Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38338436

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disorder of the elderly for which there is no cure or disease-modifying therapy. Mitochondrial dysfunction and oxidative stress play a central role in dopaminergic neurodegeneration in PD. Therefore, antioxidants are considered a promising neuroprotective approach. In in vivo activity studies, 6-OHDA-induced oxidative stress in SH-SY5Y cells was established as a model of PD for cellular experiments. IIAVE (Ile-Ile-Ala-Val-Glu) was derived from Isochrysis zhanjiangensis octapeptide (IIAVEAGC), which has a small molecular weight. The structure and antioxidant activity of IIAVE were tested in a previous study and proved to have good antioxidant potential. In this study, the chemical properties of IIAVE were calculated using quantum chemical methods, including frontier molecular orbital (FMO), molecular electrostatic potential (MEP), natural population analysis (NPA), and global reactivity properties. The interaction of IIAVE with Bcl-2 and DJ-1 was investigated using the molecular docking method. The results showed that IIAVE promoted the activation of the Keap1/Nrf2 pathway and up-regulated the expression of the superoxide dismutase 1 (SOD-1) protein by inhibiting the level of reactive oxygen species (ROS) in cells. In addition, IIAVE inhibits ROS production and prevents 6-OHDA-induced oxidative damage by restoring mitochondrial membrane potential. Furthermore, IIAVE inhibited cell apoptosis by increasing the Bcl-2/Bax ratio and inhibiting the activation of Caspase-9 and Caspase-3. Thus, IIAVE may become a potential drug for the treatment and prevention of PD.


Assuntos
Haptófitas , Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Idoso , Neuroproteção , Espécies Reativas de Oxigênio/metabolismo , Oxidopamina/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Haptófitas/metabolismo , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular Tumoral , Apoptose , Antioxidantes/farmacologia , Doença de Parkinson/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
2.
J Sci Food Agric ; 104(7): 4354-4362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38318717

RESUMO

BACKGROUND: Alcoholic liver disease (ALD) is responsible for 3.3 million deaths per annum. Efficacious therapeutic modalities or drug treatments for ALD have not yet been found, so it is urgent to seek new agents for preventing ALD and its related disease. Many experiments have indicated that modulating the gut microbiota and regulating the toll-like receptor 4 (TLR4)/nuclear transcription factor-κB (NF-κB) inflammatory pathway can provide a new target for prevention and treatment of ALD. Marine microalgae have their natural metabolic pathways to synthesize various of bioactive compounds as promising candidates for hepatoprotection. In this study, we investigated ethanol extracts from Isochrysis zhanjiangensis (EEIZ) to evaluate their ability to alleviate acute alcoholic liver injury, regulate TLR4/NF-κB inflammatory pathway and modulate intestinal bacteria dysbiosis in mice for ALD treatment. RESULTS: In the acute ALD mouse model, EEIZ reduced levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, triacylglyceride, total cholesterol and low-density lipoprotein, while increasing the level of high-density lipoprotein. Besides, TLR4, myeloid differentiation factor 88, NF-κB and tumor necrosis factor-α expression levels in liver tissue were effectively downregulated by EEIZ. Furthermore, treatment with EEIZ enhanced intestinal homeostasis and significantly alleviated the damage caused by alcohol. CONCLUSION: EEIZ showed effective hepatoprotective activity against alcohol-induced acute liver injury in mice as it could alleviate hepatocyte damage, suppress the TLR4/NF-κB inflammatory pathway and regulate the intestinal flora structure. EEIZ could be a good candidate for preventing acute alcoholic liver injury. © 2024 Society of Chemical Industry.


Assuntos
Haptófitas , Hepatopatias Alcoólicas , Camundongos , Animais , Etanol/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/uso terapêutico , Haptófitas/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Disbiose/tratamento farmacológico , Disbiose/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/etiologia , Bactérias/metabolismo , Camundongos Endogâmicos C57BL
3.
Int Immunopharmacol ; 111: 109149, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36027851

RESUMO

Incorporating microalgae active peptides into functional foods is one of the hottest topics in algae research. Ile-Ile-Ala-Val-Glu-Ala-Gly-Cys (IEC) is a novel octapeptide isolated from the microalgae, Isochrysis Zhanjiangensis that inhibits the vascular injury, angiogenesis and has a protective effect on cardiovascular diseases. In this study, IEC can suppress ROS production and inhibit pro-inflammatory factors through the Nrf2/SOD/HO-1 and NF-κB signaling pathways. Additionally, IEC inhibits angiogenesis by reducing the expression of MMP2 and MMP9 via the PI3K/AKT, NF-κB, and MAPK pathways. Molecular docking also demonstrated that IEC possesses an excellent docking effect with SOD, Bcl-2 and VEGFR-2. In conclusion, this study not only provides a new idea for the prevention of cardiovascular diseases, but also proves the possibility of octapeptide (IEC) in functional food and drugs, and further improves the use value of microalgae (Isochrysis Zhanjiangensis).


Assuntos
Doenças Cardiovasculares , Haptófitas , Microalgas , Lesões do Sistema Vascular , Haptófitas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Microalgas/metabolismo , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Superóxido Dismutase
4.
ISME J ; 16(11): 2457-2466, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35869388

RESUMO

The interactions between Emiliania huxleyi and E. huxleyi virus (EhV) regulate marine carbon and sulfur biogeochemical cycles and play a prominent role in global climate change. As a large DNA virus, EhV has developed a novel "virocell metabolism" model to meet its high metabolic needs. Although it has been widely demonstrated that EhV infection can profoundly rewire lipid metabolism, the epigenetic regulatory mechanisms of lipid metabolism are still obscure. MicroRNAs (miRNAs) can regulate biological pathways by targeting hub genes in the metabolic processes. In this study, the transcriptome, lipidome, and miRNAome were applied to investigate the epigenetic regulation of lipid metabolism in E. huxleyi cells during a detailed time course of viral infection. Combined transcriptomic, lipidomic, and physiological experiments revealed reprogrammed lipid metabolism, along with mitochondrial dysfunction and calcium influx through the cell membrane. A total of 69 host miRNAs (including 1 known miRNA) and 7 viral miRNAs were identified, 27 of which were differentially expressed. Bioinformatic prediction revealed that miRNAs involved in the regulation of lipid metabolism and a dual-luciferase reporter assay suggested that phosphatidylinositol 3-kinase (PI3K) gene might be a target of ehx-miR5. Further qPCR and western blot analysis showed a significant negative correlation between the expression of ehx-miR5 and its target gene PI3K, along with the lower activity of its downstream components (p-Akt, p-TOR, SREBP), indicating that lipid metabolism might be regulated by ehx-miR5 through the PI3K-Akt-TOR signaling pathway. Our findings reveal several novel mechanisms of viral strategies to manipulate host lipid metabolism and provide evidence that ehx-miR5 negatively modulates the expression of PI3K and disturbs lipid metabolism in the interactions between E. huxleyi and EhV.


Assuntos
Haptófitas , MicroRNAs , Vírus , Cálcio/metabolismo , Carbono/metabolismo , Epigênese Genética , Haptófitas/metabolismo , Metabolismo dos Lipídeos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Enxofre/metabolismo , Vírus/metabolismo
5.
J Photochem Photobiol B ; 233: 112481, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35660310

RESUMO

AYAPE (Ala-Tyr-Ala-Pro-Glu) is a pentapeptide isolated from Isochrysis zhanjiangensis, previous studies have proved that this pentapeptide has antioxidant and inflammatory activities. In this study, we determined the anti-skin aging bioactivity of AYAPE with UVB-induced human immortalized keratinocytes (HaCaT) and H2O2-induced human skin fibroblasts (BJ cells) as models. The results showed that AYAPE against UVB-induced photoaging on HaCaT cells via alleviating DNA damage, reducing intracellular reactive oxygen (ROS) levels, down regulating phosphorylation of proteins in MAPK/AP-1 signaling pathways. In addition, AYAPE attenuated senescence related effectors expression in H2O2-induced BJ cells. Furthermore, p53 showed an important role in regulation effect of AYAPE in both two cells, and AYAPE showed a directly combination with p53 by molecular docking. These results demonstrated that AYAPE is potential to against skin aging by decreasing matrix metalloproteinase-1 (MMP-1) production, inhibiting inflammation and apoptosis, and attenuating fibroblast senescence.


Assuntos
Haptófitas , Envelhecimento da Pele , Fibroblastos/metabolismo , Células HaCaT , Haptófitas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Queratinócitos/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta
6.
J Agric Food Chem ; 70(27): 8481-8491, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35770804

RESUMO

Microalgae are important biological sources of marine active peptides and renewable biological resources. Isochrysis zhanjiangensis has been widely used in biological ultrafiltration membranes and aquaculture. However, there are relatively few studies on its component structure and diverse activities. In this study, the mechanism of action of previously isolated pentapeptides (AYP, Ala-Tyr-Ala-Pro-Glu) on inflammation and tumor angiogenesis was evaluated. The results showed that AYP could effectively inhibit the invasion and migration of human umbilical vein endothelial cells (HUVECs) and HT1080 cells by downregulating the expression of MMP-2/-9, independent of cytotoxicity. Especially after 100 µM AYP treatment, the ability to inhibit migration was about 67.7% ± 1.9 for HT1080 cells and 63.6% ± 1.3 for HUVECs, respectively. In addition, the activity of iNOS and COX-2 was decreased by inhibiting the oversecretion of VEGF in HT1080 cells induced by CoCl2 and the activation of VEGFR-2 in HUVECs and by regulating PI3K/AKT and Ras/MAPK signaling pathways. It can prevent inflammation and block tumor angiogenesis. Therefore, AYP is expected to become a drug or functional food to prevent and treat tumor angiogenesis.


Assuntos
Haptófitas , Neoplasias , Inibidores da Angiogênese/farmacologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Haptófitas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Plant Foods Hum Nutr ; 77(2): 181-189, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35476173

RESUMO

In the early stage, oxidized low density lipoprotein (ox-LDL) caused atherosclerosis, followed by human umbilical vein endothelial cells (HUVEC) damage, leading to a variety of cardiovascular related diseases. This study investigated the mechanism of nonapeptide (EMFGTSSET, ETT) isolated from in vitro gastrointestinal digestion of Isochrysis zhanjiang on endothelial cell inflammation and apoptosis induced by ox-LDL in atherosclerosis. At the cellular level, the results shown that ETT inhibited the up-regulation of oxidized low-density lipoprotein receptor-1 (LOX-1) induced by ox-LDL. Furthermore, ETT inhibited the fluorescence intensity of ROS, inflammatory factors (interleukin-6, interleukin-1ß, and tumor necrosis factor-α) and the expression of cell adhesion molecules (vascular cell adhesion protein 1 and intercellular cell adhesion molecule-1). In addition, it also upregulates nuclear red blood cell 2 related factor 2 (Nrf2), heme oxygenase-1 (HO -1), p-Akt, and bcl-2 levels. But down-regulated the expression of p-p65, p-IκB-α, p-p38, p-ERK, p-JNK, bax, and cleaved caspase-9/-3 (c-c-9/-3), thereby inhibited ox-LDL induction inflammation and apoptosis of atherosclerosis. Through molecular docking, it was judged that the stable interaction between ETT and LOX-1 and VCAM-1 was maintained through hydrogen bonding. These results can provide a theoretical basis for ETT as a potential substance for the prevention and treatment of atherosclerosis, and further improve the value of Isochrysis zhanjiangensis.


Assuntos
Aterosclerose , Haptófitas , Microalgas , Apoptose , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Haptófitas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/tratamento farmacológico , Lipoproteínas LDL , Microalgas/metabolismo , Simulação de Acoplamento Molecular , Receptores Depuradores Classe E/metabolismo
8.
Sci Rep ; 12(1): 3127, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210548

RESUMO

Microalgae are natural sources of valuable bioactive compounds, such as polyunsaturated fatty acids (PUFAs), that show antioxidant, anti-inflammatory, anticancer and antimicrobial activities. The marine microalga Isochrysis galbana (I. galbana) is extremely rich in ω3 PUFAs, mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Probiotics are currently suggested as adjuvant therapy in the management of diseases associated with gut dysbiosis. The Lactobacillus reuteri (L. reuteri), one of the most widely used probiotics, has been shown to produce multiple beneficial effects on host health. The present study aimed to present an innovative method for growing the probiotic L. reuteri in the raw seaweed extracts from I. galbana as an alternative to the conventional medium, under conditions of oxygen deprivation (anaerobiosis). As a result, the microalga I. galbana was shown for the first time to be an excellent culture medium for growing L. reuteri. Furthermore, the gas-chromatography mass-spectrometry analysis showed that the microalga-derived ω3 PUFAs were still available after the fermentation by L. reuteri. Accordingly, the fermented compound (FC), obtained from the growth of L. reuteri in I. galbana in anaerobiosis, was able to significantly reduce the adhesiveness and invasiveness of the harmful adherent-invasive Escherichia coli to intestinal epithelial cells, due to a cooperative effect between L. reuteri and microalgae-released ω3 PUFAs. These findings open new perspectives in the use of unicellular microalgae as growth medium for probiotics and in the production of biofunctional compounds.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Haptófitas/microbiologia , Limosilactobacillus reuteri/crescimento & desenvolvimento , Meios de Cultura/química , Ácidos Docosa-Hexaenoicos/química , Ácido Eicosapentaenoico/química , Ácidos Graxos Ômega-3 , Ácidos Graxos Insaturados/química , Fermentação , Haptófitas/metabolismo , Microalgas/química , Probióticos/metabolismo
9.
Environ Microbiol ; 22(9): 3863-3882, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32656913

RESUMO

Ocean acidification (OA), a consequence of anthropogenic carbon dioxide (CO2 ) emissions, strongly impacts marine ecosystems. OA also influences iron (Fe) solubility, affecting biogeochemical and ecological processes. We investigated the interactive effects of CO2 and Fe availability on the metabolome response of a natural phytoplankton community. Using mesocosms we exposed phytoplankton to ambient (390 µatm) or future CO2 levels predicted for the year 2100 (900 µatm), combined with ambient (4.5 nM) or high (12 nM) dissolved iron (dFe). By integrating over the whole phytoplankton community, we assigned functional changes based on altered metabolite concentrations. Our study revealed the complexity of phytoplankton metabolism. Metabolic profiles showed three stages in response to treatments and phytoplankton dynamics. Metabolome changes were related to the plankton group contributing respective metabolites, explaining bloom decline and community succession. CO2 and Fe affected metabolic profiles. Most saccharides, fatty acids, amino acids and many sterols significantly correlated with the high dFe treatment at ambient pCO2 . High CO2 lowered the abundance of many metabolites irrespective of Fe. However, sugar alcohols accumulated, indicating potential stress. We demonstrate that not only altered species composition but also changes in the metabolic landscape affecting the plankton community may change as a consequence of future high-CO2 oceans.


Assuntos
Dióxido de Carbono/metabolismo , Haptófitas/metabolismo , Ferro/metabolismo , Microbiota , Fitoplâncton/metabolismo , Dióxido de Carbono/análise , Concentração de Íons de Hidrogênio , Ferro/química , Metaboloma , Fitoplâncton/classificação , Fitoplâncton/isolamento & purificação , Água do Mar/química , Água do Mar/microbiologia
10.
Curr Microbiol ; 77(10): 2758-2765, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32524275

RESUMO

This study assessed in vitro interaction between Bacillus bacteria and microalgae and their posterior in vivo effect on rearing Kumamoto oyster Crassostrea sikamea. The probiotic strains Bacillus licheniformis (MAt32), B. subtilis (MAt43) and B. subtilis (GAtB1) were individually inoculated in triplicate into 250 mL flasks containing 1 × 104 colony forming units (CFU) mL-1 of bacteria and 4.5 × 104 cell mL-1 of microalgae (Isochrysis galbana or Chaetoceros calcitrans) to evaluate their growth during a 7-day culture. Single cultures of microalgae or bacilli served as control. Additionally, C. sikamea spat was treated for 28 days with four single/combined bacillus treatments in triplicate at a concentration of 1 × 106 CFU mL-1 as follows: (a) control, without treatments; (b) combination of two antibiotics (10 mg L-1); (c) B. licheniformis; (d) B. subtilis; (e) B. subtilis subtilis and (f) mixed bacilli. The results showed a significantly (P < 0.05) increased growth of Bacillus strains co-cultured with microalgae, while the growth of I. galbana co-cultured with bacteria was not reduced significantly (P > 0.05) compared with the control group. C. sikamea spat treated with Bacillus showed significantly (P < 0.05) higher growth and survival than the control group. In this study, C. calcitrans microalgae were susceptible to the presence of probiotic bacteria. Nonetheless, this reduction in microalgal growth observed in vitro increased growth and survival of C. sikamea spat exposed to probiotic bacteria when compared to spat without probiotics.


Assuntos
Bacillus , Crassostrea , Microalgas , Interações Microbianas , Probióticos , Animais , Bacillus/metabolismo , Bacillus subtilis/metabolismo , Crassostrea/crescimento & desenvolvimento , Crassostrea/microbiologia , Haptófitas/metabolismo , Microalgas/metabolismo , Interações Microbianas/fisiologia , Probióticos/metabolismo
11.
ISME J ; 13(11): 2817-2833, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31320727

RESUMO

Phytoplankton and associated microbial communities provide organic carbon to oceanic food webs and drive ecosystem dynamics. However, capturing those dynamics is challenging. Here, an in situ, semi-Lagrangian, robotic sampler profiled pelagic microbes at 4 h intervals over ~2.6 days in North Pacific high-nutrient, low-chlorophyll waters. We report on the community structure and transcriptional dynamics of microbes in an operationally large size class (>5 µm) predominantly populated by dinoflagellates, ciliates, haptophytes, pelagophytes, diatoms, cyanobacteria (chiefly Synechococcus), prasinophytes (chiefly Ostreococcus), fungi, archaea, and proteobacteria. Apart from fungi and archaea, all groups exhibited 24-h periodicity in some transcripts, but larger portions of the transcriptome oscillated in phototrophs. Periodic photosynthesis-related transcripts exhibited a temporal cascade across the morning hours, conserved across diverse phototrophic lineages. Pronounced silica:nitrate drawdown, a high flavodoxin to ferredoxin transcript ratio, and elevated expression of other Fe-stress markers indicated Fe-limitation. Fe-stress markers peaked during a photoperiodically adaptive time window that could modulate phytoplankton response to seasonal Fe-limitation. Remarkably, we observed viruses that infect the majority of abundant taxa, often with total transcriptional activity synchronized with putative hosts. Taken together, these data reveal a microbial plankton community that is shaped by recycled production and tightly controlled by Fe-limitation and viral activity.


Assuntos
Ferro/metabolismo , Microbiota , Plâncton/genética , Plâncton/virologia , California , Cilióforos/genética , Cilióforos/metabolismo , Cilióforos/efeitos da radiação , Cilióforos/virologia , Diatomáceas/genética , Diatomáceas/metabolismo , Diatomáceas/efeitos da radiação , Diatomáceas/virologia , Dinoflagellida/genética , Dinoflagellida/metabolismo , Dinoflagellida/efeitos da radiação , Dinoflagellida/virologia , Cadeia Alimentar , Haptófitas/genética , Haptófitas/metabolismo , Haptófitas/efeitos da radiação , Haptófitas/virologia , Oceanos e Mares , Fotossíntese , Fitoplâncton/genética , Fitoplâncton/metabolismo , Fitoplâncton/efeitos da radiação , Fitoplâncton/virologia , Plâncton/metabolismo , Plâncton/efeitos da radiação , Transcrição Gênica , Fenômenos Fisiológicos Virais , Vírus/genética
12.
J Sci Food Agric ; 99(13): 6066-6075, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31228262

RESUMO

BACKGROUND: Isochrysis sp. is a marine microalga, rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The potential use of its biomass as an alternative source of polyunsaturated fatty acids (PUFAs) has not been studied in animal models. Male albino Wistar rats were divided into three groups and treated for 28 days. The rats were fed with (1) standard chow (control group), (2) microalgal biomass rich in EPA and DHA along with standard chow (microalga group), and (3) fish oil that contains equivalent amounts of EPA and DHA along with standard chow (fish oil group). After intervention, biochemical indices, histopathological indices, relative mRNA expression of PUFA genes, antioxidant genes, inflammatory markers, and the fatty acid profile of major tissues were studied. RESULTS: Animals treated with microalgal biomass showed significantly increased serum HDL levels (P < 0.05) and reduced oxidative stress markers with a concomitant decrease in urea and creatinine levels. Oral supplementation of microalgal biomass did not show any toxicity or damage in any major organs. The mRNA expression of PUFA genes was significantly downregulated (P < 0.05) and antioxidant genes were upregulated. Furthermore, the mRNA expression of pro-inflammatory markers was significantly downregulated (P < 0.05) and anti-inflammatory markers were upregulated. Oral supplementation of microalgal biomass improved DHA status in brain and liver. CONCLUSION: The present study demonstrated that Isochrysis sp. can be used as a safe, alternative food supplement for ω-3 fatty acids. © 2019 Society of Chemical Industry.


Assuntos
Antioxidantes/metabolismo , Suplementos Nutricionais/análise , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/análogos & derivados , Haptófitas/química , Lipídeos/sangue , Microalgas/química , Animais , Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Insaturados/metabolismo , Expressão Gênica , Haptófitas/crescimento & desenvolvimento , Haptófitas/metabolismo , Fígado/metabolismo , Masculino , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Ratos , Ratos Wistar
13.
Environ Pollut ; 246: 535-543, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30590323

RESUMO

Most coastal waters are at risk of heavy metal pollution, and the biomass of primary producer phytoplankton always fluctuates, which usually causes zooplankton to be exposed in different concentrations of food and heavy metal. Phytoplankton abundance and heavy metal may interact on zooplankton. Therefore, to assess the definite interactive way, in this study we investigated the combined effects of different cadmium (Cd) levels and Phaeocystis globosa concentrations on some key life-history traits of the rotifer Brachionus plicatilis. Results showed that the Cd level and P. globosa concentration had a significant interaction on the key life-history parameters of the rotifer. Mid-level algal concentrations (5-36 × 104 cells mL-1) had an apparent effect on brood production and the number of rotifers producing offspring at high Cd level. The time to first reproduction exponentially decreased with increasing P. globosa concentrations under any Cd levels and then subsequently reached a constant value. With increasing P. globosa concentration, the total number of offspring exponentially increased and then reached the asymptotic value; the survival time under any Cd levels exponentially decreased with the increasing P. globosa concentration and subsequently tended to be a constant value. Without Cd, the low P. globosa concentration only decreased the reproduction of rotifers. However, the extreme low P. globosa concentration (1-3 × 104 cells mL-1) under higher Cd level (0.0354 mM) completely inhibited the reproduction and also shorten the survival time. Higher Cd level decreased the asymptotic total offspring per rotifer and survival time. High concentration of P. globosa can reduce the sensitivity of rotifer to heavy metal. However, the negative effects could not be eliminated completely by the increasing P. globosa concentration. The findings indicated that ecotoxicological studies on the toxicity of heavy metal need to consider the effects of food concentrations, which contributes to understanding the diverse tolerance of zooplankton to heavy metals.


Assuntos
Cádmio/toxicidade , Haptófitas/metabolismo , Características de História de Vida , Metais Pesados/toxicidade , Rotíferos/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Animais , Haptófitas/citologia , Fitoplâncton/metabolismo , Reprodução/efeitos dos fármacos , Rotíferos/efeitos dos fármacos , Zooplâncton/metabolismo
14.
Proc Natl Acad Sci U S A ; 115(43): 11000-11005, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30287487

RESUMO

Calcium storage organelles are common to all eukaryotic organisms and play a pivotal role in calcium signaling and cellular calcium homeostasis. In most organelles, the intraorganellar calcium concentrations rarely exceed micromolar levels. Acidic organelles called acidocalcisomes, which concentrate calcium into dense phases together with polyphosphates, are an exception. These organelles have been identified in diverse organisms, but, to date, only in cells that do not form calcium biominerals. Recently, a compartment storing molar levels of calcium together with phosphorous was discovered in an intracellularly calcifying alga, the coccolithophore Emiliania huxleyi, raising a possible connection between calcium storage organelles and calcite biomineralization. Here we used cryoimaging and cryospectroscopy techniques to investigate the anatomy and chemical composition of calcium storage organelles in their native state and at nanometer-scale resolution. We show that the dense calcium phase inside the calcium storage compartment of the calcifying coccolithophore Pleurochrysis carterae and the calcium phase stored in acidocalcisomes of the noncalcifying alga Chlamydomonas reinhardtii have common features. Our observations suggest that this strategy for concentrating calcium is a widespread trait and has been adapted for coccolith formation. The link we describe between acidocalcisomal calcium storage and calcium storage in coccolithophores implies that our physiological and molecular genetic understanding of acidocalcisomes could have relevance to the calcium pathway underlying coccolithophore calcification, offering a fresh entry point for mechanistic investigations on the adaptability of this process to changing oceanic conditions.


Assuntos
Calcificação Fisiológica/fisiologia , Cálcio/metabolismo , Microalgas/metabolismo , Organelas/metabolismo , Ácidos/metabolismo , Carbonato de Cálcio/metabolismo , Chlamydomonas reinhardtii/metabolismo , Haptófitas/metabolismo , Homeostase/fisiologia , Minerais/metabolismo , Oceanos e Mares , Fósforo/metabolismo , Polifosfatos/metabolismo
15.
Mol Biol Rep ; 45(4): 571-579, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29808356

RESUMO

A benthic diatom, Nitzschia navis-varingica was found for the first time in the Mediterranean Sea. Effects of this diatom species together with the haptophyte Chrysochromulina alifera and the dinoflagellate Heterocapsa pygmaea isolated from the northeastern Mediterranean Sea coast on prostate, breast cancer and fibroblast cell lines were investigated. Algal extracts did not exert any toxic effect on these cell lines and it had growth stimulatory impact on the cells without discrimination of cell type. Our results suggest potential use of these algal extracts in tissue repair and cell growth boosting additive in the diet of humans as well as animals. Moreover, these algal extracts have potential to be used as natural resource in the skin vitalizing creams of cosmetics industry and as wound healing agents in the atopic drugs.


Assuntos
Linhagem Celular Tumoral/efeitos dos fármacos , Diatomáceas/metabolismo , Animais , Dinoflagellida/metabolismo , Substâncias de Crescimento/metabolismo , Haptófitas/metabolismo , Humanos , Mar Mediterrâneo , Fitoplâncton/metabolismo
16.
Sci Rep ; 6: 20081, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26847810

RESUMO

Algicidal microbes could effectively remove the harmful algae from the waters. In this study, we were concerned with the ecological influence of an algicide extracted from Streptomyces alboflavus RPS, which could completely lyse the Phaeocystis globosa cells within two days. In microcosms, 4 µg/mL of the microbial algicide could efficiently remove P. globosa cells without suppressing other aquatic organisms. Bioluminescent assays confirmed that the toxicity of microbial algicide at this concentration was negligible. Interestingly, the toxicity of P. globosa exudates was also significantly reduced after being treated with the algicide. Further experiments revealed that the microbial algicide could instantly increase the permeability of the plasma membrane and disturb the photosynthetic system, followed by the deformation of organelles, vacuolization and increasing oxidative stress. The pre-incubation of N-acetyl cysteine (NAC) verified that the rapid damages to the plasma membrane and photosynthetic system caused the algal death in the early phase, and the increasing oxidative stress killed the rest. The late accumulation and possible release of CAT also explained the decreasing toxicity of the algal culture. These results indicated that this microbial algicide has great potential in controlling the growth of P. globosa on site.


Assuntos
Anti-Infecciosos/farmacologia , Haptófitas/efeitos dos fármacos , Streptomyces/metabolismo , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/metabolismo , Catalase/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Exsudatos e Transudatos/efeitos dos fármacos , Exsudatos e Transudatos/metabolismo , Citometria de Fluxo , Fluorometria , Haptófitas/metabolismo , Haptófitas/ultraestrutura , Proliferação Nociva de Algas/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
17.
Environ Sci Technol ; 49(20): 12145-52, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26420592

RESUMO

Emiliania huxleyi, a ubiquitous marine algae, was cultured under replete and Cu-limiting conditions to investigate Cu uptake strategies involving thiols and associated redox reactions; comparisons to a model diatom, Thalassiosira pseudonana, were also drawn. Cu-limitation increased rates of cell surface reduction of Cu(II) to Cu(I) in E. huxleyi but not in T. pseudonana. Furthermore, Cu-limited E. huxleyi cells took up more Cu when cysteine was present compared to when no ligand was added, although a dependence on cysteine concentration was not observed. In contrast, Cu uptake by replete cells was dependent upon the relative abundance of inorganic species [Cu(I)']. We also show that cysteine can increase the bioavailability of Cu to Cu-limited cells, of both species, through the reductive release of Cu(I) from fairly strong Cu(II) ligands such as EDTA. Finally, support for a mechanism involving uptake of a Cys-Cu complex in E. huxleyi is drawn from the observation that Cu-limitation significantly enhances cysteine uptake by transporters that exhibit Michaelis-Menten kinetics. These Cu uptake strategies help explain the presence and distribution of dissolved thiols in surface seawater and have implications for the biogeochemical cycling of Cu in low Cu environments.


Assuntos
Organismos Aquáticos/metabolismo , Cobre/farmacocinética , Cisteína/metabolismo , Diatomáceas/metabolismo , Haptófitas/metabolismo , Fitoplâncton/metabolismo , Disponibilidade Biológica , Ácido Edético/química , Cinética , Ligantes , Oxirredução , Água do Mar/química
18.
BMC Genomics ; 15: 1051, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25467008

RESUMO

BACKGROUND: Global change will affect patterns of nutrient upwelling in marine environments, potentially becoming even stricter regulators of phytoplankton primary productivity. To better understand phytoplankton nutrient utilization on the subcellular basis, we assessed the transcriptomic responses of the life-cycle stages of the biogeochemically important microalgae Emiliania huxleyi to nitrogen-limitation. Cells grown in batch cultures were harvested at 'early' and 'full' nitrogen-limitation and were compared with non-limited cells. We applied microarray-based transcriptome profilings, covering ~10.000 known E. huxleyi gene models, and screened for expression patterns that indicate the subcellular responses. RESULTS: The diploid life-cycle stage scavenges nitrogen from external organic sources and -like diatoms- uses the ornithine-urea cycle to rapidly turn over cellular nitrogen. The haploid stage reacts similarly, although nitrogen scavenging is less pronounced and lipid oxidation is more prominent. Generally, polyamines and proline appear to constitute major organic pools that back up cellular nitrogen. Both stages induce a malate:quinone-oxidoreductase that efficiently feeds electrons into the respiratory chain and drives ATP generation with reduced respiratory carbon throughput. CONCLUSIONS: The use of the ornithine-urea cycle to budget the cellular nitrogen in situations of limitation resembles the responses observed earlier in diatoms. This suggests that underlying biochemical mechanisms are conserved among distant clades of marine phototrophic protists. The ornithine-urea cycle and proline oxidation appear to constitute a sensory-regulatory system that monitors and controls cellular nitrogen budgets under limitation. The similarity between the responses of the life-cycle stages, despite the usage of different genes, also indicates a strong functional consistency in the responses to nitrogen-limitation that appears to be owed to biochemical requirements. The malate:quinone-oxidoreductase is a genomic feature that appears to be absent from diatom genomes, and it is likely to strongly contribute to the uniquely high endurance of E. huxleyi under nutrient limitation.


Assuntos
Trifosfato de Adenosina/biossíntese , Metabolismo Energético , Haptófitas/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Diploide , Transporte de Elétrons , Perfilação da Expressão Gênica , Haploidia , Haptófitas/genética , Haptófitas/crescimento & desenvolvimento , Redes e Vias Metabólicas , Fotossíntese , Biossíntese de Proteínas , Transcriptoma
19.
Mar Drugs ; 11(11): 4246-66, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24177672

RESUMO

In most microalgal species, triacyglycerols (TAG) contain mostly saturated and monounsaturated fatty acids, rather than PUFA, while PUFA-enriched oil is the form most desirable for dietary intake. The ability of some species to produce LC-PUFA-enriched oil is currently of specific interest. In this work, we investigated the role of sodium bicarbonate availability on lipid accumulation and n-3 LC-PUFA partitioning into TAG during batch cultivation of Pavlova lutheri. Maximum growth and nitrate uptake exhibit an optimum concentration and threshold tolerance to bicarbonate addition (~9 mM) above which both parameters decreased. Nonetheless, the transient highest cellular lipid and TAG contents were obtained at 18 mM bicarbonate, immediately after combined alkaline pH stress and nitrate depletion (day nine), while oil body and TAG accumulation were highly repressed with low carbon supply (2 mM). Despite decreases in the proportions of EPA and DHA, maximum volumetric and cellular EPA and DHA contents were obtained at this stage due to accumulation of TAG containing EPA/DHA. TAG accounted for 74% of the total fatty acid per cell, containing 55% and 67% of the overall cellular EPA and DHA contents, respectively. These results clearly demonstrate that inorganic carbon availability and elevated pH represent two limiting factors for lipid and TAG accumulation, as well as n-3 LC-PUFA partitioning into TAG, under nutrient-depleted P. lutheri cultures.


Assuntos
Carbono/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Óleos de Peixe/biossíntese , Óleos de Peixe/metabolismo , Haptófitas/metabolismo , Lipídeos/biossíntese , Microalgas/metabolismo , Nitrogênio/metabolismo , Triglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Bicarbonato de Sódio/metabolismo
20.
Metallomics ; 4(11): 1160-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23011578

RESUMO

Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies for iron uptake being distinguished: strategy I plants use a mechanism involving soil acidification and induction of Fe(III)-chelate reductase (ferrireductase) and Fe(II) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the coccolithophore Emiliania huxleyi. Short term radio-iron uptake studies indicate that iron is taken up by Emiliania in a time and concentration dependent manner consistent with an active transport process. Based on inhibitor studies it appears that iron is taken up directly as Fe(iii). However if a reductive step is involved the Fe(II) must not be accessible to the external environment. Upon long term exposure to (57)Fe we have been able, using a combination of Mössbauer and XAS spectroscopies, to identify a single metabolite which displays spectral features similar to the phosphorus-rich mineral core of bacterial and plant ferritins.


Assuntos
Haptófitas/química , Haptófitas/metabolismo , Ferro/química , Ferro/metabolismo , Transporte Biológico , Haptófitas/enzimologia , Isótopos de Ferro/química , Isótopos de Ferro/metabolismo , Proteínas de Ligação ao Ferro , Proteínas de Membrana , Oxirredução , Oxirredutases/química , Oxirredutases/metabolismo , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA