Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.641
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Biosci (Landmark Ed) ; 29(2): 61, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38420817

RESUMO

BACKGROUND: Outbreaks of highly pathogenic avian influenza viruses cause huge economic losses to the poultry industry worldwide. Vaccines that can protect chickens from infections caused by various variants of highly pathogenic H5Nx avian influenza viruses are needed owing to the continuous emergence of new variants. We previously showed that vaccines containing the H5 cleavage-site peptide from clade 2.3.4.4. H5N6 avian influenza virus protects chickens from infection with homologous clade 2.3.4.4. H5N6 avian influenza virus, but not from infection with the heterologous clade 1 H5N1 avian influenza virus. Therefore, we developed bivalent peptide vaccines containing H5 cleavage sites of viruses from both clades to protect chickens from both H5N1 and H5N6 avian influenza viruses. METHODS: Chickens were vaccinated with two doses of a combined peptide vaccine containing cleavage-site peptides from clade 1 and clade 2.3.4.4. highly pathogenic H5N1 and H5N6 avian influenza viruses and then challenged with both viruses. The infected chickens were monitored for survival and their tracheae and cloacae were sampled to check for viral shedding based on the median tissue culture infectious dose of 50 (log10TCID50/mL) in Madin-Darby canine kidney cells. RESULTS: Antibody production was induced at similar levels in the sera of chickens immunized with two doses of the combined peptide vaccines containing cleavage-site peptides from highly pathogenic H5N1 and H5N6 avian influenza viruses. The immunized chickens were protected from infection with both H5N1 and H5N6 avian influenza viruses without viral shedding in the tracheae and cloacae. CONCLUSIONS: Dual-peptide vaccines containing cleavage-site peptides of both clades can protect chickens from highly pathogenic avian influenza virus infections.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Vacinas contra Influenza , Animais , Cães , Hemaglutininas , Galinhas , Vacinas de Subunidades Proteicas , Virus da Influenza A Subtipo H5N6 , Vacinas Combinadas , Peptídeos
2.
Virol J ; 21(1): 7, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178138

RESUMO

BACKGROUND: Oncolytic viruses are being studied and developed as novel cancer treatments. Using directed evolution technology, structural modification of the viral surface protein increases the specificity of the oncolytic virus for a particular cancer cell. Newcastle disease virus (NDV) does not show specificity for certain types of cancer cells during infection; therefore, it has low cancer cell specificity. Hemagglutinin is an NDV receptor-binding protein on the cell surface that determines host cell tropism. NDV selectivity for specific cancer cells can be increased by artificial amino acid changes in hemagglutinin neuraminidase HN proteins via directed evolution, leading to improved therapeutic effects. METHODS: Sialic acid-binding sites (H domains) of the HN protein mutant library were generated using error-prone PCR. Variants of the H domain protein were screened by enzyme-linked immunosorbent assay using HCT 116 cancer cell surface molecules. The mutant S519G H domain protein showed the highest affinity for the surface protein of HCT 116 cells compared to that of different types of cancer cells. This showed that the S519G mutant H domain protein gene replaced the same part of the original HN protein gene, and S519G mutant recombinant NDV (rNDV) was constructed and recovered. S519G rNDV cancer cell killing effects were tested using the MTT assay with various cancer cell types, and the tumor suppression effect of the S519G mutant rNDV was tested in a xenograft mouse model implanted with cancer cells, including HCT 116 cells. RESULTS: S519G rNDV showed increased specificity and enhanced killing ability of HCT 116 cells among various cancer cells and a stronger suppressive effect on tumor growth than the original recombinant NDV. Directed evolution using an artificial amino acid change in the NDV HN (S519G mutant) protein increased its specificity and oncolytic effect in colorectal cancer without changing its virulence. CONCLUSION: These results provide a new methodology for the use of directed evolution technology for more effective oncolytic virus development.


Assuntos
Neoplasias Colorretais , Vírus Oncolíticos , Humanos , Animais , Camundongos , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/metabolismo , Proteína HN/genética , Proteína HN/metabolismo , Neuraminidase/genética , Neuraminidase/metabolismo , Hemaglutininas , Ácido N-Acetilneuramínico/metabolismo , Células HCT116 , Vírus Oncolíticos/genética , Modelos Animais de Doenças , Proteínas de Membrana , Neoplasias Colorretais/terapia
3.
Emerg Microbes Infect ; 13(1): 2290838, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38044872

RESUMO

Classic chimeric hemagglutinin (cHA) was designed to induce immune responses against the conserved stalk domain of HA. However, it is unclear whether combining more than one HA head domain onto one stalk domain is immunogenic and further induce immune responses against influenza viruses. Here, we constructed numerous novel cHAs comprising two or three fuzed head domains from different subtypes grafted onto one stalk domain, designated as cH1-H3, cH1-H7, cH1-H3-H7, and cH1-H7-H3. The three-dimensional structures of these novel cHAs were modelled using bioinformatics simulations. Structural analysis showed that the intact neutralizing epitopes were exposed in cH1-H7 and were predicted to be immunogenic. The immunogenicity of the cHAs constructs was evaluated in mice using a chimpanzee adenoviral vector (AdC68) vaccine platform. The results demonstrated that cH1-H7 expressed by AdC68 (AdC68-cH1-H7) induced the production of high levels of binding antibodies, neutralizing antibodies, and hemagglutinin inhibition antibodies against homologous pandemic H1N1, drifted seasonal H1N1, and H7N9 virus. Moreover, vaccinated mice were fully protected from a lethal challenge with the aforementioned influenza viruses. Hence, cH1-H7 cHAs with potent immunogenicity might be a potential novel vaccine to provide protection against different subtypes of influenza virus.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Vacinas contra Influenza/genética , Anticorpos Antivirais , Vírus da Influenza A Subtipo H1N1/genética , Hemaglutininas , Anticorpos Neutralizantes , Glicoproteínas de Hemaglutininação de Vírus da Influenza
4.
Plant Biotechnol J ; 22(5): 1146-1163, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38038125

RESUMO

The unfolded protein response (UPR) allows cells to cope with endoplasmic reticulum (ER) stress induced by accumulation of misfolded proteins in the ER. Due to its sensitivity to Agrobacterium tumefaciens, the model plant Nicotiana benthamiana is widely employed for transient expression of recombinant proteins of biopharmaceutical interest, including antibodies and virus surface proteins used for vaccine production. As such, study of the plant UPR is of practical significance, since enforced expression of complex secreted proteins often results in ER stress. After 6 days of expression, we recently reported that influenza haemagglutinin H5 induces accumulation of UPR proteins. Since up-regulation of corresponding UPR genes was not detected at this time, accumulation of UPR proteins was hypothesized to be independent of transcriptional induction, or associated with early but transient UPR gene up-regulation. Using time course sampling, we here show that H5 expression does result in early and transient activation of the UPR, as inferred from unconventional splicing of NbbZIP60 transcripts and induction of UPR genes with varied functions. Transient nature of H5-induced UPR suggests that this response was sufficient to cope with ER stress provoked by expression of the secreted protein, as opposed to an antibody that triggered stronger and more sustained UPR activation. As up-regulation of defence genes responding to H5 expression was detected after the peak of UPR activation and correlated with high increase in H5 protein accumulation, we hypothesize that these immune responses, rather than the UPR, were responsible for onset of the necrotic symptoms on H5-expressing leaves.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Nicotiana/genética , Hemaglutininas , Resposta a Proteínas não Dobradas/genética , Estresse do Retículo Endoplasmático/genética
5.
Front Immunol ; 14: 1305937, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077380

RESUMO

Introduction: Nonhuman adenoviral (AdV) gene delivery platforms have significant value due to their ability to elude preexisting AdV vector immunity in most individuals. Previously, we have demonstrated that intranasal (IN) immunization of mice with BAd-H5HA, a bovine AdV type 3 (BAdV3) vector expressing H5N1 influenza virus hemagglutinin (HA), resulted in enhanced humoral and cell-mediated immune responses. The BAd-H5HA IN immunization resulted in complete protection following the challenge with an antigenically distinct H5N1 virus compared to the mouse group similarly immunized with HAd-H5HA, a human AdV type 5 (HAdV5) vector expressing HA. Methods: Here, we attempted to determine the activation of innate immune responses in the lungs of mice inoculated intranasally with BAd-H5HA compared to the HAd-H5HA-inoculated group. Results: RNA-Seq analyses of the lung tissues revealed differential expression (DE) of genes involved in innate and adaptive immunity in animals immunized with BAd-H5HA. The top ten enhanced genes were verified by RT-PCR. Consistently, there were transient increases in the levels of cytokines (IL-1α, IL-1ß, IL-5, TNF- α, LIF, IL-17, G-CSF, MIP-1ß, MCP-1, MIP-2, and GM-CSF) and toll-like receptors in the lungs of the group inoculated with BAdV vectors compared to that of the HAdV vector group. Conclusion: These results demonstrate that the BAdV vectors induce enhanced innate and adaptive immunity-related factors compared to HAdV vectors in mice. Thus, the BAdV vector platform could be an excellent gene delivery system for recombinant vaccines and cancer immunotherapy.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Animais , Bovinos , Camundongos , Humanos , Imunização , Imunidade Adaptativa , Vacinação , Hemaglutininas
6.
Microb Pathog ; 185: 106422, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871855

RESUMO

Pseudomonas aeruginosa is a Gram-negative bacteria and it has been demonstrated that immunization with the outer membrane proteins of the microbe produces most of the relevant human antibodies. The peritrichous P. aeruginosa strain with MSHA fimbriae (PA-MSHA strain) has been found to be effective in the inhibition of growth and proliferation of different types of cancer cells. Furthermore, it has been revealed that PA-MSHA exhibits cytotoxicity because of the presence of MSHA and therefore it possesses anti-carcinogenic ability against different types of human cancer cell lines including, gastric, breast, hepatocarcinoma and nasopharyngeal cells. Studies have revealed that PA-MSHA exhibits therapeutic potential against cancer growth by induction of apoptosis, arrest of cell cycle, activating NF-κB/TLR5 pathway, etc. In China, PA-MSHA injections have been approved for the treatment of malignant tumor patients from very long back. The present review article demonstrates the therapeutic potential of PA-MSHA against various types of human cancers and explains the underlying mechanism.


Assuntos
Neoplasias Hepáticas , Transdução de Sinais , Humanos , Pseudomonas aeruginosa/metabolismo , Hemaglutininas , Manose/metabolismo , Manose/farmacologia , Proliferação de Células , Neoplasias Hepáticas/patologia
7.
Mol Immunol ; 161: 91-103, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37531919

RESUMO

Influenza virus (IV) is a common pathogen affecting the upper respiratory tract, that causes various diseases. Secondary bacterial pneumonia is a common complication and a major cause of death in influenza patients. Streptococcus pneumoniae (S. pneumoniae) is the predominant co-infected bacteria in the pandemic, which colonizes healthy people but can cause diseases in immunocompromised individuals. Vaccination is a crucial strategy for avoiding infection, however, no universal influenza vaccine (UIV) that is resistant to multiple influenza viruses is available. Despite its limited immunogenicity, the hemagglutinin (HA) stem is a candidate peptide for UIV. ΔA146Ply (pneumolysin with a single deletion of A146) not only retains the Toll-like receptor 4 agonist effect but also is a potential vaccine adjuvant and a candidate protein for the S. pneumoniae vaccine. We constructed the fusion protein ΔA146Ply-HA stem and studied its immunoprotective effect in mice infection models. The results showed that intramuscular immunization of ΔA146Ply-HA stem without adjuvant could induce specific antibodies against HA stem and specific CD4+ T and CD8+ T cellular immunity in BALB/c and C57BL/6 mice, which could improve the survival rate of mice infected with IAV and co-infected with S. pneumoniae, but the protective effect on BALB/c mice was better than that on C57BL/6 mice. ΔA146Ply-HA stem serum antibody could protect BALB/c and C57BL/6 mice from IAV, and recognized HA polypeptides of H3N2, H5N1, H7N9, and H9N2 viruses. Moreover, ΔA146Ply-HA stem intramuscular immunization had a high safety profile with no obvious toxic side effects. The results indicated that coupling ΔA146Ply with influenza protein as a vaccine was a safe and effective strategy against the IV and secondary S. pneumoniae infection.


Assuntos
Coinfecção , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Streptococcus pneumoniae , Hemaglutininas , Vírus da Influenza A Subtipo H3N2 , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação , Anticorpos Antivirais , Camundongos Endogâmicos BALB C , Glicoproteínas de Hemaglutininação de Vírus da Influenza
8.
Sci Rep ; 13(1): 10780, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402780

RESUMO

The Arg-specific gingipains of Porphyromonas gingivalis RgpA and RgpB have 97% identical sequences in their catalytic domains yet their propeptides are only 76% identical. RgpA isolates as a proteinase-adhesin complex (HRgpA) which hinders direct kinetic comparison of RgpAcat as a monomer with monomeric RgpB. We tested modifications of rgpA identifying a variant that enabled us to isolate histidine-tagged monomeric RgpA (rRgpAH). Kinetic comparisons between rRgpAH and RgpB used benzoyl-L-Arg-4-nitroanilide with and without cysteine and glycylglycine acceptor molecules. With no glycylglycine, values of Km, Vmax, kcat and kcat/Km for each enzyme were similar, but with glycylglycine Km decreased, Vmax increased and kcat increased ~ twofold for RgpB but ~ sixfold for rRgpAH. The kcat/Km for rRgpAH was unchanged whereas that of RgpB more than halved. Recombinant RgpA propeptide inhibited rRgpAH and RgpB with Ki 13 nM and 15 nM Ki respectively slightly more effectively than RgpB propeptide which inhibited rRgpAH and RgpB with Ki 22 nM and 29 nM respectively (p < 0.0001); a result that may be attributable to the divergent propeptide sequences. Overall, the data for rRgpAH reflected observations previously made by others using HRgpA, indicating rRgpAH fidelity and confirming the first production and isolation of functional affinity tagged RgpA.


Assuntos
Cisteína Endopeptidases , Peptídeo Hidrolases , Cisteína Endopeptidases Gingipaínas , Cisteína Endopeptidases/metabolismo , Adesinas Bacterianas/química , Domínio Catalítico , Porphyromonas gingivalis/metabolismo , Hemaglutininas/química
9.
Front Cell Infect Microbiol ; 13: 1166158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424788

RESUMO

Twenty-two atypical enteroaggregative Escherichia coli isolates from a previous epidemiological study harboring EAEC virulence genes were examined for their adhesion properties. Nine strains showed a typical aggregative adherence (AA) pattern, while 13 strains showed variant AA, such as AA with lined up cells characteristic of the chain-like adhesion (CLA) and AA mainly to HeLa cells characteristic of the diffuse adherence (DA). The aggregative forming pilus (AFP) genes afpA2 and afpR were detected only in strain Q015B, which exhibited an AA/DA pattern. Using Tn5-based transposon mutagenesis on Q015B strain, we identified a 5517-bp open reading frame (ORF) encoding a predicted 1838-amino-acid polypeptide that is genetically related to a putative filamentous hemagglutinin identified in E. coli strain 7-233-03_S3_C2. Therefore, the ORF was named orfHA. The regions flanking orfHA were sequenced and two ORFs were found; upstream, an ORF that encodes a 603-amino-acid polypeptide with 99% identity to hemolysin secretion/activation proteins of the ShlB/FhaC/HecB family, and downstream, another ORF, which encodes a 632-amino-acid polypeptide with 72% identity to the glycosyltransferase EtpC. An orfHA mutant (Q015BΔorfHA) was constructed from strain Q015B. Q015BΔorfHA strain did not adhere to HeLa cells, whereas Q015BΔ orfHA transformed with a pACYC184 plasmid carrying orfHA restored the AA/DA phenotype of strain Q015B. Furthermore, the Q015ΔorfHA mutant had a marked effect on the ability of strain Q015B to kill the larvae of Galleria mellonella. Our results suggest that the AA/DA pattern of strain Q015B is mediated by a hemagglutinin-associated protein which also contributes to its virulence in the G. mellonella model.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli/metabolismo , Hemaglutininas/metabolismo , Células HeLa , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Virulência/genética , Adesão Celular , Aderência Bacteriana/genética , Infecções por Escherichia coli/genética , Mutagênese
10.
Front Immunol ; 14: 1212007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426651

RESUMO

Pure red cell aplasia (PRCA) is a serious complication after ABO-mismatched allogeneic hematopoietic stem cell transplantation (HSCT). Following HSCT, persistent anti-donor isohemagglutinins against donor ABO antigens are considered the immunological cause of PRCA. Patients with post-transplant PRCA are at risk for graft rejection and prolonged red blood cell transfusion dependency. No standard treatment exists. Recently however, the anti-CD38 monoclonal antibody daratumumab has been reported to be an effective treatment for post-transplant PRCA in patients with complete donor chimerism. Here, we describe the first case of PRCA in a patient with mixed lymphoid patient/donor chimerism that was successfully treated with daratumumab. This is also the first report of a transplant recipient with sickle cell disease who was treated with this relatively new approach. Fourteen months post-transplantation and twelve months after treatment with daratumumab, our patient has a normal complete blood count and the anti-donor isohemagglutinins remain undetectable despite mixed lymphoid chimerism. Mixed chimerism is a common manifestation in adult patients with sickle cell disease transplanted with non-myeloablative conditioning and a matched sibling donor. The application of non-myeloablative HSCT for patients with sickle cell disease is steadily increasing. Therefore, the incidence of PRCA in this setting might also increase. As the risk of graft rejection due to PRCA can be especially high in patients with mixed chimerism, clinicians should be aware that daratumumab can be an effective treatment in the setting of mixed chimerism.


Assuntos
Anemia Falciforme , Transplante de Células-Tronco Hematopoéticas , Aplasia Pura de Série Vermelha , Adulto , Humanos , Hemaglutininas , Quimerismo , Anticorpos Monoclonais/uso terapêutico , Aplasia Pura de Série Vermelha/tratamento farmacológico , Aplasia Pura de Série Vermelha/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Anemia Falciforme/complicações , Anemia Falciforme/terapia
11.
Commun Biol ; 6(1): 600, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270623

RESUMO

Excessive inflammation is a postulated cause of severe disease and death in respiratory virus infections. In response to severe influenza virus infection, adoptively transferred naïve hemagglutinin-specific CD4+ T cells from CD4+ TCR-transgenic 6.5 mice drive an IFN-γ-producing Th1 response in wild-type mice. It helps in virus clearance but also causes collateral damage and disease aggravation. The donor 6.5 mice have all the CD4+ T cells with TCR specificity toward influenza hemagglutinin. Still, the infected 6.5 mice do not suffer from robust inflammation and grave outcome. The initial Th1 response wanes with time, and a prominent Th17 response of recent thymic emigrants alleviates inflammation and bestows protection in 6.5 mice. Our results suggest that viral neuraminidase-activated TGF-ß of the Th1 cells guides the Th17 evolution, and IL-17 signaling through the non-canonical IL-17 receptor EGFR activates the scaffold protein TRAF4 more than TRAF6 during alleviation of lung inflammation in severe influenza.


Assuntos
Influenza Humana , Pneumonia , Camundongos , Animais , Humanos , Hemaglutininas , Interleucina-17 , Fator 4 Associado a Receptor de TNF , Interferon gama , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T , Inflamação , Receptores ErbB
12.
Front Immunol ; 14: 1181688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377966

RESUMO

Objective: To study the effect of an injection of Pseudomonas aeruginosa mannose-sensitive hemagglutinin (PA-MSHA) on inflammation and immune function in patients with upper urinary tract calculi complicated by infection who have undergone percutaneous nephrolithotomy. Methods: We retrospectively recorded the clinical data of patients with upper urinary tract calculi complicated by infection who have undergone Percutaneous nephrolithotomy(PCNL) in the Department of Urology, 2nd Affiliation Hospital of Kunming Medical University, from March to December 2021. Clinical data include general condition, laboratory index, CT, postoperative body temperature, heart rate, respiration, SIRS, sepsis, etc. Patients were divided into treated and control groups according to whether they had received a preoperative PA-MSHA injection. The two groups were compared for indices of inflammation and complications of infection after PCNL. Pre- and post-operative lymphocyte subsets and immunoglobulin changes were compared. Results: 115 patients were included in the study, including 43 in the treatment group and 72 in the control group. After Propensity Score Matching, 90 patients were divided into treatment (n=35) and control (n=55) groups. The postoperative inflammation index was higher in the treatment group than in the control group (P<0.05). The incidence of postoperative SIRS was higher in the treatment group than control (P<0.05). There were no cases of sepsis in either group. The double-positive T cells lymphocyte subsets were higher in the treatment group than in the control group ((P<0.05). Pre- and post-operative changes in immune function: total T lymphocyte count reduced, NK and NKT cell count increased in the control group, double-positive T cell count increased in the treatment group, IgG, IgA, IgM, complement C3 and C4 count reduced in both groups post-operatively. Conclusion: This study found that patients with upper urinary tract calculi and infection treated with antibiotic-based PA-MSHA before percutaneous nephrolithotomy had an increased inflammatory response after surgery, which may play a role in the prevention and treatment of sepsis. The percentage of double-positive T cells in the peripheral blood was increased after PA-MSHA treatment, which may have an immunomodulatory and protective effect in PCNL patients with stones complicated by infection.


Assuntos
Cálculos Renais , Nefrolitotomia Percutânea , Sepse , Sistema Urinário , Humanos , Nefrolitotomia Percutânea/efeitos adversos , Hemaglutininas , Manose , Pseudomonas aeruginosa , Estudos Retrospectivos , Sepse/etiologia , Inflamação/etiologia , Imunidade
13.
J Virol ; 97(5): e0034023, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37166307

RESUMO

Measles virus (MeV), the causative agent of measles, is an enveloped RNA virus of the family Paramyxoviridae, which remains an important cause of childhood morbidity and mortality. MeV has two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. During viral entry or virus-mediated fusion between infected cells and neighboring susceptible cells, the head domain of the H protein initially binds to its receptors, signaling lymphocytic activation molecule family member 1 (SLAM) and nectin-4, and then the stalk region of the H protein transmits the fusion-triggering signal to the F protein. MeV may persist in the human brain and cause a fatal neurodegenerative disease, subacute sclerosing panencephalitis (SSPE). Recently, we showed, using in vitro cell culture, that cell adhesion molecule (CADM) 1 and CADM2 are host factors that trigger hyperfusogenic mutant F proteins, causing cell-to-cell fusion and the transfer of the MeV genome between neurons. Unlike conventional receptors, CADM1 and CADM2 interact in cis (on the same membrane) with the H protein and then trigger membrane fusion. Here, we show that alanine substitutions in part of the stalk region (positions 171-175) abolish the ability of the H protein to mediate membrane fusion triggered by CADM1 and CADM2, but not by SLAM. The recombinant hyperfusogenic MeV carrying this mutant H protein loses its ability to spread in primary mouse neurons as well as its neurovirulence in experimentally infected suckling hamsters. These results indicate that CADM1 and CADM2 are key molecules for MeV propagation in the brain and its neurovirulence in vivo. IMPORTANCE Measles is an acute febrile illness with skin rash. Despite the availability of highly effective vaccines, measles is still an important cause of childhood morbidity and mortality in many countries. The World Health Organization estimates that more than 120,000 people died from measles worldwide in 2021. Measles virus (MeV), the causative agent of measles, can also cause a fatal progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. There is currently no effective treatment for this disease. In this study, using recombinant MeVs with altered receptor usage patterns, we show that cell adhesion molecule (CADM) 1 and CADM2 are host factors critical for MeV spread in neurons and its neurovirulence. These findings further our understanding of the molecular mechanism of MeV neuropathogenicity.


Assuntos
Sarampo , Doenças Neurodegenerativas , Panencefalite Esclerosante Subaguda , Cricetinae , Humanos , Camundongos , Animais , Vírus do Sarampo/fisiologia , Panencefalite Esclerosante Subaguda/genética , Hemaglutininas/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteínas Recombinantes/metabolismo , Neurônios , Molécula 1 de Adesão Celular/metabolismo
14.
J Cancer Res Clin Oncol ; 149(12): 9903-9918, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37249647

RESUMO

BACKGROUND: Canine distemper virus (CDV) has been shown to have oncolytic activity against primary canine tumors. Previous studies from this laboratory had confirmed that CDV induces apoptosis in canine mammary tumor (CMT) cells, although the molecular mechanism remains unknown. METHODS: The CDV N, P, M, F, H, L, C, and V genes were identified in CDV-L and cloned separately. Mutants with deletions in the 5' region (pCMV-F L△60, pCMV-FL△107, and pCMV-FL△114) or with site-directed mutagenesis in the 3' region (pCMV-FLA602-610) of the F gene were generated. Late-stage apoptotic cells were detected by Hoechst 33342. Early-stage apoptotic cells were detected by AnnexinV-FITC/PI. Quantitative real-time PCR was performed to detect the mRNA levels of target genes of apoptotic and NF-κB pathway. Western blot analysis was performed to detect the expression or phosphorylation levels of target proteins of apoptotic or NF-κB pathway. Immunofluorescence assay was performed to detect the nuclear translocation of p65 protein. Recombinant viruses (rCDV-FL△60 and rCDV-FLA602-610) were rescued by a BHK-T7-based system. 5-week-old female BALB/c nude mice were used to detect the oncolytic activity of recombinant viruses. RESULTS: In this study, it was first confirmed that none of the structural or non-structural proteins of CDV-L, a vaccine strain, was individually able to induce apoptosis in canine mammary tubular adenocarcinoma cells (CIPp) or intraductal papillary carcinoma cells (CMT-7364). However, when CIPp or CMT-7364 cells were co-transfected with glycoprotein fusion (F) and hemagglutinin (H) proteins of CDV-L, nuclear fragmentation was observed and a high proportion of early apoptotic cells were detected, as well as cleaved caspase-3, caspase-8 and poly (ATP ribose) polymerase (PARP). Cleaved caspase-3 and PARP were down-regulated by apoptosis broad-spectrum inhibitor Z-VAD-FMK and caspase-8 pathway inhibitor Z-IETD-FMK, confirming that the F and H proteins coinduced apoptosis in CMT cells via the caspase-8 and caspase-3 pathways. F and H proteins co-induced phosphorylation of p65 and IκBα and nuclear translocation of p65, confirming activation of the NF-κB pathway, inhibition of which down-regulated cleaved caspase-3 and cleaved PARP. Recombinant F protein with enhanced fusion activity and H protein co-induced more cleaved caspase-3 and PARP than parental F protein, while the corresponding recombinant virus exhibited the same properties both in CIPp cells and in a subcutaneous xenograft mouse model. CONCLUSIONS: F and H proteins of CDV-L co-induce apoptosis in CMT cells, while the NF-κB pathway and fusion activity of F protein paly essential roles in the process.


Assuntos
Neoplasias da Mama , Vírus da Cinomose Canina , Feminino , Animais , Cães , Humanos , Camundongos , Caspase 3 , Vírus da Cinomose Canina/genética , Hemaglutininas/genética , Caspase 8 , NF-kappa B , Camundongos Nus , Inibidores de Poli(ADP-Ribose) Polimerases , Apoptose
15.
Biophys Chem ; 299: 107028, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37247572

RESUMO

The glycoprotein spikes of membrane-enveloped viruses include a subunit that catalyzes fusion (joining) of the viral and target cell membranes. For influenza virus, this is subunit 2 of hemagglutinin which has a âˆ¼ 20-residue N-terminal fusion peptide (Fp) region that binds target membrane. An outstanding question is whether there are associated membrane changes important for fusion. Several computational studies have found increased "protrusion" of lipid acyl chains near Fp, i.e. one or more chain carbons are closer to the aqueous region than the headgroup phosphorus. Protrusion may accelerate initial joining of outer leaflets of the two membranes into a stalk intermediate. In this study, higher protrusion probability in membrane with vs. without Fp is convincingly detected by larger Mn2+-associated increases in chain 13C NMR transverse relaxation rates (Γ2's). Data analysis provides a ratio Γ2,neighbor/Γ2,distant for lipids neighboring vs. more distant from the Fp. The calculated ratio depends on the number of Fp-neighboring lipids and the experimentally-derived range of 4 to 24 matches the range of increased protrusion probabilities from different simulations. For samples either with or without Fp, the Γ2 values are well-fitted by an exponential decay as the 13C site moves closer to the chain terminus. The decays correlate with free-energy of protrusion proportional to the number of protruded -CH2 groups, with free energy per -CH2 of ∼0.25 kBT. The NMR data support one major fusion role of the Fp to be much greater protrusion of lipid chains, with highest protrusion probability for chain regions closest to the headgroups.


Assuntos
Hemaglutininas , Orthomyxoviridae , Hemaglutininas/análise , Hemaglutininas/metabolismo , Membrana Celular/química , Peptídeos/química , Orthomyxoviridae/metabolismo , Lipídeos/química , Fusão de Membrana
16.
Trop Anim Health Prod ; 55(3): 209, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37202581

RESUMO

The current study was conducted to evaluate the immunoenhancement effect of Moringa oleifera leaves alcoholic extract (MOLE) versus Oregano essential oil (OEO) against cyclophosphamide induced immunosuppression in broilers chicks. A total of a three hundred one-day-old chicks were assigned randomly into three main dietary groups, control, MOLE, and OEO for 14 days. After 14 days the three main experimental groups were subdivided into six groups, control, cyclophosphamide, MOLE, MOLE and Cyclophosphamide, OEO, and OEO and cyclophosphamide. Each group of these six groups was subdivided into three subgroups. Supplementation of broiler chicks with MOLE and OEO for 14 days significantly increased body weight compared to the control group. However, injection of broiler chicks with cyclophosphamide significantly induced body weight loss, impaired immunological response represented by decreasing total leukocytic count, differential leukocytic count, phagocytic activity, phagocytic index, and hemagglutinin inhibition titer for New Castle disease virus, lymphoid organs depletion, and increased the mortality rate. In contrast, supplementation of cyclophosphamide treated chicks with MOLE and OEO significantly reduced cyclophosphamide induced body weight loss and impaired immunological responses, as it showed significant increase in body weight, total leukocytic count, differential leukocytic count, phagocytic activity, phagocytic index, and hemagglutinin inhibition titer for New Castle disease virus, lymphoid organs proliferation, and reduced the mortality rate. This study indicated that MOLE and OEO supplementation ameliorated cyclophosphamide induced body weight loss and impaired immunological responses.


Assuntos
Moringa oleifera , Óleos Voláteis , Origanum , Animais , Óleos Voláteis/farmacologia , Galinhas , Adjuvantes Imunológicos/farmacologia , Hemaglutininas , Ciclofosfamida/toxicidade , Peso Corporal , Terapia de Imunossupressão/veterinária , Redução de Peso
17.
Arch Microbiol ; 205(6): 253, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37254016

RESUMO

Newcastle disease has been endemic within the Iranian poultry industry for decades. However, the genetic nature of the circulating Hemagglutinin-Neuraminidase (HN) gene among Iranian domesticated bird populations is broadly unexplored. The presented study was carried out to gain insights into the biological and molecular characterization of four complete HN genes isolated from turkey, peacock, and broiler isolates in Iran between 2018 and 2020. The phylogenetic analysis revealed that the isolates belong to the Newcastle disease virus (NDV) subgenotype VII.1.1, previously known as VIIL. Further analysis demonstrated the thermostable substitutions S315P and I369V within the isolates. Finding the N-glycosylation site (NIS) at positions 144-146 and the cysteine residue 123 might influence the fusogenicity abilities of the isolates, while identification of multiple amino acid substitutions in both antigenic sites, especially I514V and E347Q, and the binding sites of the HN protein, raised concern about the pathogenicity of the isolates. In addition, the annual rate of change based on the HN gene of Iranian NDV was calculated at about 1.8088E-3 between 2011 and 2020. In conclusion, a new NDV variant with multiple site mutagenesis is circulating not only among chickens but also in turkey and captive birds such as peafowls, and failure of routine vaccination programs could be attributed to the differences between circulating NDV strains and those used in vaccine manufacturing. Therefore, future legislation aimed at providing vaster vaccination cover and biosecurity plans will be needed to control the spread of circulating NDV strains.


Assuntos
Galinhas , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/genética , Filogenia , Neuraminidase , Hemaglutininas/genética , Irã (Geográfico) , Genótipo , Proteínas Virais/genética
18.
Viruses ; 15(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112882

RESUMO

The fusion of viral and cell membranes is one of the basic processes in the life cycles of viruses. A number of enveloped viruses confer fusion of the viral envelope and the cell membrane using surface viral fusion proteins. Their conformational rearrangements lead to the unification of lipid bilayers of cell membranes and viral envelopes and the formation of fusion pores through which the viral genome enters the cytoplasm of the cell. A deep understanding of all the stages of conformational transitions preceding the fusion of viral and cell membranes is necessary for the development of specific inhibitors of viral reproduction. This review systematizes knowledge about the results of molecular modeling aimed at finding and explaining the mechanisms of antiviral activity of entry inhibitors. The first section of this review describes types of viral fusion proteins and is followed by a comparison of the structural features of class I fusion proteins, namely influenza virus hemagglutinin and the S-protein of the human coronavirus.


Assuntos
Infecções por Coronavirus , Coronavirus , Orthomyxoviridae , Humanos , Proteínas Virais de Fusão/metabolismo , Coronavirus/metabolismo , Hemaglutininas/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Fusão de Membrana , Orthomyxoviridae/metabolismo , Internalização do Vírus
19.
J Biol Chem ; 299(6): 104765, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121546

RESUMO

Influenza hemagglutinin (HA) is a prototypical class 1 viral entry glycoprotein, responsible for mediating receptor binding and membrane fusion. Structures of its prefusion and postfusion forms, embodying the beginning and endpoints of the fusion pathway, have been extensively characterized. Studies probing HA dynamics during fusion have begun to identify intermediate states along the pathway, enhancing our understanding of how HA becomes activated and traverses its conformational pathway to complete fusion. HA is also the most variable, rapidly evolving part of influenza virus, and it is not known whether mechanisms of its activation and fusion are conserved across divergent viral subtypes. Here, we apply hydrogen-deuterium exchange mass spectrometry to compare fusion activation in two subtypes of HA, H1 and H3. Our data reveal subtype-specific behavior in the regions of HA that undergo structural rearrangement during fusion, including the fusion peptide and HA1/HA2 interface. In the presence of an antibody that inhibits the conformational change (FI6v3), we observe that acid-induced dynamic changes near the epitope are dampened, but the degree of protection at the fusion peptide is different for the two subtypes investigated. These results thus provide new insights into variation in the mechanisms of influenza HA's dynamic activation and its inhibition.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Orthomyxoviridae , Humanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Hemaglutininas , Concentração de Íons de Hidrogênio , Influenza Humana , Orthomyxoviridae/metabolismo , Peptídeos
20.
Curr Microbiol ; 80(5): 188, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37074450

RESUMO

Our previous studies found that the H1-50 monoclonal antibody (mAb) of influenza A virus hemagglutinin (HA) cross-reacted with pancreatic tissue and islet ß-cells, and further studies showed that H1-50 mAb binds to prohibitin (PHB) protein of islet ß-cells. These suggest that there are heterophilic epitopes between influenza virus HA and pancreatic tissue, which may be involved in the pathogenesis of type 1 diabetes. To further investigate these heterophilic epitopes, we screened binding epitopes of H1-50 mAb using a phage 12-peptide library. DNA sequencing and comparative analysis were performed on specific positive phage clones, and the sequence of 12-peptide binding to H1-50 mAb was obtained. The binding epitopes of H1-50 mAb in influenza virus HA were determined by sequence analysis and experimental verification, and their distribution within the three-dimensional structure was assessed by PyMOL. The results showed that H1-50 mAb specifically binds to polypeptides (306-SLPFQNIHPITIGK-319) of influenza A virus HA, located in the stem of the HA protein. However, there is no specific binding sequence between H1-50 mAb and the PHB protein of islet ß-cells in the primary structure, and we speculate that the binding of H1-50 mAb to islet ß-cells may depend on the spatial conformation. The identification of the heterophilic epitopes of H1N1 influenza virus hemagglutinin provides a new perspective on type 1 diabetes that may be caused by influenza virus infection, which may contribute to the prevention and control of influenza.


Assuntos
Diabetes Mellitus Tipo 1 , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Epitopos/química , Epitopos/genética , Hemaglutininas , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Anticorpos Antivirais , Anticorpos Monoclonais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA