Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6918, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134555

RESUMO

Salivary proteins of insect herbivores can suppress plant defenses, but the roles of many remain elusive. One such protein is glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the saliva of the Recilia dorsalis (RdGAPDH) leafhopper, which is known to transmit rice gall dwarf virus (RGDV). Here we show that RdGAPDH was loaded into exosomes and released from salivary glands into the rice phloem through an exosomal pathway as R. dorsalis fed. In infected salivary glands of R. dorsalis, the virus upregulated the accumulation and subsequent release of exosomal RdGAPDH into the phloem. Once released, RdGAPDH consumed H2O2 in rice plants owing to its -SH groups reacting with H2O2. This reduction in H2O2 of rice plant facilitated R. dorsalis feeding and consequently promoted RGDV transmission. However, overoxidation of RdGAPDH could cause potential irreversible cytotoxicity to rice plants. In response, rice launched emergency defense by utilizing glutathione to S-glutathionylate the oxidization products of RdGAPDH. This process counteracts the potential cellular damage from RdGAPDH overoxidation, helping plant to maintain a normal phenotype. Additionally, salivary GAPDHs from other hemipterans vectors similarly suppressed H2O2 burst in plants. We propose a strategy by which plant viruses exploit insect salivary proteins to modulate plant defenses, thus enabling sustainable insect feeding and facilitating viral transmission.


Assuntos
Hemípteros , Peróxido de Hidrogênio , Oryza , Doenças das Plantas , Saliva , Animais , Hemípteros/virologia , Peróxido de Hidrogênio/metabolismo , Oryza/virologia , Oryza/metabolismo , Doenças das Plantas/virologia , Saliva/metabolismo , Saliva/virologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Glândulas Salivares/virologia , Glândulas Salivares/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Insetos Vetores/virologia , Floema/virologia , Floema/metabolismo , Reoviridae/fisiologia , Glutationa/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Vírus de Plantas/fisiologia , Defesa das Plantas contra Herbivoria
2.
J Exp Bot ; 75(18): 5819-5838, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-38829390

RESUMO

Insect vector-virus-plant interactions have important ecological and evolutionary implications. The constant struggle of plants against viruses and insect vectors has driven the evolution of multiple defense strategies in the host as well as counter-defense strategies in the viruses and insect vectors. Cotton leaf curl Multan virus (CLCuMuV) is a major causal agent of cotton leaf curl disease in Asia and is exclusively transmitted by the whitefly Bemisia tabaci. Here, we report that plants infected with CLCuMuV and its betasatellite CLCuMuB enhance the performance of the B. tabaci vector, and ßC1 encoded by CLCuMuB plays an important role in begomovirus-whitefly-tobacco tripartite interactions. We showed that CLCuMuB ßC1 suppresses the jasmonic acid signaling pathway by interacting with the subtilisin-like protease 1.7 (NtSBT1.7) protein, thereby enhancing whitefly performance on tobacco plants. Further studies revealed that in wild-type plants, NtSBT1.7 could process tobacco preprohydroxyproline-rich systemin B (NtpreproHypSysB). After CLCuMuB infection, CLCuMuB ßC1 could interfere with the processing of NtpreproHypSysB by NtSBT1.7, thereby impairing plant defenses against whitefly. These results contribute to our understanding of tripartite interactions among virus, plant, and whitefly, thus offering ecological insights into the spread of vector insect populations and the prevalence of viral diseases.


Assuntos
Begomovirus , Hemípteros , Insetos Vetores , Nicotiana , Doenças das Plantas , Animais , Hemípteros/virologia , Hemípteros/fisiologia , Nicotiana/virologia , Begomovirus/fisiologia , Insetos Vetores/virologia , Insetos Vetores/fisiologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
Phytopathology ; 114(7): 1680-1688, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38648112

RESUMO

In 2014, Physostegia chlorotic mottle virus (PhCMoV) was discovered in Austria in Physostegia virginiana. Subsequent collaborative efforts established a link between the virus and severe fruit symptoms on important crops such as tomato, eggplant, and cucumber across nine European countries. Thereafter, specific knowledge gaps, which are crucial to assess the risks PhCMoV can pose for production and how to manage it, needed to be addressed. In this study, the transmission, prevalence, and disease severity of PhCMoV were examined. This investigation led to the identification of PhCMoV presence in a new country, Switzerland. Furthermore, our research indicates that the virus was already present in Europe 30 years ago. Bioassays demonstrated PhCMoV can result in up to 100% tomato yield losses depending on the phenological stage of the plant at the time of infection. PhCMoV was found to naturally infect 12 new host plant species across eight families, extending its host range to 21 plant species across 15 plant families. The study also identified a polyphagous leafhopper (genus Anaceratagallia) as a natural vector of PhCMoV. Overall, PhCMoV was widespread in small-scale diversified vegetable farms in Belgium where tomato is grown in soil under tunnels, occurring in approximately one-third of such farms. However, outbreaks were sporadic and were associated at least once with the cultivation in tomato tunnels of perennial plants that can serve as a reservoir host for the virus and its vector. To further explore this phenomenon and manage the virus, studying the ecology of the vector would be beneficial.


Assuntos
Hemípteros , Doenças das Plantas , Verduras , Doenças das Plantas/virologia , Hemípteros/virologia , Verduras/virologia , Solanum lycopersicum/virologia , Animais , Suíça , Insetos Vetores/virologia , Produtos Agrícolas/virologia , Especificidade de Hospedeiro
4.
J Gen Virol ; 102(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34494949

RESUMO

Transmission of the crinivirus, lettuce infectious yellows virus (LIYV), is determined by a minor coat protein (CPm)-mediated virion retention mechanism located in the foregut of its whitefly vector. To better understand the functions of LIYV CPm, chimeric CPm mutants engineered with different lengths of the LIYV CPm amino acid sequence and that of the crinivirus, lettuce chlorosis virus (LCV), were constructed based on bioinformatics and sequence alignment data. The 485 amino acid-long chimeric CPm of LIYV mutant, CPmP-1, contains 60 % (from position 3 to 294) of LCV CPm amino acids. The chimeric CPm of mutants CPmP-2, CPmP-3 and CPmP-4 contains 46 (position 3 to 208), 51 (position 3 to 238) and 41 % (position 261 to 442) of LCV CPm amino acids, respectively. All four mutants moved systemically, expressed the chimeric CPm and formed virus particles. However, following acquisition feeding of the virus preparations, only CPmP-1 was retained in the foreguts of a significant number of vectors and transmitted. In immuno-gold labelling transmission electron microscopy (IGL-TEM) analysis, CPmP-1 particles were distinctly labelled by antibodies directed against the LCV but not LIYV CPm. In contrast, CPmP-4 particles were not labelled by antibodies directed against the LCV or LIYV CPm, while CPmP-2 and -3 particles were weakly labelled by anti-LIYV CPm but not anti-LCV CPm antibodies. The unique antibody recognition and binding pattern of CPmP-1 was also displayed in the foreguts of whitefly vectors that fed on CPmP-1 virions. These results are consistent with the hypothesis that the chimeric CPm of CPmP-1 is incorporated into functional virions, with the LCV CPm region being potentially exposed on the surface and accessible to anti-LCV CPm antibodies.


Assuntos
Proteínas do Capsídeo/metabolismo , Crinivirus/fisiologia , Hemípteros/virologia , Insetos Vetores/virologia , Nicotiana/virologia , Doenças das Plantas/virologia , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Crinivirus/genética , Sistema Digestório/virologia , Engenharia Genética , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/metabolismo , Mutação , Plantas Geneticamente Modificadas/virologia , Vírion/fisiologia
5.
PLoS Pathog ; 17(1): e1008770, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33428670

RESUMO

Environments such as light condition influence the spread of infectious diseases by affecting insect vector behavior. However, whether and how light affects the host defense which further affects insect preference and performance, remains unclear, nor has been demonstrated how pathogens co-adapt light condition to facilitate vector transmission. We previously showed that begomoviral ßC1 inhibits MYC2-mediated jasmonate signaling to establish plant-dependent mutualism with its insect vector. Here we show red-light as an environmental catalyzer to promote mutualism of whitefly-begomovirus by stabilizing ßC1, which interacts with PHYTOCHROME-INTERACTING FACTORS (PIFs) transcription factors. PIFs positively control plant defenses against whitefly by directly binding to the promoter of terpene synthase genes and promoting their transcription. Moreover, PIFs interact with MYC2 to integrate light and jasmonate signaling and regulate the transcription of terpene synthase genes. However, begomovirus encoded ßC1 inhibits PIFs' and MYC2' transcriptional activity via disturbing their dimerization, thereby impairing plant defenses against whitefly-transmitted begomoviruses. Our results thus describe how a viral pathogen hijacks host external and internal signaling to enhance the mutualistic relationship with its insect vector.


Assuntos
Begomovirus/fisiologia , Hemípteros/virologia , Insetos Vetores/virologia , Doenças das Plantas/virologia , Simbiose , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Animais , Arabidopsis/metabolismo , Arabidopsis/virologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Luz , Fitocromo , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas Virais/genética , Fatores de Virulência/genética
6.
Insect Sci ; 28(2): 377-391, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32365268

RESUMO

Rickettsia consists of some of the most prevalent symbionts of insects and often plays a significant role in the biology of its hosts. Recently, a maternally inherited Torix group Rickettsia, provisionally named as RiTBt, was recorded in a species of notorious pest whitefly, tentatively named as Asia II 1, from the Bemisia tabaci complex. The role of this Rickettsia in the biology of its host is unknown. Here we investigated the impact of RiTBt on the performance and virus transmission capacity of Asia II 1. RiTBt did not significantly affect the life history parameters of the whitefly when the host insect was reared on tobacco, tomato, and cotton, three host plants with relatively low, medium and high suitability to the whitefly. Intriguingly, RiTBt slightly enhanced whitefly transmission of cotton leaf curl Multan virus (CLCuMuV), a virus that is transmitted by the whitefly in the field and has caused extensive damage to cotton production. Specifically, compared with whiteflies without RiTBt, following a 48 h virus acquisition whiteflies with RiTBt had higher titer of virus and showed higher efficiency of virus transmission. A rickettsial secretory protein BtR242 was identified as a putative virus-binding protein, and was observed to interact with the coat protein of CLCuMuV in vitro. Viral infection of the whitefly downregulated gene transcript levels of the BtR242 gene. These observations indicate that RiTBt has limited impact on the biology of the Asia II 1 whitefly, and whether this symbiont has functions in the biology of other host whiteflies warrants future investigation.


Assuntos
Begomovirus/fisiologia , Hemípteros/fisiologia , Características de História de Vida , Rickettsia/fisiologia , Simbiose , Animais , Feminino , Hemípteros/microbiologia , Hemípteros/virologia , Masculino
7.
Front Immunol ; 11: 1596, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849541

RESUMO

In nature, plant viruses are mostly transmitted by hemipteran insects, such as aphids, leafhoppers, and whiteflies. However, the molecular mechanisms underlying the interactions between virus and insect vector are poorly known. Here, we investigate the proteomic interactions between tomato yellow leaf curl virus (TYLCV, genus Begomovirus, family Geminiviridae), a plant virus, and its vector whitefly (Bemisia tabaci) species complex. First, using a yeast two-hybrid system, we identified 15 candidate whitefly proteins interacting with the coat protein of TYLCV. GO and KEGG pathway analysis implicated that these 15 whitefly proteins are of different biological functions/processes mainly including metabolic process, cell motility, signal transduction, and response to stimulus. We then found that the whitefly protein tumorous imaginal discs (Tid), one of the 15 whitefly proteins identified, had a stable interaction with TYLCV CP in vitro, and the DnaJ_C domain of Tid301-499aa may be the viral binding site. During viral retention, the expression of whitefly protein Tid was observed to increase at the protein level, and feeding whiteflies with dsRNA or antibody against Tid resulted in a higher quantity of TYLCV in the whitefly body, suggesting the role of Tid in antiviral infection. Our data indicate that the induction of Tid following viral acquisition is likely a whitefly immune response to TYLCV infection.


Assuntos
Begomovirus/fisiologia , Hemípteros/metabolismo , Hemípteros/virologia , Interações Hospedeiro-Patógeno , Proteoma , Proteômica , Animais , Biologia Computacional/métodos , Hemípteros/classificação , Hemípteros/imunologia , Interações Hospedeiro-Patógeno/imunologia , Discos Imaginais , Proteínas de Insetos/metabolismo , Filogenia , Doenças das Plantas , Proteômica/métodos , RNA de Cadeia Dupla , RNA Viral , Técnicas do Sistema de Duplo-Híbrido , Carga Viral
8.
mBio ; 11(4)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32817105

RESUMO

Most plant viruses require vector insects for transmission. Viral stability in the hemolymph of vector insects is a prerequisite for successful transmission of persistent plant viruses. However, knowledge of whether the proteolytic activation of prophenoloxidase (PPO) affects the stability of persistent plant viruses remains elusive. Here, we explored the interplay between rice stripe virus (RSV) and the PPO cascade of the vector small brown planthopper. Phenoloxidase (PO) activity was suppressed by RSV by approximately 60%. When the PPO cascade was activated, we found distinct melanization around RSV particles and serious damage to viral stability in the hemolymph. Viral suppression of PO activity was derived from obstruction of proteolytic cleavage of PPOs by binding of the viral nonstructural protein NS3. These results indicate that RSV attenuates the PPO response to ensure viral stability in the hemolymph of vector insects. Our research provides enlightening cues for controlling the transmission of vector-borne viruses.IMPORTANCE Large ratios of vector-borne plant viruses circulate in the hemolymph of their vector insects before entering the salivary glands to be transmitted to plants. The stability of virions in the hemolymph is vital in this process. Activation of the proteolytic prophenoloxidase (PPO) to produce active phenoloxidase (PO) is one of the major innate immune pathways in insect hemolymph. How a plant virus copes with the PPO immune reaction in its vector insect remains unclear. Here, we report that the PPO affects the stability of rice stripe virus (RSV), a notorious rice virus, in the hemolymph of a vector insect, the small brown planthopper. RSV suppresses PPO activation using viral nonstructural protein. Once the level of PO activity is elevated, RSV is melanized and eliminated from the hemolymph. Our work gives valuable clues for developing novel strategies for controlling the transmission of vector-borne plant viruses.


Assuntos
Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Hemípteros/virologia , Hemolinfa/virologia , Insetos Vetores/virologia , Tenuivirus/metabolismo , Animais , Hemípteros/enzimologia , Hemípteros/fisiologia , Doenças das Plantas/virologia , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo
9.
Virus Res ; 288: 198112, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32777388

RESUMO

The whitefly Bemisia tabaci is an agricultural pest causing large economic losses worldwide. We analysed the genomic sequence of a new viral member of the family Dicistroviridae identified by high-throughput sequencing of total RNA extracted from whiteflies. The virus, tentatively named Bemisia-associated dicistrovirus 2 (BaDV-2), has a genome of 8012 nucleotides with a polyadenylated 3' end. In contrast to typical dicistroviruses, BaDV-2 has a genome containing three open reading frames (ORFs) encoding predicted proteins of 1078 (ORF1a), 481 (ORF1b) and 834 (ORF2) amino acids, which correspond to replicase A (containing helicase and cysteine protease domains), replicase B (a domain of an RNA-dependent RNA polymerase - RdRP) and capsid proteins, respectively. The 3' end of ORF1a contains a potential frameshift signal, suggesting that ORF1a and ORF1b may be expressed as a single polyprotein (replicaseFS), corresponding to other dicistroviruses. The BaDV-2 genomic sequence shares the highest nucleotide identity (61.1 %) with Bemisia-associated dicistrovirus 1 (BaDV-1), another dicistrovirus identified from whiteflies. The full BaDV-2 replicaseFS polyprotein clustered with aparaviruses, whereas the capsid polyprotein clustered with cripaviruses in phylogenetic analyses, as with BaDV-1. The intergenic region (IGR) between ORF1b and ORF2 is predicted to adopt a secondary structure with atypical features that resembles the dicistrovirus IGR IRES structure. Our analyses indicate that BaDV-2 is a novel dicistrovirus and that BaDV-2 together with BaDV-1 may not be appropriately grouped in any of the three currently accepted dicistrovirus genera.


Assuntos
Dicistroviridae/classificação , Dicistroviridae/genética , Genoma Viral , Hemípteros/virologia , Ipomoea batatas , Animais , Dicistroviridae/isolamento & purificação , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , Poliproteínas/genética , RNA Viral/genética , Análise de Sequência de DNA
10.
Arch Virol ; 165(8): 1883-1886, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32447621

RESUMO

A novel iflavirus, tentatively named "Langfang leafhopper iflavirus" (LfLHV) was detected in leafhopper (Psammotettix alienus) by total RNA sequencing, and its genome sequence was confirmed by Sanger sequencing. The complete genome consisted of 10,700 nucleotides (nt) excluding the poly A tail and included one open reading frame (9,453 nt in length), encoding a polyprotein of 3,150 amino acids (aa). The nucleotide sequence of the complete genome was shared 44.1-53.3% identical, and the deduced amino acid sequence RNA-dependent RNA polymerase (RdRp) 22-74% identical to those of other iflaviruses. These values were all below the species demarcation threshold of 90%. Conserved motifs for structural proteins, helicase, protease, and RdRp were also similar to those in other iflaviruses. These results, as well as those of phylogenetic analysis based on the deduced amino acid sequences of the polyprotein and RdRp of LfLHV and other iflaviruses, indicate that the sequence represents a novel virus of the family Iflaviridae.


Assuntos
Genoma Viral/genética , Hemípteros/virologia , Vírus de RNA/genética , Animais , Genômica/métodos , Fases de Leitura Aberta/genética , Filogenia , RNA Viral/genética , Análise de Sequência/métodos , Proteínas Virais/genética
11.
Viruses ; 12(4)2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260283

RESUMO

Cactaceae comprise a diverse and iconic group of flowering plants which are almost exclusively indigenous to the New World. The wide variety of growth forms found amongst the cacti have led to the trafficking of many species throughout the world as ornamentals. Despite the evolution and physiological properties of these plants having been extensively studied, little research has focused on cactus-associated viral communities. While only single-stranded RNA viruses had ever been reported in cacti, here we report the discovery of cactus-infecting single-stranded DNA viruses. These viruses all apparently belong to a single divergent species of the family Geminiviridae and have been tentatively named Opuntia virus 1 (OpV1). A total of 79 apparently complete OpV1 genomes were recovered from 31 different cactus plants (belonging to 20 different cactus species from both the Cactoideae and Opuntioideae clades) and from nine cactus-feeding cochineal insects (Dactylopius sp.) sampled in the USA and Mexico. These 79 OpV1 genomes all share > 78.4% nucleotide identity with one another and < 64.9% identity with previously characterized geminiviruses. Collectively, the OpV1 genomes display evidence of frequent recombination, with some genomes displaying up to five recombinant regions. In one case, recombinant regions span ~40% of the genome. We demonstrate that an infectious clone of an OpV1 genome can replicate in Nicotiana benthamiana and Opuntia microdasys. In addition to expanding the inventory of viruses that are known to infect cacti, the OpV1 group is so distantly related to other known geminiviruses that it likely represents a new geminivirus genus. It remains to be determined whether, like its cactus hosts, its geographical distribution spans the globe.


Assuntos
Cactaceae/virologia , Geminiviridae/genética , Genoma Viral , Filogenia , Doenças das Plantas/virologia , Animais , Geminiviridae/classificação , Geminiviridae/isolamento & purificação , Hemípteros/virologia , México , Recombinação Genética , Nicotiana/virologia , Estados Unidos
12.
Virology ; 542: 54-62, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32056668

RESUMO

Intergenic region of begomovirus genome is vital to virus replication and viral gene transcription in plants. Previous studies have reported that Tomato yellow leaf curl China virus (TYLCCNV), a begomovirus, is able to accumulate and transcribe in its whitefly vector. However, the viral and host components that participate in begomovirus transcription in whiteflies are hitherto unknown. Using a yeast one-hybrid system, we identified >50 whitefly proteins that interacted with TYLCCNV intergenic region. Dual luciferase analysis revealed that one of the identified proteins, the hairy and enhancer of split homolog-1 (HES1), specifically bound to CACGTG motif in TYLCCNV intergenic region. Silencing HES1 decreased viral transcription, accumulation and transmission. These results demonstrate that the interactions between whitefly proteins and the intergenic region of TYLCCNV may contribute to viral transcription in the whitefly vector. Our findings offer valuable clues for the research and development of novel strategies to interfere with begomovirus transmission.


Assuntos
Begomovirus/genética , Hemípteros/metabolismo , Hemípteros/virologia , Proteínas de Insetos/metabolismo , Fatores de Transcrição HES-1/metabolismo , Animais , Begomovirus/patogenicidade , Begomovirus/fisiologia , DNA Intergênico , Técnicas de Silenciamento de Genes , Genoma Viral , Hemípteros/genética , Interações entre Hospedeiro e Microrganismos/genética , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Insetos Vetores/genética , Insetos Vetores/metabolismo , Insetos Vetores/virologia , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Ligação Proteica , Nicotiana/virologia , Fatores de Transcrição HES-1/antagonistas & inibidores , Fatores de Transcrição HES-1/genética , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
13.
Sci Rep ; 10(1): 525, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949196

RESUMO

Begomoviruses can modify their transmission vector, Bemisia tabaci, to benefit their spread, although this may not always be the case. Here, the new begomovirus Ramie mosaic virus (RaMoV) and its vector B. tabaci MED, which is dominant in China and many regions of the world, were used as a model to examine direct and indirect interaction and virus transmission by B. tabaci MED of different sexes. No significant direct or indirect effects of RaMoV were observed in B. tabaci MED females, although RaMoV could shorten the life span of B. tabaci MED females by up to 4 days. A test of RaMoV transmission by different sexes of B. tabaci MED showed that there was higher virus transmission efficiency by females than males. Overall, RaMoV is transmitted by B. tabaci MED in a sex-dependent manner, and further research is needed to uncover the mechanism of the difference in RaMoV transmission by different sexes of B. tabaci.


Assuntos
Begomovirus/fisiologia , Hemípteros/fisiologia , Nicotiana/crescimento & desenvolvimento , Doenças das Plantas/parasitologia , Animais , China , Feminino , Hemípteros/virologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Longevidade , Masculino , Caracteres Sexuais , Nicotiana/parasitologia
14.
Methods ; 183: 43-49, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759050

RESUMO

Geminiviruses constitute a family of plant viruses with characteristic twinned quasi-icosahedral virions and a small circular DNA genome. Geminiviruses, especially begomoviruses, cause substantial economic losses in tropical and subtropical regions globally. Geminiviruses use the host's transcriptional mechanisms to synthesize their mRNAs. They are considered as an attractive model to understand the transcription mechanism of their host plants. Experiments were conducted to identify transcriptional start sites (TSSs) of the three begomoviruses, i.e., Cotton leaf curl Multan virus (CLCuMuV), Corchorus yellow vein virus (CoYVV), and Ramie mosaic virus (RamV). We first rub-inoculated Rice stripe tenuivirus (RSV), a segmented negative-sense RNA virus that uses cap-snatching to produce capped viral mRNAs, into N. benthamiana. After the inoculation, RSV-infected N. benthamiana were super-infected by CoYVV, CLCuMuV, or RamV, respectively. The capped-RNA leaders snatched by RSV were obtained by determining the 5'-ends of RSV mRNA with high throughput sequencing. Afterwards, snatched capped-RNA leaders of RSV were mapped onto the genome of each begomovirus and those matching the begomoviral genome were considered to come from the 5' ends of assumed begomoviral mRNAs. In this way, TSSs of begomoviruses were obtained. After mapping these TSSs onto the genome of the respective begomovirus, it was found very commonly that a begomovirus can use many different TSSs to transcribe the same gene, producing many different mRNA isoforms containing the corresponding open reading frames (ORFs).


Assuntos
Begomovirus/genética , Southern Blotting/métodos , DNA Viral/genética , Nicotiana/virologia , Transcrição Gênica , Animais , Begomovirus/patogenicidade , Coinfecção/virologia , Genoma Viral , Hemípteros/virologia , Doenças das Plantas/virologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Viral/genética , Tenuivirus/genética , Tenuivirus/patogenicidade , Nicotiana/genética , Sítio de Iniciação de Transcrição
15.
Phytopathology ; 110(1): 68-79, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31631806

RESUMO

High-throughput sequencing technologies were used to identify plant viruses in cereal samples surveyed from 2012 to 2017. Fifteen genome sequences of a tenuivirus infecting wheat, oats, and spelt in Estonia, Norway, and Sweden were identified and characterized by their distances to other tenuivirus sequences. Like most tenuiviruses, the genome of this tenuivirus contains four genomic segments. The isolates found from different countries shared at least 92% nucleotide sequence identity at the genome level. The planthopper Javesella pellucida was identified as a vector of the virus. Laboratory transmission tests using this vector indicated that wheat, oats, barley, rye, and triticale, but none of the tested pasture grass species (Alopecurus pratensis, Dactylis glomerata, Festuca rubra, Lolium multiflorum, Phleum pratense, and Poa pratensis), are susceptible. Taking into account the vector and host range data, the tenuivirus we have found most probably represents European wheat striate mosaic virus first identified about 60 years ago. Interestingly, whereas we were not able to infect any of the tested cereal species mechanically, Nicotiana benthamiana was infected via mechanical inoculation in laboratory conditions, displaying symptoms of yellow spots and vein clearing evolving into necrosis, eventually leading to plant death. Surprisingly, one of the virus genome segments (RNA2) encoding both a putative host systemic movement enhancer protein and a putative vector transmission factor was not detected in N. benthamiana after several passages even though systemic infection was observed, raising fundamental questions about the role of this segment in the systemic spread in several hosts.


Assuntos
Genoma Viral , Vírus do Mosaico , Vírus de Plantas , Animais , Grão Comestível/virologia , Genoma Viral/genética , Hemípteros/virologia , Vírus do Mosaico/genética , Noruega , Doenças das Plantas/virologia , Vírus de Plantas/genética , Suécia
16.
Virol J ; 16(1): 106, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31438971

RESUMO

BACKGROUND: Plant viruses can affect vector's behaviors in order to enhance viral transmission. Cucurbit chlorotic yellows virus (CCYV) (genus Crinivirus) is an emergent RNA plant virus and is transmitted specifically by biotypes B and Q of tobacco whitefly, Bemisia tabaci (Gennadius), in a semipersistent manner. METHODS: We used the electrical penetration graph (EPG) to investigate the effect of CCYV on the feeding behaviors of B. tabaci biotypes B and Q. RESULTS: CCYV could affect, both directly and indirectly, the feeding behaviors of B. tabaci to various degrees, depending on biotypes and sexes of the insect. CCYV showed stronger direct effects on biotype Q than on biotype B in terms of increased non-phloem probing and phloem salivation. CCYV increased non-phloem probing and phloem salivation more on females than on males of biotype Q, and increased phloem salivation more on females than on males of biotype B. CCYV had stronger indirect effects, via virus-infested plants, on biotype B than on biotype Q by enhancing phloem sap ingestion and feeding bouts. CCYV increased non-phloem probing and feeding bouts more on males than on females of biotype B, and decreased phloem sap ingestion more on males than on females on biotype Q indirectly. CONCLUSIONS: The results clearly indicated that CCYV affects the feeding behaviors of B. tabaci, which may lead to increased ability of the B. tabaci for CCYV transmission.


Assuntos
Crinivirus , Comportamento Alimentar , Hemípteros/fisiologia , Hemípteros/virologia , Doenças das Plantas/virologia , Animais , Feminino , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Masculino , Floema , Fatores Sexuais
17.
Virus Res ; 272: 197651, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31408663

RESUMO

A novel iflavirus, tentatively named laodelphax striatellus iflavirus 1 (LsIV1), was identified in Laodelphax striatellus by total RNA-sequencing, and its genome sequence was confirmed by Sanger sequencing. The complete genome consisted of 10,831 nucleotides with a polyA tail and included one open reading frame, encoding a 361.7-kD polyprotein. Conserved motifs for structural proteins, helicase, protease, and RNA-dependent RNA polymerase were identified by aligning the deduced amino acid sequence of LsIV1 with several other iflaviruses. The genome has the highest identity with another planthopper iflavirus, nilaparvata lugens honeydew virus-3 (39.7%), under the species demarcation threshold (90%). Results of the identities and phylogenetic analysis based on the deduced amino acid sequences of the complete polyprotein and helicase of LsIV1 and other iflaviruses, indicated it is a new species belonging to the family Iflaviridae. Furthermore, we did not observe any differences of biological characterizations like development and reproduction between viruliferous and virus-free SBPH. Meanwhile, we found that female could transmit LsIV1 with higher transmission efficiency.


Assuntos
Genoma Viral , Genômica , Hemípteros/virologia , Picornaviridae/genética , Sequenciamento Completo do Genoma , Sequência de Aminoácidos , Animais , China , Fases de Leitura Aberta , Filogenia , Filogeografia , Picornaviridae/classificação
18.
Artigo em Inglês | MEDLINE | ID: mdl-31357394

RESUMO

(1) Background: Tomato leaf curl New Delhi virus (ToLCNDV), transmitted by tobacco whitefly (Bemisia tabaci Gennadius) (Hemiptera: Aleyrodidae), is of major concern in the cultivation of zucchini. The threat of this virus motivates reliance on chemical vector control but European consumers' demands for vegetables grown free of pesticides provides an important incentive for alternative pest management; (2) Methods: Different whitefly management strategies and ToLCNDV incidences were surveyed in commercial zucchini greenhouses in south-east Spain. In an experimental greenhouse, three different whitefly control strategies, biological, chemical, and integrated (IPM), were evaluated in a replicated trial to determine the most effective strategy for virus suppression (3) Results: Whitefly was present in all commercial zucchini crops surveyed, whereas fewer crops had Amblyseius swirskii or other natural enemies. During three consecutive years, pest management was increasingly based on chemical treatments. Yet, ToLCNDV was widespread in zucchini greenhouses. Experimental results showed that the order of best strategy for virus suppressing was integrated management (73%) > biological control (58%) > chemical control (44%); and (4) Conclusions: IPM was the best strategy for virus suppression. The results can assist in the design of appropriate control strategies for chemical pesticide reduction and decision-making in pest management.


Assuntos
Begomovirus , Hemípteros/virologia , Controle de Insetos/métodos , Inseticidas , Controle Biológico de Vetores , Doenças das Plantas/prevenção & controle , Verduras/virologia , Animais , Cucurbita/virologia , Doenças das Plantas/virologia , Distribuição Aleatória , Espanha
19.
New Phytol ; 223(4): 2120-2133, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31059138

RESUMO

Plant viruses have been used as rapid and cost-effective expression vectors for heterologous protein expression in genomic studies. However, delivering large or multiple foreign proteins in monocots and insect pests is challenging. Here, we recovered a recombinant plant cytorhabdovirus, Barley yellow striate mosaic virus (BYSMV), for use as a versatile expression platform in cereals and the small brown planthopper (SBPH, Laodelphax striatellus) insect vector. We engineered BYSMV vectors to provide versatile expression platforms for simultaneous expression of three foreign proteins in barley plants and SBPHs. Moreover, BYSMV vectors could express the c. 600-amino-acid ß-glucuronidase (GUS) protein and a red fluorescent protein stably in systemically infected leaves and roots of cereals, including wheat, barley, foxtail millet, and maize plants. Moreover, we have demonstrated that BYSMV vectors can be used in barley to analyze biological functions of gibberellic acid (GA) biosynthesis genes. In a major technical advance, BYSMV vectors were developed for simultaneous delivery of CRISPR/Cas9 nuclease and single guide RNAs for genomic editing in Nicotiana benthamiana leaves. Taken together, our results provide considerable potential for rapid screening of functional proteins in cereals and planthoppers, and an efficient approach for developing other insect-transmitted negative-strand RNA viruses.


Assuntos
Grão Comestível/genética , Grão Comestível/virologia , Genoma de Planta , Genômica , Hemípteros/virologia , Vírus de Plantas/fisiologia , Rhabdoviridae/fisiologia , Animais , Sequência de Bases , DNA Complementar/genética , Edição de Genes , Vetores Genéticos/metabolismo , Glucuronidase/metabolismo , Hordeum/ultraestrutura , Hordeum/virologia , Folhas de Planta/virologia , Vírus de Plantas/ultraestrutura , RNA Guia de Cinetoplastídeos/metabolismo , Rhabdoviridae/ultraestrutura , Nicotiana/ultraestrutura , Nicotiana/virologia
20.
PLoS Pathog ; 15(2): e1007607, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30789967

RESUMO

Most plant viruses are vectored by insects and the interactions of virus-plant-vector have important ecological and evolutionary implications. Insect vectors often perform better on virus-infected plants. This indirect mutualism between plant viruses and insect vectors promotes the spread of virus and has significant agronomical effects. However, few studies have investigated how plant viruses manipulate plant defenses and promote vector performance. Begomoviruses are a prominent group of plant viruses in tropical and sub-tropical agro-ecosystems and are transmitted by whiteflies. Working with the whitefly Bemisia tabaci, begomoviruses and tobacco, we revealed that C2 protein of begomoviruses lacking DNA satellites was responsible for the suppression of plant defenses against whitefly vectors. We found that infection of plants by tomato yellow leaf curl virus (TYLCV), one of the most devastating begomoviruses worldwide, promoted the survival and reproduction of whitefly vectors. TYLCV C2 protein suppressed plant defenses by interacting with plant ubiquitin. This interaction compromised the degradation of JAZ1 protein, thus inhibiting jasmonic acid defense and the expression of MYC2-regulated terpene synthase genes. We further demonstrated that function of C2 protein among begomoviruses not associated with satellites is well conserved and ubiquitination is an evolutionarily conserved target of begomoviruses for the suppression of plant resistance to whitefly vectors. Taken together, these results demonstrate that ubiquitination inhibition by begomovirus C2 protein might be a general mechanism in begomovirus, whitefly and plant interactions.


Assuntos
Begomovirus/metabolismo , Hemípteros/metabolismo , Animais , Begomovirus/patogenicidade , Ciclopentanos/metabolismo , Hemípteros/virologia , Insetos Vetores/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Simbiose , Nicotiana/virologia , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA