Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 202: 110963, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800234

RESUMO

Harmful Phaeocystis blooms disrupt seawater recreation and pose serious challenges to aquatic animals. The growth performance, phenotypic traits, and antioxidant responses of Brachionus plicatilis Müller to different proportions of Phaeocystis globosa were evaluated. B. plicatilis rotifers were exposed to cultures with Chlorella sp. and P. globosa alone and in mixtures of these two algae with proportions of 25%, 50%, and 75%. The total proportions of the two algae were maintained at 100%. Results showed that P. globosa inhibited the rotifer net reproduction rate, intrinsic growth rate, and finite rate of increase (P < 0.01). It induced the formation of defense phenotypic traits in terms of the increased posterolateral spine length and the reduced body length, swimming speed, and grazing rate of B. plicatilis (P < 0.001). Superoxide dismutase and catalase activities decreased, but the reactive oxygen species levels increased as the proportions of P. globosa increased (P < 0.01). The mixture of 50% Chlorella and 50% Phaeocystis positively affected the glutathione content, glutathione peroxidase activity, and generation time of rotifers (P < 0.01). Although P. globosa released toxicants with harmful effects on the growth performance of B. plicatilis, rotifers changed their antioxidant defense system and formed defense phenotypic traits in response to eutrophic conditions.


Assuntos
Antioxidantes/metabolismo , Haptófitas/crescimento & desenvolvimento , Proliferação Nociva de Algas , Rotíferos/crescimento & desenvolvimento , Animais , Chlorella/crescimento & desenvolvimento , Glutationa/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Rotíferos/metabolismo , Rotíferos/fisiologia , Água do Mar/química , Natação
2.
J Sci Food Agric ; 99(13): 6066-6075, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31228262

RESUMO

BACKGROUND: Isochrysis sp. is a marine microalga, rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The potential use of its biomass as an alternative source of polyunsaturated fatty acids (PUFAs) has not been studied in animal models. Male albino Wistar rats were divided into three groups and treated for 28 days. The rats were fed with (1) standard chow (control group), (2) microalgal biomass rich in EPA and DHA along with standard chow (microalga group), and (3) fish oil that contains equivalent amounts of EPA and DHA along with standard chow (fish oil group). After intervention, biochemical indices, histopathological indices, relative mRNA expression of PUFA genes, antioxidant genes, inflammatory markers, and the fatty acid profile of major tissues were studied. RESULTS: Animals treated with microalgal biomass showed significantly increased serum HDL levels (P < 0.05) and reduced oxidative stress markers with a concomitant decrease in urea and creatinine levels. Oral supplementation of microalgal biomass did not show any toxicity or damage in any major organs. The mRNA expression of PUFA genes was significantly downregulated (P < 0.05) and antioxidant genes were upregulated. Furthermore, the mRNA expression of pro-inflammatory markers was significantly downregulated (P < 0.05) and anti-inflammatory markers were upregulated. Oral supplementation of microalgal biomass improved DHA status in brain and liver. CONCLUSION: The present study demonstrated that Isochrysis sp. can be used as a safe, alternative food supplement for ω-3 fatty acids. © 2019 Society of Chemical Industry.


Assuntos
Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/análogos & derivados , Haptófitas/química , Lipídeos/sangue , Microalgas/química , Animais , Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Insaturados/metabolismo , Expressão Gênica , Haptófitas/crescimento & desenvolvimento , Haptófitas/metabolismo , Fígado/metabolismo , Masculino , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Ratos , Ratos Wistar
3.
Sci Total Environ ; 656: 952-958, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30625681

RESUMO

The present study elucidates the role of natural iron fertilization of the coastal ocean by so-called "blackwater rivers". Areas of marsh, fen, peatland, boreal forest etc. are characterized by organic-rich soils. From those soils, humic substances (humic and fulvic acids) are leached to the aquatic system resulting in river water that is low in pH and dark-brown in color. The point is that "blackwater rivers" tend to be rich in dissolved iron due to the unique chelating properties of humic and fulvic acids which bind Fe(III) and keep it in solution. We performed algal physiological (growth rate) experiments under conditions of iron deficiency with the marine unicellular phytoplankton algae Chlorella salina and Diacronema lutheri in 0.2 µm cut-off filtered mixtures of natural "blackwater river" water and synthetic seawater. Our results demonstrate that the iron naturally present in "blackwater rivers" is readily bioavailable to both marine algal species. Furthermore, the humic and fulvic acids exert an additional stimulatory effect on the marine algae. Both algae thrive much better in the presence of natural humic and fulvic acids as compared to a medium where EDTA is used as an iron-chelating agent. Our results indicate that "blackwater rivers", in sharp contrast to other types of rivers, are excellent sources of bioavailable iron to marine phytoplankton. This natural iron fertilization may give rise to photosynthesis-driven sequestration of CO2 from the atmosphere to the sea, as can be seen from the visualization of CO2 surface concentrations by NASA (NASA GEOS-5 model) which shows the global sources and sinks of CO2 localized in time and space. The results by NASA suggest that strong marine CO2 sinks in coastal waters tend to occur close to "blackwater river" estuaries. It is thus evident that "blackwater rivers" act as important sources of a limiting nutrient (iron) to the ocean.


Assuntos
Substâncias Húmicas , Ferro/química , Microalgas/crescimento & desenvolvimento , Rios/química , Água do Mar/química , Chlorella/efeitos dos fármacos , Chlorella/crescimento & desenvolvimento , Fertilizantes , Haptófitas/efeitos dos fármacos , Haptófitas/crescimento & desenvolvimento , Microalgas/efeitos dos fármacos , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/crescimento & desenvolvimento , Escócia
4.
Photochem Photobiol ; 94(5): 994-1002, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29701244

RESUMO

The physiological performance of calcified and non-calcified cells of Gephyrocapsa oceanica (NIES-1318) and their short-term responses to UV radiation were compared for cultures grown under present-day (LC, 400 µatm) and high pCO2 (HC, 1000 µatm) conditions. Similar growth rates and Fv /Fm values were observed in both types of cell under LC conditions, indicating that the loss of calcification in the non-calcified cells did not lead to a competitive disadvantage under such conditions. Detrimental effects of elevated pCO2 were observed in both cell types, with the growth rate of non-calcified cells decreasing more markedly, which might reflect a negative impact of higher cytoplasmic H+ . When exposed to short-term UV radiation, similar trends in effective quantum yield were observed in both cell types acclimated to LC conditions. Elevated pCO2 and associated seawater chemical changes strongly reduced effective quantum yield in non-calcified cells but no significant influence was observed in calcified cells. Based on these findings and comparisons with previous studies, we suggest that the negative impact of elevated cytoplasmic H+ would exacerbate the detrimental effects of UV radiation while the possession of calcification attenuated this influence.


Assuntos
Calcificação Fisiológica , Dióxido de Carbono/metabolismo , Haptófitas/efeitos da radiação , Raios Ultravioleta , Citoplasma/metabolismo , Haptófitas/crescimento & desenvolvimento , Haptófitas/fisiologia , Prótons , Teoria Quântica , Água do Mar
5.
PLoS One ; 12(7): e0179751, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28692685

RESUMO

Phaeocystis antarctica is an abundant phytoplankton species in the Southern Ocean, where growth is frequently limited by iron and light. Being able to grow under low iron conditions is essential to the species' success, but there have been hints that this ability differs among clones. Here, we compare the growth, cell size and chlorophyll a concentrations of four P. antarctica clones cultured under different iron and light conditions. Iron was provided either as unchelated iron (Fe') or bound to the bacterial siderophore desferrioxamine B, representing, respectively, the most and least bioavailable forms of iron which phytoplankton encounter in the marine environment. The growth rate data demonstrate that the clones vary in their ability to grow using organically bound iron, and that this ability is not related to their ability to grow at low inorganic iron concentrations. These results are consistent at low and high light. Physiologically, only three of the four clones shrink or decrease the concentration of chlorophyll a in response to iron limitation, and only one clone decreases colony formation. Together, our data show that P. antarctica clones 1) respond to the same degree of iron limitation using different acclimation strategies, and 2) vary in their ability to grow under the same external iron and light conditions. This physiological diversity is surprisingly large for isolates of a single phytoplankton species.


Assuntos
Haptófitas/fisiologia , Ferro/farmacologia , Luz , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação , Aclimatação/efeitos dos fármacos , Aclimatação/efeitos da radiação , Clorofila/metabolismo , Clorofila A , Contagem de Colônia Microbiana , Desferroxamina/farmacologia , Ácido Edético/farmacologia , Meio Ambiente , Haptófitas/efeitos dos fármacos , Haptófitas/crescimento & desenvolvimento , Haptófitas/efeitos da radiação , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Especificidade da Espécie
6.
Sci Total Environ ; 577: 94-104, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27810305

RESUMO

A series of monomeric and dimeric FeIII complexes with O,O-; O,N-; O,S-coordination motifs has been prepared and characterized by standard analytical methods in order to elucidate their potential to act as model compounds for aquatic humic acids. Due to the postulated reduction of iron in humic acids and following uptake by microorganisms, the redox behavior of the models was investigated with cyclic voltammetry. Most of the investigated compounds showed iron reduction potentials accessible to biological reducing agents. Additionally, observed reduction processes were predominantly irreversible, suggesting that subsequent reactions can take place after reduction of the iron center. Also the stability of the synthesized complexes in pure water and artificial seawater was monitored from 24h up to 21days by means of UV-Vis spectrometry. Several complexes remained stable even after 21days, showing only partially precipitation but some of them showed changes in UV-Vis spectra already after 24h which were connected to protonation/deprotonation processes as well as redox processes and degradation of the complexes. The ability to act as an iron source for primary producers was tested in algal growth experiments with two marine algae species Chlorella salina and Prymnesium parvum. Some of the compounds showed effects on the algal cultures, which are comparable with natural humic acids and better as for the samples kept under ideal conditions. Those findings help to understand which functional groups of humic acids could be responsible for the reversible iron binding and transport in aquatic humic substances.


Assuntos
Chlorella/crescimento & desenvolvimento , Haptófitas/crescimento & desenvolvimento , Substâncias Húmicas/análise , Compostos de Ferro/química , Ferro , Oxirredução
7.
Environ Res ; 144(Pt A): 43-59, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26555843

RESUMO

Methotrexate (MTX) and tamoxifen (TMX) cancer therapeutic drugs have been detected within the aquatic environment. Nevertheless, MTX and TMX research is essentially bio-medically orientated, with few studies addressing the question of its toxicity in fresh water organisms, and none to its' effect in the marine environment. To the authors' knowledge, Environmental Risk Assessments (ERA) for pharmaceuticals has mainly been designed for freshwater and terrestrial environments (European Medicines Agency-EMEA guideline, 2006). Therefore, the purpose of this research was (1) to assess effect of MTX and TMX in marine organism using the EMEA guideline, (2) to develop an ERA methodology for marine environment, and (3) to evaluate the suitability of including a biomarker approach in Phase III. To reach these aims, a risk assessment of MTX and TMX was performed following EMEA guideline, including a 2-tier approach during Phase III, applying lysosomal membrane stability (LMS) as a screening biomarker in tier-1 and a battery of biochemical biomarkers in tier-2. Results from Phase II indicated that MTX was not toxic for bacteria, microalgae and sea urchin at the concentrations tested, thus no further assessment was required, while TMX indicated a possible risk. Therefore, Phase III was performed for only TMX. Ruditapes philippinarum were exposed during 14 days to TMX (0.1, 1, 10, 50 µg L(-1)). At the end of the experiment, clams exposed to environmental concentration indicated significant changes in LMS compared to the control (p<0.01); thus a second tier was applied. A significant induction of biomarkers (activity of Ethoxyresorufin O-deethylase [EROD], glutathione S-transferase [GST], glutathione peroxidase [GPX], and lipid peroxidation [LPO] levels) was observed in digestive gland tissues of clams compared with control (p<0.01). Finally, this study indicated that MTX was not toxic at an environmental concentration, whilst TMX was potentially toxic for marine biota. This study has shown the necessity to create specific guidelines in order to evaluate effects of pharmaceuticals in marine environment which includes sensitive endpoints. The inadequacy of current EMEA guideline to predict chemotherapy agents toxicity in Phase II was displayed whilst the usefulness of other tests were demonstrated. The 2-tier approach, applied in Phase III, appears to be suitable for an ERA of cancer therapeutic drugs in the marine environment.


Assuntos
Antineoplásicos/toxicidade , Metotrexato/toxicidade , Medição de Risco/métodos , Tamoxifeno/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Antineoplásicos/análise , Biomarcadores/metabolismo , Bivalves/efeitos dos fármacos , Bivalves/genética , Bivalves/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Dano ao DNA , Fertilização/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Haptófitas/efeitos dos fármacos , Haptófitas/crescimento & desenvolvimento , Peroxidação de Lipídeos/efeitos dos fármacos , Luminescência , Lisossomos/metabolismo , Metotrexato/análise , Paracentrotus/efeitos dos fármacos , Paracentrotus/fisiologia , Proteobactérias/efeitos dos fármacos , Proteobactérias/metabolismo , Água do Mar , Tamoxifeno/análise , Poluentes Químicos da Água/análise
8.
Chemosphere ; 145: 416-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26692519

RESUMO

Naphthenic acids (NAs) are among the most toxic organic pollutants present in oil sands process waters (OSPW) and enter marine and freshwater environments through natural and anthropogenic sources. We investigated the effects of the acid extractable organic (AEO) fraction of OSPW and individual surrogate NAs, on maximum photosynthetic efficiency of photosystem II (PSII) (FV/FM) and cell growth in Emiliania huxleyi and Chlorella vulgaris as representative marine and freshwater phytoplankton. Whilst FV/FM in E. huxleyi and C. vulgaris was not inhibited by AEO, exposure to two surrogate NAs: (4'-n-butylphenyl)-4-butanoic acid (n-BPBA) and (4'-tert-butylphenyl)-4-butanoic acid (tert-BPBA), caused complete inhibition of FV/FM in E. huxleyi (≥10 mg L(-1)n-BPBA; ≥50 mg L(-1)tert-BPBA) but not in C. vulgaris. Growth rates and cell abundances in E. huxleyi were also reduced when exposed to ≥10 mg L(-1)n- and tert-BPBA; however, higher concentrations of n- and tert-BPBA (100 mg L(-1)) were required to reduce cell growth in C. vulgaris. AEO at ≥10 mg L(-1) stimulated E. huxleyi growth rate (p ≤ 0.002), yet had no apparent effect on C. vulgaris. In conclusion, E. huxleyi was generally more sensitive to NAs than C. vulgaris. This report provides a better understanding of the physiological responses of phytoplankton to NAs which will enable improved monitoring of NA pollution in aquatic ecosystems in the future.


Assuntos
Ácidos Carboxílicos/toxicidade , Chlorella vulgaris/efeitos dos fármacos , Haptófitas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Proteínas de Algas/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Haptófitas/crescimento & desenvolvimento , Indústria de Petróleo e Gás , Complexo de Proteína do Fotossistema II/metabolismo , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/crescimento & desenvolvimento , Águas Residuárias/toxicidade
9.
BMC Genomics ; 15: 1051, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25467008

RESUMO

BACKGROUND: Global change will affect patterns of nutrient upwelling in marine environments, potentially becoming even stricter regulators of phytoplankton primary productivity. To better understand phytoplankton nutrient utilization on the subcellular basis, we assessed the transcriptomic responses of the life-cycle stages of the biogeochemically important microalgae Emiliania huxleyi to nitrogen-limitation. Cells grown in batch cultures were harvested at 'early' and 'full' nitrogen-limitation and were compared with non-limited cells. We applied microarray-based transcriptome profilings, covering ~10.000 known E. huxleyi gene models, and screened for expression patterns that indicate the subcellular responses. RESULTS: The diploid life-cycle stage scavenges nitrogen from external organic sources and -like diatoms- uses the ornithine-urea cycle to rapidly turn over cellular nitrogen. The haploid stage reacts similarly, although nitrogen scavenging is less pronounced and lipid oxidation is more prominent. Generally, polyamines and proline appear to constitute major organic pools that back up cellular nitrogen. Both stages induce a malate:quinone-oxidoreductase that efficiently feeds electrons into the respiratory chain and drives ATP generation with reduced respiratory carbon throughput. CONCLUSIONS: The use of the ornithine-urea cycle to budget the cellular nitrogen in situations of limitation resembles the responses observed earlier in diatoms. This suggests that underlying biochemical mechanisms are conserved among distant clades of marine phototrophic protists. The ornithine-urea cycle and proline oxidation appear to constitute a sensory-regulatory system that monitors and controls cellular nitrogen budgets under limitation. The similarity between the responses of the life-cycle stages, despite the usage of different genes, also indicates a strong functional consistency in the responses to nitrogen-limitation that appears to be owed to biochemical requirements. The malate:quinone-oxidoreductase is a genomic feature that appears to be absent from diatom genomes, and it is likely to strongly contribute to the uniquely high endurance of E. huxleyi under nutrient limitation.


Assuntos
Trifosfato de Adenosina/biossíntese , Metabolismo Energético , Haptófitas/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Diploide , Transporte de Elétrons , Perfilação da Expressão Gênica , Haploidia , Haptófitas/genética , Haptófitas/crescimento & desenvolvimento , Redes e Vias Metabólicas , Fotossíntese , Biossíntese de Proteínas , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA