Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Cancer Discov ; 14(8): 1369-1371, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39091203

RESUMO

In this issue, Picco and colleagues provide further evidence that WRN inhibitors are synthetically lethal in microsatellite instability-high (MSI-H) cancers and function by blocking the helicase domain of select WRN residues. They demonstrate that WRN inhibitors may be even more effective in a subset of MSI-high tumors with (TA)n repeat expansions, which represents a possible strategy in clinical development. See related article by Picco et al., p. 1457 (1).


Assuntos
Imunoterapia , Instabilidade de Microssatélites , Neoplasias , Helicase da Síndrome de Werner , Humanos , Helicase da Síndrome de Werner/genética , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Imunoterapia/métodos
2.
Nat Commun ; 15(1): 6730, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112443

RESUMO

Whether small nucleolar RNAs (snoRNAs) are involved in the regulation of liver cancer stem cells (CSCs) self-renewal and serve as therapeutic targets remains largely unclear. Here we show that a functional snoRNA (SNORD88B) is robustly expressed in Hepatocellular carcinoma (HCC) tumors and liver CSCs. SNORD88B deficiency abolishes the self-renewal of liver CSCs and hepatocarcinogenesis. Mechanistically, SNORD88B anchors WRN in the nucleolus, promoting XRCC5 interacts with STK4 promoter to suppress its transcription, leading to inactivation of Hippo signaling. Moreover, low expression of STK4 and high expression of XRCC5 are positively correlated with HCC poor prognosis. Additionally, snord88b knockout suppresses mouse liver tumorigenesis. Notably, co-administration of SNORD88B antisense oligonucleotides (ASOs) with MST1 agonist adapalene (ADA) exert synergistic antitumor effects and increase overall murine survival. Our findings delineate that SNORD88B drives self-renewal of liver CSCs and accelerates HCC tumorigenesis via non-canonical mechanism, providing potential targets for liver cancer therapy by eliminating liver CSCs.


Assuntos
Carcinogênese , Carcinoma Hepatocelular , Neoplasias Hepáticas , Células-Tronco Neoplásicas , RNA Nucleolar Pequeno , Animais , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Camundongos , RNA Nucleolar Pequeno/metabolismo , RNA Nucleolar Pequeno/genética , Carcinogênese/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Helicase da Síndrome de Werner/metabolismo , Helicase da Síndrome de Werner/genética , Nucléolo Celular/metabolismo , Linhagem Celular Tumoral , Autorrenovação Celular , Regulação Neoplásica da Expressão Gênica , Masculino , Via de Sinalização Hippo , Oligonucleotídeos Antissenso/farmacologia , Transdução de Sinais
3.
Nat Commun ; 15(1): 6059, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025847

RESUMO

Synthetic lethality provides an attractive strategy for developing targeted cancer therapies. For example, cancer cells with high levels of microsatellite instability (MSI-H) are dependent on the Werner (WRN) helicase for survival. However, the mechanisms that regulate WRN spatiotemporal dynamics remain poorly understood. Here, we used single-molecule tracking (SMT) in combination with a WRN inhibitor to examine WRN dynamics within the nuclei of living cancer cells. WRN inhibition traps the helicase on chromatin, requiring p97/VCP for extraction and proteasomal degradation in a MSI-H dependent manner. Using a phenotypic screen, we identify the PIAS4-RNF4 axis as the pathway responsible for WRN degradation. Finally, we show that co-inhibition of WRN and SUMOylation has an additive toxic effect in MSI-H cells and confirm the in vivo activity of WRN inhibition using an MSI-H mouse xenograft model. This work elucidates a regulatory mechanism for WRN that may facilitate identification of new therapeutic modalities, and highlights the use of SMT as a tool for drug discovery and mechanism-of-action studies.


Assuntos
Cromatina , Proteínas Inibidoras de STAT Ativados , Proteína com Valosina , Helicase da Síndrome de Werner , Helicase da Síndrome de Werner/metabolismo , Helicase da Síndrome de Werner/genética , Humanos , Animais , Cromatina/metabolismo , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Camundongos , Linhagem Celular Tumoral , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Instabilidade de Microssatélites , Proteólise/efeitos dos fármacos , Sumoilação/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino
5.
Cancer Discov ; 14(8): 1457-1475, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-38587317

RESUMO

Microsatellite-unstable (MSI) cancers require WRN helicase to resolve replication stress due to expanded DNA (TA)n dinucleotide repeats. WRN is a promising synthetic lethal target for MSI tumors, and WRN inhibitors are in development. In this study, we used CRISPR-Cas9 base editing to map WRN residues critical for MSI cells, validating the helicase domain as the primary drug target. Fragment-based screening led to the development of potent and highly selective WRN helicase covalent inhibitors. These compounds selectively suppressed MSI model growth in vitro and in vivo by mimicking WRN loss, inducing DNA double-strand breaks at expanded TA repeats and DNA damage. Assessment of biomarkers in preclinical models linked TA-repeat expansions and mismatch repair alterations to compound activity. Efficacy was confirmed in immunotherapy-resistant organoids and patient-derived xenograft models. The discovery of potent, selective covalent WRN inhibitors provides proof of concept for synthetic lethal targeting of WRN in MSI cancer and tools to dissect WRN biology. Significance: We report the discovery and characterization of potent, selective WRN helicase inhibitors for MSI cancer treatment, with biomarker analysis and evaluation of efficacy in vivo and in immunotherapy-refractory preclinical models. These findings pave the way to translate WRN inhibition into MSI cancer therapies and provide tools to investigate WRN biology. See related commentary by Wainberg, p. 1369.


Assuntos
Helicase da Síndrome de Werner , Humanos , Helicase da Síndrome de Werner/genética , Camundongos , Animais , Instabilidade de Microssatélites , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
6.
Nature ; 629(8011): 443-449, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658754

RESUMO

The Werner syndrome RecQ helicase WRN was identified as a synthetic lethal target in cancer cells with microsatellite instability (MSI) by several genetic screens1-6. Despite advances in treatment with immune checkpoint inhibitors7-10, there is an unmet need in the treatment of MSI cancers11-14. Here we report the structural, biochemical, cellular and pharmacological characterization of the clinical-stage WRN helicase inhibitor HRO761, which was identified through an innovative hit-finding and lead-optimization strategy. HRO761 is a potent, selective, allosteric WRN inhibitor that binds at the interface of the D1 and D2 helicase domains, locking WRN in an inactive conformation. Pharmacological inhibition by HRO761 recapitulated the phenotype observed by WRN genetic suppression, leading to DNA damage and inhibition of tumour cell growth selectively in MSI cells in a p53-independent manner. Moreover, HRO761 led to WRN degradation in MSI cells but not in microsatellite-stable cells. Oral treatment with HRO761 resulted in dose-dependent in vivo DNA damage induction and tumour growth inhibition in MSI cell- and patient-derived xenograft models. These findings represent preclinical pharmacological validation of WRN as a therapeutic target in MSI cancers. A clinical trial with HRO761 (NCT05838768) is ongoing to assess the safety, tolerability and preliminary anti-tumour activity in patients with MSI colorectal cancer and other MSI solid tumours.


Assuntos
Antineoplásicos , Descoberta de Drogas , Inibidores Enzimáticos , Instabilidade de Microssatélites , Neoplasias , Mutações Sintéticas Letais , Helicase da Síndrome de Werner , Animais , Feminino , Humanos , Camundongos , Administração Oral , Regulação Alostérica/efeitos dos fármacos , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Dano ao DNA/efeitos dos fármacos , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Domínios Proteicos , Reprodutibilidade dos Testes , Supressão Genética , Mutações Sintéticas Letais/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Helicase da Síndrome de Werner/antagonistas & inibidores , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38491858

RESUMO

Werner syndrome (WS) is a rare genetic disease in humans, caused by mutations in the WRN gene that encodes a protein containing helicase and exonuclease domains. WS is characterized by symptoms of accelerated aging in multiple tissues and organs, involving increased risk of cancer, heart failure, and metabolic dysfunction. These conditions ultimately lead to the premature mortality of patients with WS. In this study, using the null mutant flies (WRNexoΔ) for the gene WRNexo (CG7670), homologous to the exonuclease domain of WRN in humans, we examined how diets affect the lifespan, stress resistance, and sleep/wake patterns of a Drosophila model of WS. We observed that dietary restriction (DR), one of the most robust nongenetic interventions to extend lifespan in animal models, failed to extend the lifespan of WRNexoΔ mutant flies and even had a detrimental effect in females. Interestingly, the mean lifespan of WRNexoΔ mutant flies was not reduced on a protein-rich diet compared to that of wild-type (WT) flies. Compared to WT control flies, the mutant flies also exhibited altered responses to DR in their resistance to starvation and oxidative stress, as well as changes in sleep/wake patterns. These findings show that the WRN protein is necessary for mediating the effects of DR and suggest that the exonuclease domain of WRN plays an important role in metabolism in addition to its primary role in DNA-repair and genome stability.


Assuntos
Restrição Calórica , Modelos Animais de Doenças , Proteínas de Drosophila , Exonucleases , Longevidade , Síndrome de Werner , Animais , Síndrome de Werner/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Masculino , Estresse Oxidativo , Drosophila melanogaster/genética , Mutação , Helicase da Síndrome de Werner/genética , Drosophila , Sono
8.
Genes Dev ; 38(5-6): 213-232, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38503516

RESUMO

Purified translesion synthesis (TLS) DNA polymerases (Pols) replicate through DNA lesions with a low fidelity; however, TLS operates in a predominantly error-free manner in normal human cells. To explain this incongruity, here we determine whether Y family Pols, which play an eminent role in replication through a diversity of DNA lesions, are incorporated into a multiprotein ensemble and whether the intrinsically high error rate of the TLS Pol is ameliorated by the components in the ensemble. To this end, we provide evidence for an indispensable role of Werner syndrome protein (WRN) and WRN-interacting protein 1 (WRNIP1) in Rev1-dependent TLS by Y family Polη, Polι, or Polκ and show that WRN, WRNIP1, and Rev1 assemble together with Y family Pols in response to DNA damage. Importantly, we identify a crucial role of WRN's 3' → 5' exonuclease activity in imparting high fidelity on TLS by Y family Pols in human cells, as the Y family Pols that accomplish TLS in an error-free manner manifest high mutagenicity in the absence of WRN's exonuclease function. Thus, by enforcing high fidelity on TLS Pols, TLS mechanisms have been adapted to safeguard against genome instability and tumorigenesis.


Assuntos
DNA Polimerase Dirigida por DNA , Síntese de DNA Translesão , Helicase da Síndrome de Werner , Humanos , Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Exonucleases/metabolismo , Síntese de DNA Translesão/genética , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo
9.
Endocrine ; 84(1): 92-96, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37856055

RESUMO

PURPOSE: Werner syndrome (WS) is a rare autosomal recessive genetic disease caused by mutations in the WRN gene, and it is characterized by multiple manifestations corresponding to early-onset aging. This study reports the case of a WS patient with a novel WRN mutation. PATIENT AND METHODS: A 36-year-old male patient with WS was evaluated after approval from the local ethics committee. The clinical and biochemical findings of the patient were described. Peripheral blood sample was collected to extract genomic DNA for WRN gene exome sequencing. The three-dimensional (3D) protein structural prediction analysis was performed via the AlphaFold 2.2 program and PyMol software. RESULTS: We report the case of a clinically diagnosed WS patient with consanguineous parents who presented with complex manifestations including early-onset diabetes mellitus, binocular cataracts, cerebral infarction, cerebral atherosclerosis, hypertension, dyslipidemia, hypothyroidism, and suspected meningioma, accompanied by short stature, gray hair, rough skin with subcutaneous fat atrophy, a high-pitched voice, palmoplantar keratoderma, bilateral flat feet, and an indolent deep ulceration on the foot. Exome sequencing identified a novel homozygous frameshift mutation in the WRN gene, c.666-669 del TATT, p.I223fs. The 3D structure prediction showed that premature termination and significant structural changes could occur in the mutant WRN protein. CONCLUSION: We identified a novel homozygous frameshift mutation, p.I223fs, in WRN in a Chinese patient with WS, expanding the spectrum of mutations in WS.


Assuntos
Diabetes Mellitus , Neoplasias Meníngeas , Síndrome de Werner , Masculino , Humanos , Adulto , Síndrome de Werner/complicações , Síndrome de Werner/genética , Síndrome de Werner/diagnóstico , Mutação , DNA , Helicase da Síndrome de Werner/genética
10.
Int J Biol Macromol ; 255: 128305, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992942

RESUMO

Leukemia is a type of malignant hematological disease that is generally resistant to chemotherapy and has poor therapeutic outcomes. Werner (WRN) DNA helicase, an important member of the RecQ family of helicases, plays an important role in DNA repair and telomere stability maintenance. WRN gene dysfunction leads to premature aging and predisposes humans to various types of cancers. However, the biological function of WRN in cancer remains unknown. In this study, the expression of this RecQ family helicase was investigated in different types of leukemia cells, and the leukemia cell line K562 with high WRN expression was selected to construct a WRN knockdown cell line. The results showed that WRN knockdown inhibited leukemia occurrence and development by regulating the proliferation, cell cycle, differentiation, and aging of cells and other biological processes. The results of transcriptome sequencing revealed that WRN promoted the sensitivity of leukemia cells to the DNA damage inducer Etoposide by regulating cell cycle-related proteins, such as CDC2, cyclin B1, p16, and p21, as well as key proteins in DNA damage repair pathways, such as p53, RAD50, RAD51, and MER11. Our findings show that WRN helicase is a promising potential target for leukemia treatment, providing new ideas for the development of targeted drugs against leukemia.


Assuntos
Exodesoxirribonucleases , Leucemia , Humanos , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Ciclo Celular/genética , Reparo do DNA , Dano ao DNA , Leucemia/genética
11.
Genes Dev ; 37(19-20): 913-928, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37932011

RESUMO

Addiction to the WRN helicase is a unique vulnerability of human cancers with high levels of microsatellite instability (MSI-H). However, while prolonged loss of WRN ultimately leads to cell death, little is known about how MSI-H cancers initially respond to acute loss of WRN-knowledge that would be helpful for informing clinical development of WRN targeting therapy, predicting possible resistance mechanisms, and identifying useful biomarkers of successful WRN inhibition. Here, we report the construction of an inducible ligand-mediated degradation system in which the stability of endogenous WRN protein can be rapidly and specifically tuned, enabling us to track the complete sequence of cellular events elicited by acute loss of WRN function. We found that WRN degradation leads to immediate accrual of DNA damage in a replication-dependent manner that curiously did not robustly engage checkpoint mechanisms to halt DNA synthesis. As a result, WRN-degraded MSI-H cancer cells accumulate DNA damage across multiple replicative cycles and undergo successive rounds of increasingly aberrant mitoses, ultimately triggering cell death. Of potential therapeutic importance, we found no evidence of any generalized mechanism by which MSI-H cancers could adapt to near-complete loss of WRN. However, under conditions of partial WRN degradation, addition of low-dose ATR inhibitor significantly increased their combined efficacy to levels approaching full inactivation of WRN. Overall, our results provide the first comprehensive view of molecular events linking upstream inhibition of WRN to subsequent cell death and suggest that dual targeting of WRN and ATR might be a useful strategy for treating MSI-H cancers.


Assuntos
Replicação do DNA , Neoplasias , Humanos , Replicação do DNA/genética , DNA Helicases/metabolismo , Repetições de Microssatélites , Dano ao DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
12.
Cancer Treat Res ; 186: 313-328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37978143

RESUMO

Microsatellite instability (MSI), a type of genetic hypermutability arising from impaired DNA mismatch repair (MMR), is observed in approximately 3% of all cancers. Preclinical work has identified the RecQ helicase WRN as a promising synthetic lethal target for patients with MSI cancers. WRN depletion substantially impairs the viability of MSI, but not microsatellite stable (MSS), cells. Experimental evidence suggests that this synthetic lethal phenotype is driven by numerous TA dinucleotide repeats that undergo expansion mutations in the setting of long-standing MMR deficiency. The lengthening of TA repeats increases their propensity to form secondary DNA structures that require WRN to resolve. In the absence of WRN helicase activity, these unresolved DNA secondary structures stall DNA replication forks and induce catastrophic DNA damage.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Humanos , Repetições de Microssatélites , Reparo de Erro de Pareamento de DNA , DNA , Helicase da Síndrome de Werner/genética
13.
Aging (Albany NY) ; 15(19): 10767-10784, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37827695

RESUMO

The G-rich DNA, such as telomere, tends to form G-quadruplex (G4) structure, which slows down the replication fork progression, induces replication stress, and becomes the chromosome fragile sites. Here we described a molecular strategy that cells developed to overcome the DNA replication stress via DNA helicase regulation. The p53N236S (p53S) mutation has been found in the Werner syndrome mouse embryo fibroblast (MEFs) escaped from senescence, could be the driving force for cell escaping senescence. We revealed that the p53S could transcriptionally up-regulate DNA helicases expression, including Wrn, Blm, Timeless, Ddx, Mcm, Gins, Fanc, as well as telomere specific proteins Terf1, Pot1, through which p53S promoted the unwinding of G4 structures, and protected the cells from DNA replication stress induced by G4 stabilizer. By modified iPOND (isolation of proteins on nascent DNA) assay and telomere assay, we demonstrated that the p53S could promote the recruitment of those helicases to the DNA replication forks, facilitated the maintenance of telomere, and prevent the telomere dysfunction induced by G4 stabilizer. Interestingly, we did not observe the function of promoting G4 resolving and facilitating telomere lengthening in the cells with Li-Fraumeni Syndrome mutation-p53R172H (p53H), which suggests that this is the specific gain of function for p53S. Together our data suggest that the p53S could gain the new function of releasing the replication stress via regulating the helicase function and G4 structure, which benefits telomere lengthening. This strategy could be applied to the treatment of diseases caused by telomere replication stress.


Assuntos
Replicação do DNA , Síndrome de Werner , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Helicase da Síndrome de Werner/genética , DNA Helicases/genética , DNA Helicases/metabolismo , DNA/genética , Telômero/genética , Telômero/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo
15.
Sci Rep ; 13(1): 645, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635307

RESUMO

Telomeric ends form a loop structure (T-loop) necessary for the repression of ATM kinase activation throughout the normal cell cycle. However, cells undergoing a prolonged mitotic arrest are prone to lose the T-loop, resulting in Aurora B kinase-dependent mitotic telomere deprotection, which was proposed as an anti-tumor mechanism that eliminates precancerous cells from the population. The mechanism of mitotic telomere deprotection has not been elucidated. Here, we show that WRN, a RECQ helicase family member, can suppress mitotic telomere deprotection independently of its exonuclease and helicase activities. Truncation of WRN revealed that N-terminus amino acids 168-333, a region that contains a coiled-coil motif, is sufficient to suppress mitotic telomere deprotection without affecting both mitotic Aurora B-dependent spindle checkpoint and ATM kinase activity. The suppressive activity of the WRN168-333 fragment is diminished in cells partially depleted of TRF2, while WRN is required for complete suppression of mitotic telomere deprotection by TRF2 overexpression. Finally, we found that phosphomimetic but not alanine mutations of putative Aurora B target sites in the WRN168-333 fragment abolished its suppressive effect. Our findings reveal a non-enzymatic function of WRN, which may be regulated by phosphorylation in cells undergoing mitotic arrest. We propose that WRN enhances the protective function of TRF2 to counteract the hypothetical pathway that resolves the mitotic T-loop.


Assuntos
Exodesoxirribonucleases , Proteína 2 de Ligação a Repetições Teloméricas , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo , Exodesoxirribonucleases/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Telômero/genética , Telômero/metabolismo
16.
Mol Biol Rep ; 50(2): 1565-1573, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36515823

RESUMO

BACKGROUND: Multiple myeloma (MM), characterized by extensive genomic instability and aberrant DNA damage repair, is a plasma cell malignancy due to the excessive proliferation of monoclonal antibody-producing plasma cells in the bone marrow. Despite the significant improvement in the survival of patients with the development of novel therapeutic agents, MM remains an incurable disease. Werner (WRN) helicase, a member of the RecQ helicase family that contributes to DNA replication, recombination, and repair, has been highlighted in cancer cell survival, yet the role and mechanism of WRN in MM remain unclear. METHODS AND RESULTS: Increased mRNA expression of WRN in newly diagnosed and relapsed CD138+ myeloma plasma cells than normal CD138+ plasma cells and their matched CD138- non-tumorigenic cells were detected by qPCR. Using NSC19630, a specific WRN helicase inhibitor, we further showed decreased cell viability, proliferation, and DNA repair and increased DNA damage and apoptosis in MM cells by MTT assay, cell cycle assay, apoptosis assay, and Western blotting. CONCLUSIONS: The results of the present study demonstrate that WRN is essential in MM cell viability, proliferation, and genomic stability, indicating its inhibition may enhance the efficacy of chemotherapy in MM.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo , Exodesoxirribonucleases/genética , Reparo do DNA/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Replicação do DNA , Dano ao DNA/genética , Proliferação de Células/genética
17.
EMBO J ; 42(3): e111998, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541070

RESUMO

The Werner Syndrome helicase, WRN, is a promising therapeutic target in cancers with microsatellite instability (MSI). Long-term MSI leads to the expansion of TA nucleotide repeats proposed to form cruciform DNA structures, which in turn cause DNA breaks and cell lethality upon WRN downregulation. Here we employed biochemical assays to show that WRN helicase can efficiently and directly unfold cruciform structures, thereby preventing their cleavage by the SLX1-SLX4 structure-specific endonuclease. TA repeats are particularly prone to form cruciform structures, explaining why these DNA sequences are preferentially broken in MSI cells upon WRN downregulation. We further demonstrate that the activity of the DNA mismatch repair (MMR) complexes MutSα (MSH2-MSH6), MutSß (MSH2-MSH3), and MutLα (MLH1-PMS2) similarly decreases the level of DNA cruciforms, although the mechanism is different from that employed by WRN. When combined, WRN and MutLα exhibited higher than additive effects in in vitro cruciform processing, suggesting that WRN and the MMR proteins may cooperate. Our data explain how WRN and MMR defects cause genome instability in MSI cells with expanded TA repeats, and provide a mechanistic basis for their recently discovered synthetic-lethal interaction with promising applications in precision cancer therapy.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA Cruciforme , Humanos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Instabilidade de Microssatélites , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo , Proteína 1 Homóloga a MutL/genética
18.
J Radiol Case Rep ; 17(10): 21-31, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38343885

RESUMO

Werner Syndrome is a rare autosomal recessive condition characterized by premature aging and increased risk of malignancies due to gene mutations associated with DNA stability. We present the first case report of a 29-year-old Hispanic female with WS diagnosed with breast cancer. Diagnostic mammography and ultrasound, breast MRI and PET examinations revealed two lesions biopsy proven as invasive ductal carcinoma. The patient underwent neoadjuvant chemotherapy and radical mastectomy. Recurrence occurred 10 months postoperatively with molecular analysis demonstrating TP53 mutations. The multifactorial assessment of breast cancer in this case study is crucial towards optimizing screening, diagnosis and management of this disease in patients with WS.


Assuntos
Neoplasias da Mama , Síndrome de Werner , Adulto , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Hispânico ou Latino , Mastectomia , Mutação , Síndrome de Werner/complicações , Síndrome de Werner/diagnóstico por imagem , Síndrome de Werner/genética , Helicase da Síndrome de Werner/genética
19.
Proc Natl Acad Sci U S A ; 119(51): e2211775119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508676

RESUMO

Synthetic lethality is a powerful approach for targeting oncogenic drivers in cancer. Recent studies revealed that cancer cells with microsatellite instability (MSI) require Werner (WRN) helicase for survival; however, the underlying mechanism remains unclear. In this study, we found that WRN depletion strongly induced p53 and its downstream apoptotic target PUMA in MSI colorectal cancer (CRC) cells. p53 or PUMA deletion abolished apoptosis induced by WRN depletion in MSI CRC cells. Importantly, correction of MSI abrogated the activation of p53/PUMA and cell killing, while induction of MSI led to sensitivity in isogenic CRC cells. Rare p53-mutant MSI CRC cells are resistant to WRN depletion due to lack of PUMA induction, which could be restored by wildtype (WT) p53 knock in or reconstitution. WRN depletion or treatment with the RecQ helicase inhibitor ML216 suppressed in vitro and in vivo growth of MSI CRCs in a p53/PUMA-dependent manner. ML216 treatment was efficacious in MSI CRC patient-derived xenografts. Interestingly, p53 gene remains WT in the majority of MSI CRCs. These results indicate a critical role of p53/PUMA-mediated apoptosis in the vulnerability of MSI CRCs to WRN loss, and support WRN as a promising therapeutic target in p53-WT MSI CRCs.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Helicase da Síndrome de Werner/genética , Proteína Supressora de Tumor p53/genética , Instabilidade de Microssatélites , Neoplasias Colorretais/genética , RecQ Helicases/genética
20.
Genes (Basel) ; 13(10)2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36292687

RESUMO

A rare and autosomal recessive premature aging disorder, Werner syndrome (WS) is characterized by the early onset of aging-associated diseases, including shortening stature, alopecia, bilateral cataracts, skin ulcers, diabetes, osteoporosis, arteriosclerosis, and chromosomal instability, as well as cancer predisposition. WRN, the gene responsible for WS, encodes DNA helicase with a 3' to 5' exonuclease activity, and numerous studies have revealed that WRN helicase is involved in the maintenance of chromosome stability through actions in DNA, e.g., DNA replication, repair, recombination, and epigenetic regulation via interaction with DNA repair factors, telomere-binding proteins, histone modification enzymes, and other DNA metabolic factors. However, although these efforts have elucidated the cellular functions of the helicase in cell lines, they have not been linked to the treatment of the disease. Life expectancy has improved for WS patients over the past three decades, and it is hoped that a fundamental treatment for the disease will be developed. Disease-specific induced pluripotent stem (iPS) cells have been established, and these are expected to be used in drug discovery and regenerative medicine for WS patients. In this article, we review trends in research to date and present some perspectives on WS research with regard to the application of pluripotent stem cells. Furthermore, the elucidation of disease mechanisms and drug discovery utilizing the vast amount of scientific data accumulated to date will be discussed.


Assuntos
Síndrome de Werner , Humanos , Síndrome de Werner/genética , Síndrome de Werner/terapia , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo , RecQ Helicases/genética , Exodesoxirribonucleases/genética , Epigênese Genética , Fosfodiesterase I/genética , Fosfodiesterase I/metabolismo , DNA , Instabilidade Cromossômica , Proteínas de Ligação a Telômeros/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA