV-1 and Mason-Pfizer monkey virus, illustrating further structural diversity of retroviral structures. The structure provides new information on how the virus assembles and undergoes maturation.


Assuntos
Capsídeo/ultraestrutura , Produtos do Gene gag/química , Vírus do Sarcoma de Rous/ultraestrutura , Capsídeo/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Tomografia com Microscopia Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Produtos do Gene gag/genética , HIV-1/química , HIV-1/ultraestrutura , Vírus dos Macacos de Mason-Pfizer/química , Vírus dos Macacos de Mason-Pfizer/ultraestrutura , Modelos Moleculares , Peptídeo Hidrolases/química , Peptídeo Hidrolases/isolamento & purificação , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Vírus do Sarcoma de Rous/química , Proteínas Virais/química , Proteínas Virais/isolamento & purificação , Montagem de Vírus/fisiologia
18.
J Magn Reson ; 253: 10-22, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25797001

RESUMO

The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.


Assuntos
HIV-1/química , HIV-1/ultraestrutura , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas Virais/química , Proteínas Virais/ultraestrutura , Montagem de Vírus , Imagem Molecular/métodos , Conformação Proteica
19.
Nature ; 517(7535): 505-8, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25363765

RESUMO

Human immunodeficiency virus type 1 (HIV-1) assembly proceeds in two stages. First, the 55 kilodalton viral Gag polyprotein assembles into a hexameric protein lattice at the plasma membrane of the infected cell, inducing budding and release of an immature particle. Second, Gag is cleaved by the viral protease, leading to internal rearrangement of the virus into the mature, infectious form. Immature and mature HIV-1 particles are heterogeneous in size and morphology, preventing high-resolution analysis of their protein arrangement in situ by conventional structural biology methods. Here we apply cryo-electron tomography and sub-tomogram averaging methods to resolve the structure of the capsid lattice within intact immature HIV-1 particles at subnanometre resolution, allowing unambiguous positioning of all α-helices. The resulting model reveals tertiary and quaternary structural interactions that mediate HIV-1 assembly. Strikingly, these interactions differ from those predicted by the current model based on in vitro-assembled arrays of Gag-derived proteins from Mason-Pfizer monkey virus. To validate this difference, we solve the structure of the capsid lattice within intact immature Mason-Pfizer monkey virus particles. Comparison with the immature HIV-1 structure reveals that retroviral capsid proteins, while having conserved tertiary structures, adopt different quaternary arrangements during virus assembly. The approach demonstrated here should be applicable to determine structures of other proteins at subnanometre resolution within heterogeneous environments.


Assuntos
Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , HIV-1/química , HIV-1/ultraestrutura , Vírion/química , Vírion/ultraestrutura , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/ultraestrutura , Células HEK293 , Humanos , Vírus dos Macacos de Mason-Pfizer/química , Vírus dos Macacos de Mason-Pfizer/ultraestrutura , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Montagem de Vírus
20.
J Virol ; 89(2): 1267-77, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25392219

RESUMO

UNLABELLED: To better characterize the assembly of the HIV-1 core, we have used electron cryotomography (ECT) to image infected cells and the viral particles cryopreserved next to them. We observed progressive stages of virus assembly and egress, including flower-like flat Gag lattice assemblies, hemispherical budding profiles, and virus buds linked to the plasma membrane via a thin membrane neck. The population of budded viral particles contains immature, maturation-intermediate, and mature core morphologies. Structural characteristics of the maturation intermediates suggest that the core assembly pathway involves the formation of a CA sheet that associates with the condensed ribonucleoprotein (RNP) complex. Our analysis also reveals a correlation between RNP localization within the viral particle and the formation of conical cores, suggesting that the RNP helps drive conical core assembly. Our findings support an assembly pathway for the HIV-1 core that begins with a small CA sheet that associates with the RNP to form the core base, followed by polymerization of the CA sheet along one side of the conical core toward the tip, and then closure around the body of the cone. IMPORTANCE: During HIV-1 assembly and release, the Gag polyprotein is organized into a signature hexagonal lattice, termed the immature lattice. To become infectious, the newly budded virus must disassemble the immature lattice by proteolyzing Gag and then reassemble the key proteolytic product, the structural protein p24 (CA), into a distinct, mature hexagonal lattice during a process termed maturation. The mature HIV-1 virus contains a conical capsid that encloses the condensed viral genome at its wide base. Mutations or small molecules that interfere with viral maturation also disrupt viral infectivity. Little is known about the assembly pathway that results in the conical core and genome encapsidation. Here, we have used electron cryotomography to structurally characterize HIV-1 particles that are actively maturing. Based on the morphologies of core assembly intermediates, we propose that CA forms a sheet-like structure that associates with the condensed viral genome to produce the mature infectious conical core.


Assuntos
Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , HIV-1/fisiologia , HIV-1/ultraestrutura , Montagem de Vírus , Membrana Celular/virologia , Células Cultivadas , Células Endoteliais/virologia , Humanos , Vírion/ultraestrutura , Liberação de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA