Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.355
Filtrar
1.
Sci Rep ; 14(1): 11240, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755191

RESUMO

Nao-an Dropping Pill (NADP) is a Chinese patent medicine which commonly used in clinic for ischemic stroke (IS). However, the material basis and mechanism of its prevention or treatment of IS are unclear, then we carried out this study. 52 incoming blood components were resolved by UHPLC-MS/MS from rat serum, including 45 prototype components. The potential active prototype components hydroxysafflor yellow A, ginsenoside F1, quercetin, ferulic acid and caffeic acid screened by network pharmacology showed strongly binding ability with PIK3CA, AKT1, NOS3, NFE2L2 and HMOX1 by molecular docking. In vitro oxygen-glucose deprivation/reperfusion (OGD/R) experimental results showed that NADP protected HA1800 cells from OGD/R-induced apoptosis by affecting the release of LDH, production of NO, and content of SOD and MDA. Meanwhile, NADP could improve behavioral of middle cerebral artery occlusion/reperfusion (MCAO/R) rats, reduce ischemic area of cerebral cortex, decrease brain water and glutamate (Glu) content, and improve oxidative stress response. Immunohistochemical results showed that NADP significantly regulated the expression of PI3K, Akt, p-Akt, eNOS, p-eNOS, Nrf2 and HO-1 in cerebral ischemic tissues. The results suggested that NADP protects brain tissues and ameliorates oxidative stress damage to brain tissues from IS by regulating PI3K/Akt/eNOS and Nrf2/HO-1 signaling pathways.


Assuntos
AVC Isquêmico , Fator 2 Relacionado a NF-E2 , Óxido Nítrico Sintase Tipo III , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/prevenção & controle , Ratos , Fosfatidilinositol 3-Quinases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Ratos Sprague-Dawley , Estresse Oxidativo/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Apoptose/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular
2.
Mol Biol Rep ; 51(1): 608, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704766

RESUMO

BACKGROUND: Tacrolimus (TAC) is a frequently used immunosuppressive medication in organ transplantation. However, its nephrotoxic impact limits its long-term usage. This study aims to investigate the effect of linagliptin (Lina) on TAC-induced renal injury and its underlying mechanisms. METHODS AND RESULTS: Thirty-two Sprague Dawley rats were treated with TAC (1.5 mg/kg/day, subcutaneously) and/or Lina (5 mg/kg/day, orally) for 4 weeks. Histological examination was conducted, and serum and urinary biomarkers were measured to assess kidney function and integrity. Furthermore, ELISA, Western blot analysis and immunohistochemical assay were employed to determine signaling molecules of oxidative stress, profibrogenic, hypoxic, and apoptotic proteins. Tacrolimus caused renal dysfunction and histological deterioration evidenced by increased serum creatinine, blood urea nitrogen (BUN), urinary cystatin C, and decreased serum albumin as well as elevated tubular injury and interstitial fibrosis scores. Additionally, TAC significantly increased the expression of collagen type-1, alpha-smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), and transforming growth factor-beta1 (TGF-ß1) renal content. Moreover, TAC decreased the expression of nuclear factor erythroid-2-related factor2 (Nrf2), heme oxygenase 1 (HO-1), and mitochondrial superoxide dismutase (SOD2). In addition, TAC increased protein expression of hypoxia-inducible factor1-alpha (HIF-1α), connective tissue growth factor (CTGF), inducible nitric oxide synthase (iNOS), 8-hydroxy-2-deoxyguanosine (8-OHdG), as well as nitric oxide (NO), 4-hydroxynonenal, caspase-3 and Bax renal contents. Furthermore, TAC decreased Bcl-2 renal contents. The Lina administration markedly attenuated these alterations. CONCLUSION: Lina ameliorated TAC-induced kidney injury through modulation of oxidative stress, hypoxia, and apoptosis related proteins.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Subunidade alfa do Fator 1 Induzível por Hipóxia , Rim , Linagliptina , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Ratos Sprague-Dawley , Tacrolimo , Animais , Tacrolimo/farmacologia , Ratos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Linagliptina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Masculino , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Transdução de Sinais/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Imunossupressores/farmacologia
3.
Front Immunol ; 15: 1379967, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585264

RESUMO

Heme degradation by the heme oxygenase (HMOX) family of enzymes is critical for maintaining homeostasis and limiting heme-induced tissue damage. Macrophages express HMOX1 and 2 and are critical sites of heme degradation in healthy and diseased states. Here we review the functions of the macrophage heme oxygenase system and its clinical relevance in discrete groups of pathologies where heme has been demonstrated to play a driving role. HMOX1 function in macrophages is essential for limiting oxidative tissue damage in both acute and chronic hemolytic disorders. By degrading pro-inflammatory heme and releasing anti-inflammatory molecules such as carbon monoxide, HMOX1 fine-tunes the acute inflammatory response with consequences for disorders of hyperinflammation such as sepsis. We then discuss divergent beneficial and pathological roles for HMOX1 in disorders such as atherosclerosis and metabolic syndrome, where activation of the HMOX system sits at the crossroads of chronic low-grade inflammation and oxidative stress. Finally, we highlight the emerging role for HMOX1 in regulating macrophage cell death via the iron- and oxidation-dependent form of cell death, ferroptosis. In summary, the importance of heme clearance by macrophages is an active area of investigation with relevance for therapeutic intervention in a diverse array of human diseases.


Assuntos
Heme Oxigenase (Desciclizante) , Heme , Humanos , Heme Oxigenase (Desciclizante)/metabolismo , Heme/metabolismo , Relevância Clínica , Macrófagos/metabolismo , Ferro/metabolismo , Inflamação/metabolismo
4.
Int Immunopharmacol ; 132: 111994, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581992

RESUMO

Acute liver failure (ALF) is a potentially fatal disorder characterized by extensive hepatocyte necrosis and rapid decline in liver function. Numerous factors, including oxidative stress, cell death, and inflammatory responses, are associated with its pathogenesis. Endotoxin tolerance (ET) refers to the phenomenon in which the body or cells exhibit low or no response to high-dose lipopolysaccharide (LPS) stimulation after pre-stimulation with low-dose LPS. However, the specific mechanism through which ET regulates LPS/D-galactosamine (D-GalN)-induced ALF remains unclear. An ALF mouse model was established by intraperitoneal injection of D-GalN (400 mg/kg) and LPS (10 mg/kg). A low dose of LPS (0.1 mg/kg/d) was continuously administered to mice for 5 d before modeling to assess the protective effect of ET. The data from this study showed that ET alleviated the inflammatory response in mice with LPS/D-GalN-induced ALF. ET inhibited LPS-induced oxidative damage and pyroptosis in macrophages in vitro. RNA sequencing analysis showed that the NF-κB/NLRP3 pathway was linked to the anti-inflammatory and antioxidative effects of ET. Furthermore, using western blot, RT-qPCR, and immunofluorescence, we verified that ET inhibited the NF-κB/NLRP3 pathway and triggered the Nrf2/HO-1 signaling pathway to attenuate oxidative stress and cell pyroptosis. Sirt1 knockdown reversed this protective effect. In summary, our research elucidates that ET prevents ALF advancement by upregulating Sirt1 levels, triggering the Nrf2/HO-1 signaling axis, and suppressing the NF-κB/NLRP3 signaling cascade to inhibit oxidative stress and cell pyroptosis. Our results provide a mechanistic explanation for the protective effect of ET against ALF.


Assuntos
Galactosamina , Lipopolissacarídeos , Falência Hepática Aguda , Fator 2 Relacionado a NF-E2 , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/imunologia , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/tratamento farmacológico , Camundongos , NF-kappa B/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Modelos Animais de Doenças , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase (Desciclizante)/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Endotoxinas/toxicidade , Tolerância Imunológica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Fígado/imunologia , Sirtuína 1/metabolismo , Sirtuína 1/genética , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia
5.
J Biochem Mol Toxicol ; 38(2): e23648, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348705

RESUMO

Chronic liver diseases caused by various factors may develop into liver fibrosis (LF). Early stage of LF could be reversible. Tanshinone IIA (Tan IIA), an extract from Salvia miltiorrhiza, has been reported to be hepatoprotective. However, the potential targets and mechanism of Tan IIA in the treatment of LF are still unclear. Our study aims at the anti-LF mechanism of Tan IIA through network pharmacological analysis combined with LF-related experiments. Serum biochemical indicators and histopathological examination showed that Tan IIA could ameliorate the process of LF in the CCl4 -induced mouse model. Western blot and immunohistochemical assays showed that Tan IIA decreased the expression of Kirsten rat sarcoma viral oncogene homolog (KRAS), phosphatidylinositide 3-kinases/protein kinase B (PI3K/Akt), and nuclear factor erythroid 2-related factor/heme oxygenase-1 (Nrf2/HO-1). Compared with the model group, the Tan IIA groups increased the decreased superoxide dismutase activity and glutathione content, while decreasing the increased malondialdehyde content. These results indicate that Tan IIA may play an antioxidant role by inhibiting the expression of KRAS, PI3K/Akt, and Nrf2/HO-1 to ameliorate the progression of LF, which to some extent explains the pharmacological mechanism of Tan IIA in LF. In conclusion, our study demonstrates that Tan IIA could regulate LF via PI3K/Akt and Nrf2/HO-1 signaling pathways. It may be an effective therapeutic compound for the treatment of LF.


Assuntos
Abietanos , Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Heme Oxigenase (Desciclizante)/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais
6.
Epigenetics ; 19(1): 2293409, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38232183

RESUMO

Long noncoding RNAs (lncRNAs) regulate the progression of type 2 diabetes mellitus complicated with obstructive sleep apnoea (T2DM-OSA). However, the role of the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in T2DM-OSA remains unknown. This study aimed to reveal the function of NEAT1 in T2DM-OSA and the underlying mechanism. KKAy mice were exposed to intermittent hypoxia (IH) or intermittent normoxia to generate a T2DM-OSA mouse model. HMEC-1 cells were treated with high glucose (HG) and IH to construct a T2DM-OSA cell model. RNA expression was detected by qRT-PCR. The protein expression of Apelin, NF-E2-related factor 2 (Nrf2), haem oxygenase-1 (HO-1), and up-frameshift suppressor 1 (UPF1) was assessed using western blot. Cell injury was evaluated using flow cytometry, enzyme-linked immunosorbent assay, and oxidative stress kit assays. RIP, RNA pull-down, and actinomycin D assays were performed to determine the associations between NEAT1, UPF1, and Apelin. NEAT1 expression was upregulated in the aortic vascular tissues of mice with T2DM exposed to IH and HMEC-1 cells stimulated with HG and IH, whereas Apelin expression was downregulated. The absence of NEAT1 protected HMEC-1 cells from HG- and IH-induced damage. Furthermore, NEAT1 destabilized Apelin mRNA by recruiting UPF1. Apelin overexpression decreased HG- and IH-induced injury to HMEC-1 cells by activating the Nrf2/HO-1 pathway. Moreover, NEAT1 knockdown reduced HG- and IH-induced injury to HMEC-1 cells through Apelin. NEAT1 silencing reduced HMEC-1 cell injury through the Apelin/Nrf2/HO-1 signalling pathway in T2DM-OSA.Abbreviations: LncRNAs, long non-coding RNAs; T2DM, type 2 diabetes mellitus; OSA, obstructive sleep apnoea; NEAT1, nuclear paraspeckle assembly transcript 1; IH, intermittent hypoxia; HMEC-1, human microvascular endothelial cells; HG, high glucose; Nrf2, NF-E2-related factor 2; UPF1, up-frameshift suppressor 1; HO-1, haem oxygenase-1; qRT-PCR, quantitative real-time polymerase chain reaction; ELISA, enzyme-linked immunosorbent assay; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; TNF-α, tumour necrosis factor-α; CCK-8, Cell Counting Kit-8; IL-1ß, interleukin-1ß; ROS, reactive oxygen species; MDA, malondialdehyde; SOD, superoxide dismutase; RIP, RNA immunoprecipitation; SD, standard deviations; GSH, glutathione; AIS, acute ischaemic stroke; HMGB1, high mobility group box-1 protein; TLR4, toll-like receptor 4.


Assuntos
Isquemia Encefálica , Diabetes Mellitus Tipo 2 , RNA Helicases , RNA Longo não Codificante , Apneia Obstrutiva do Sono , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , Apelina/genética , Apelina/metabolismo , Isquemia Encefálica/complicações , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Metilação de DNA , Células Endoteliais/metabolismo , Glucose , Heme Oxigenase (Desciclizante)/metabolismo , Hipóxia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/genética , Apneia Obstrutiva do Sono/metabolismo , Acidente Vascular Cerebral/complicações , Transativadores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Pharmacol Rep ; 75(6): 1610-1618, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37874531

RESUMO

BACKGROUND: Gaseous neurotransmitters have been thought to be novel factors involved in the mechanisms of mental disorders pathogenesis for quite some time. However, little is known about the potential crosstalk between neuronal gasotransmitter signaling and neuroleptics action. The present work was, therefore, focused on gene expression of H2S and CO-producing enzymes in the brains of rats chronically treated with olanzapine, an atypical antipsychotic drug. METHODS: Studies were carried out on adult, male Sprague-Dawley rats that were divided into 2 groups: control and experimental animals treated with olanzapine (28-day-long intraperitoneal injection, at a dose of 5 mg/kg daily). All individuals were sacrificed under anesthesia and the whole brains excised. Immunohistochemical procedure was used for histological assessment of the whole brain and for quantitative analysis of cystathionine ß-synthase (CBS) and heme oxygenase 2 (HO-2) protein distribution in selected brain structures. RESULTS: Long-term treatment with olanzapine is reflected in different changes in the number of enzymes-expressing cells in the rat brain. Olanzapine decreased the number of CBS-expressing cells and possibly reduced H2S synthesis in the hippocampus and striatum. The antipsychotic administration increased the number of HO-2 immunopositive cells and probably stimulated the CO production in the hippocampus. CONCLUSIONS: Modulatory effect of olanzapine on cellular mechanisms of gasotransmitter synthesis may be an alternative way of their pharmacological action.


Assuntos
Antipsicóticos , Gasotransmissores , Sulfeto de Hidrogênio , Animais , Masculino , Ratos , Antipsicóticos/farmacologia , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Gasotransmissores/metabolismo , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Hipocampo , Sulfeto de Hidrogênio/metabolismo , Olanzapina/farmacologia , Ratos Sprague-Dawley
8.
Free Radic Biol Med ; 207: 133-143, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37459935

RESUMO

Biliverdin is one of the three by-products of heme oxygenase (HO) activity, the others being ferrous iron and carbon monoxide. Under physiological conditions, once formed in the cell, BV is reduced to bilirubin (BR) by the biliverdin reductase (BVR). However, if BVR is inhibited by either genetic variants, as occurs in the Inuit ethnicity, or dioxin intoxication, BV accumulates in cells giving rise to a clinical syndrome known as green jaundice. Preclinical studies have demonstrated that BV not only has a direct antioxidant effect by scavenging free radicals, but also targets many signal transduction pathways, such as BVR, soluble guanylyl cyclase, and the aryl hydrocarbon receptor. Through these direct and indirect mechanisms, BV has shown beneficial roles in ischemia/reperfusion-related diseases, inflammatory diseases, graft-versus-host disease, viral infections and cancer. Unfortunately, no clinical data are available to confirm these potential therapeutic effects and the kinetics of exogenous BV in humans is unknown. These limitations have so far excluded the possibility of transforming BV from a mere by-product of heme degradation into a disease-modifying agent. A closer collaboration between basic and clinical researchers would be advantageous to overcome these issues and promote translational research on BV in free radical-induced diseases.


Assuntos
Bilirrubina , Biliverdina , Humanos , Biliverdina/metabolismo , Bilirrubina/metabolismo , Antioxidantes/metabolismo , Cinética , Heme/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo
9.
Free Radic Biol Med ; 205: 188-201, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37302617

RESUMO

Kidneys are pivotal organ in iron redistribution and can be severely damaged in the course of hemolysis. In our previous studies, we observed that induction of hypertension with angiotensin II (Ang II) combined with simvastatin administration results in a high mortality rate or the appearance of signs of kidney failure in heme oxygenase-1 knockout (HO-1 KO) mice. Here, we aimed to address the mechanisms underlying this effect, focusing on heme and iron metabolism. We show that HO-1 deficiency leads to iron accumulation in the renal cortex. Higher mortality of Ang II and simvastatin-treated HO-1 KO mice coincides with increased iron accumulation and the upregulation of mucin-1 in the proximal convoluted tubules. In vitro studies showed that mucin-1 hampers heme- and iron-related oxidative stress through the sialic acid residues. In parallel, knock-down of HO-1 induces the glutathione pathway in an NRF2-depedent manner, which likely protects against heme-induced toxicity. To sum up, we showed that heme degradation during heme overload is not solely dependent on HO-1 enzymatic activity, but can be modulated by the glutathione pathway. We also identified mucin-1 as a novel redox regulator. The results suggest that hypertensive patients with less active HMOX1 alleles may be at higher risk of kidney injury after statin treatment.


Assuntos
Heme Oxigenase-1 , Hipertensão , Camundongos , Animais , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Angiotensina II/metabolismo , Mucina-1/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Sinvastatina/efeitos adversos , Sinvastatina/metabolismo , Rim/metabolismo , Ferro/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/metabolismo , Heme/metabolismo , Glutationa/metabolismo
10.
Sci Rep ; 13(1): 10091, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344532

RESUMO

Heme, an iron-containing prosthetic group found in many proteins, carries out diverse biological functions such as electron transfer, oxygen storage and enzymatic reactions. Hemin, the oxidised form of heme, is used to treat porphyria and also to activate heme-oxygenase (HO) which catalyses the rate-limiting step in heme degradation. Our group has previously demonstrated that hemin displays antitumor activity in breast cancer (BC). The aim of this work has been to study the effect of hemin on protein expression modifications in a BC cell line to gain insight into the molecular mechanisms of hemin antitumor activity. For this purpose, we carried out proteome analysis by Mass Spectrometry (MS) which showed that 1309 proteins were significantly increased in hemin-treated cells, including HO-1 and the proteases that regulate HO-1 function, and 921 proteins were significantly decreased. Furthermore, the MS-data analysis showed that hemin regulates the expression of heme- and iron-related proteins, adhesion and cytoskeletal proteins, cancer signal transduction proteins and enzymes involved in lipid metabolism. By biochemical and cellular studies, we further corroborated the most relevant in-silico results. Altogether, these results show the multiple physiological effects that hemin treatment displays in BC and demonstrate its potential as anticancer agent.


Assuntos
Neoplasias da Mama , Hemina , Humanos , Feminino , Hemina/farmacologia , Heme Oxigenase-1/metabolismo , Proteômica , Heme Oxigenase (Desciclizante)/metabolismo , Heme/metabolismo , Ferro/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-37119961

RESUMO

Cetaceans exhibit physiological adaptations that allowed the transition to aquatic life, including a robust antioxidant defense system that prevents injury from repeated exposure to ischemia/reperfusion events associated with breath-hold diving. The signaling cascades that characterize ischemic inflammation in humans are well characterized. In contrast, cetaceans' molecular and biochemical mechanisms that confer tolerance to inflammatory events are poorly understood. Heme oxygenase (HO) is a cytoprotective protein with anti-inflammatory properties. HO catalyzes the first step in the oxidative degradation of heme. The inducible HO-1 isoform is regulated by various stimuli, including hypoxia, oxidant stress, and inflammatory cytokines. The objective of this study was to compare the response of HO-1 and cytokines to a proinflammatory challenge in leukocytes isolated from humans and bottlenose dolphins (Tursiops truncatus). We measured changes in HO activity, and abundance and expression of interleukin 1 beta (IL-1ß), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and heme oxygenase 1 (HMOX1) in leukocytes treated with lipopolysaccharide (LPS) for 24 and 48 h. HO activity increased (p < 0.05) in dolphin (48 h) but not human cells. TNF-α expression increased in human (24 h, 48 h), but not dolphin cells following LPS stimulation. LPS-induced cytokine expression was lower in dolphin than in human leukocytes, suggesting a blunted cytokine response in bottlenose dolphin leukocytes treated with LPS. Results suggest species-specific regulation of inflammatory cytokines in leukocytes treated with LPS, which may lead to differential responses to a pro-inflammatory challenge between marine and terrestrial mammals.


Assuntos
Citocinas , Golfinhos , Humanos , Animais , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Golfinhos/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Interleucina-6/metabolismo , Leucócitos/metabolismo
12.
J Biol Chem ; 299(5): 104648, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965616

RESUMO

IsdG-type enzymes catalyze the noncanonical degradation of heme to iron, staphylobilin (SB), and formaldehyde (HCHO), presumably by binding heme in an unusually distorted conformation. Their unique mechanism has been elucidated for MhuD from Mycobacterium tuberculosis, revealing an unusual ring opening of hydroxyheme by dioxygenation. A similar mechanism has been postulated for other IsdG enzymes; however, MhuD, which is special as an IsdG-type enzyme, retains a formyl group in the linearized tetrapyrrole. Recent reports on Staphylococcus aureus IsdG have suggested the formation of SB retaining a formyl group (formyl-SB), but its identification is preliminary. Furthermore, the reaction properties of formyl-SB and the mechanism of HCHO release remain unclear. In this study, the complex reaction of S. aureus IsdG was reexamined to elucidate its mechanism, including the identification of reaction products and their control mechanisms. Depending on the reaction conditions, IsdG produced both SB and formyl-SB as the main product, the latter of which was isolated and characterized by MS and NMR measurements. The formyl-SB product was generated upon the reaction between hydroxyheme-IsdG and O2 without reduction, indicating the dioxygenation mechanism as found for MhuD. Under reducing conditions, hydroxyheme-IsdG was converted also to SB and HCHO by activating another O2 molecule. These results provide the first overview of the complicated IsdG reaction. The heme distortion in the IsdG-type enzymes is shown to generally promote ring cleavage by dioxygenation. The presence or absence of HCHO release can be influenced by many factors, and the direct identification of S. aureus heme catabolites is of interest.


Assuntos
Formaldeído , Heme Oxigenase (Desciclizante) , Heme , Staphylococcus aureus , Catálise , Formaldeído/metabolismo , Heme/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Staphylococcus aureus/enzimologia , Mycobacterium tuberculosis/metabolismo
13.
J Periodontal Res ; 58(3): 634-645, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919895

RESUMO

BACKGROUND AND OBJECTIVE: Plaque-induced gingival inflammation (gingivitis) is ubiquitous in humans. The epithelial barrier reacts to the presence of oral bacteria and induces inflammatory cascades. The objective of this study was to investigate the mechanism by which the small molecule micronutrient curcumin could decrease inflammatory response in vitro to oral bacterium heat-killed Fusobacterium nucleatum as curcumin could be a useful compound for combatting gingivitis already consumed by humans. METHODS: H400 oral epithelial cell line was pre-conditioned with curcumin and the production of cytokines was measured by enzyme-linked immunosorbent assay (ELISA) and translocation of transcription factors was used to monitor inflammatory responses. Haem oxygenase (HO-1) expression and molecules that HO-1 releases were evaluated for their potential to reduce the quantity of cytokine production. Immunofluorescence microscopy and Western blotting were used to evaluate changes in transcription factor and enzyme location. RESULTS: Pre-conditioning of H400 cells with a sub-apoptotic concentration of curcumin (20 µM) attenuated secretion of Granulocyte-Macrophage - Colony-Stimulating Factor (GM-CSF) and reduced NFkB nuclear translocation. This pre-conditioning caused an increase in nuclear Nrf2; an initial drop (at 8 h) followed by an adaptive increase (at 24 h) in glutathione; and an increase in haem oxygenase (HO-1) expression. Inhibition of HO-1 by SnPPIX prevented the curcumin-induced attenuation of GM-CSF production. HO-1 catalyses the breakdown of haem to carbon monoxide, free iron and biliverdin: the HO-1/CO anti-inflammatory pathway. Elevations in carbon monoxide, achieved using carbon monoxide releasing molecule-2 (CORM2) treatment alone abrogated F. nucleatum-induced cytokine production. Biliverdin is converted to bilirubin by biliverdin reductase (BVR). This pleiotropic protein was found to increase in cell membrane expression upon curcumin treatment. CONCLUSION: Curcumin decreased inflammatory cytokine production induced by Fusobacterium nucleatum in H400 oral epithelial cells. The mechanism of action appears to be driven by the increase of haem oxygenase and the production of carbon monoxide.


Assuntos
Curcumina , Gengivite , Humanos , Curcumina/farmacologia , Heme Oxigenase-1/metabolismo , Citocinas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Biliverdina/farmacologia , Monóxido de Carbono/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Células Epiteliais/metabolismo
14.
Cell Mol Biol (Noisy-le-grand) ; 68(6): 92-97, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36227671

RESUMO

The study aimed to investigate the influence of heme oxygenase-1 (HO-1) on rats with diabetic retinopathy (DR) through the extracellular signal-regulated kinase (ERK) 1/2 signaling pathway. 40 rats were selected and divided into Control group (n=10), diabetes mellitus (DM) group (n=10), cobalt protoporphyrin (CoPP) group (n=10) and zinc protoporphyrin (ZnPP) group (n=10) according to weight. Streptozotocin (STZ) was intraperitoneally injected to establish the DM model in DM, CoPP and ZnPP groups, and CoPP and ZnPP solution was intraperitoneally injected in CoPP and ZnPP groups, respectively. Blood was drawn to determine fasting blood glucose. The changes in the protein and messenger ribonucleic acid (mRNA) levels were evaluated via Western blotting and polymerase chain reaction (qRT-PCR), respectively. Enzyme-linked immunosorbent assay (ELISA) was performed to measure antioxidant capacity and the levels of total reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and glutathione peroxidase (GPx). The weight of rats was notably higher in the CoPP group and lower inZnPP group than in the DM group (p<0.05). After induction of DM, compared with those in the DM group, the protein expression levels of Nrf2 and pERK were considerably elevated in the CoPP group (p<0.05) but declined remarkably in the ZnPP group (p<0.05). The levels of total ROS and MDA were notably elevated (p<0.05) in DM and ZnPP groups, with a lowered level of GPx and distinctly elevated levels of MDA and total ROS (p<0.05). Moreover, the mRNA expression level of HO-1 in the retinas of rats was remarkably raised in the DM group and CoPP group (p<0.05), but it declined markedly in the ZnPP group (p<0.05). The red fluorescent aggregation of Nrf2 and pERK proteins was overtly less in the ZnPP group than that in the DM group (p<0.05). HO-1 can affect the level of oxidative stress and intervene in retinopathy in DM rats through the Nrf2/ERK pathway.


Assuntos
Retinopatia Diabética , Heme Oxigenase-1 , Animais , Antioxidantes/metabolismo , Glicemia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Sistema de Sinalização das MAP Quinases , Malondialdeído , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Transdução de Sinais , Estreptozocina
15.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231029

RESUMO

OBJECTIVE: NOV/CCN3 is an adipocytokine recently linked to obesity, insulin resistance, and cardiometabolic dysfunction. NOV is manufactured and secreted from adipose tissue, with blood levels highly correlated with BMI. NOV levels are increased in obesity and a myriad of inflammatory diseases. Elevated NOV levels cause oxidative stress by increasing free radicals, decreasing antioxidants, and decreasing heme oxygenase (HO-1) levels, resulting in decreased vascular function. Silencing NOV in NOV knockout mice improved insulin sensitivity. We wanted to study how suppressing NOV expression in an obese animal model affected pathways and processes related to obesity, inflammation, and cardiometabolic function. This is the first study to investigate the interaction of adipose tissue-specific NOV/CCN3 and cardiometabolic function. METHODS: We constructed a lentivirus containing the adiponectin-promoter-driven shNOV to examine the effect of NOV inhibition (shNOV) in adipose tissue on the heart of mice fed a high-fat diet. Mice were randomly divided into three groups (five per group): (1) lean (normal diet), (2) high-fat diet (HFD)+ sham virus, and (3) HFD + shNOV lentivirus. Blood pressure, tissue inflammation, and oxygen consumption were measured. Metabolic and mitochondrial markers were studied in fat and heart tissues. RESULTS: Mice fed an HFD developed adipocyte hypertrophy, fibrosis, inflammation, and decreased mitochondrial respiration. Inhibiting NOV expression in the adipose tissue of obese mice by shNOV increased mitochondrial markers for biogenesis (PGC-1α, the nuclear co-activator of HO-1) and functional integrity (FIS1) and insulin signaling (AKT). The upregulation of metabolic and mitochondrial markers was also evident in the hearts of the shNOV mice with the activation of mitophagy. Using RNA arrays, we identified a subgroup of genes that highly correlated with increased adipocyte mitochondrial autophagy in shNOV-treated mice. A heat map analysis in obese mice confirmed that the suppression of NOV overrides the genetic susceptibility of adiposity and the associated detrimental metabolic changes and correlates with the restoration of anti-inflammatory, thermogenic, and mitochondrial genes. CONCLUSION: Our novel findings demonstrate that inhibiting NOV expression improves adipose tissue function in a positive way in cardiometabolic function by inducing mitophagy and improving mitochondrial function by the upregulation of PGC-1α, the insulin sensitivity signaling protein. Inhibiting NOV expression increases PGC-1, a key component of cardiac bioenergetics, as well as key signaling components of metabolic change, resulting in improved glucose tolerance, improved mitochondrial function, and decreased inflammation. These metabolic changes resulted in increased oxygen consumption, decreased adipocyte size, and improved cardiac metabolism and vascular function at the structural level. The crosstalk of the adipose tissue-specific deletion of NOV/CCN3 improved cardiovascular function, representing a novel therapeutic strategy for obesity-related cardiometabolic dysfunction.


Assuntos
Doenças Cardiovasculares , Resistência à Insulina , Insulinas , Adipocinas/metabolismo , Adiponectina/metabolismo , Animais , Doenças Cardiovasculares/genética , Glucose , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase (Desciclizante)/uso terapêutico , Inflamação , Resistência à Insulina/genética , Insulinas/metabolismo , Insulinas/uso terapêutico , Camundongos , Camundongos Knockout , Camundongos Obesos , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/genética , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA/metabolismo
16.
Comput Intell Neurosci ; 2022: 3690524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059402

RESUMO

Renal interstitial fibrosis is a common pathological feature of a variety of kidney diseases that progress to end-stage renal disease. The excessive deposition of extracellular matrix (ECM) is a typical pathological change of renal interstitial fibrosis. The production of reactive oxygen species in renal tubules is an important factor leading to the development of renal interstitial fibrosis. Ursolic acid (UA) is a natural pentacyclic triterpene carboxylic acid compound widely found in plants. It has anti-inflammatory, antioxidant, and antitumor cell proliferation effects. It can reduce the development of fibrosis by inhibiting the oxidative stress response of the liver; there is currently no relevant research on whether UA can protect the renal interstitial fibrosis by resisting oxidative stress in the kidneys. In this study, our purpose is to investigate the effect of ursolic acid on renal interstitial fibrosis after unilateral ureteral obstruction (UUO) in rats and its related mechanisms. We established a UUO model by surgically ligating the right ureter of the rat and instilling UA preparation (40 mg/kg/d) through the stomach after the operation, once a day for 7 days. We found that UUO caused impaired renal function, increased pathological damage, increased renal interstitial fibrosis, increased apoptosis, increased oxidative stress damage, and decreased antioxidants. However, after UA preparations were given, the abovementioned damage was significantly improved. At the same time, we also found that UA preparations can significantly increase the relative expression of Nrf2/HO-1 signaling pathway in kidney tissue after UUO. In order to further verify whether the Nrf2/HO-1 signaling pathway is involved in the development of renal interstitial fibrosis, we injected zinc protoporphyrin (ZnPP, 45 umol/kg), a specific blocker of the Nrf2/HO-1 signaling pathway, into the intraperitoneal cavity after UUO in rats and before the gastric perfusion of ursolic acid preparations. Subsequently, we observed that the protective effect of UA on renal interstitial fibrosis after UUO in rats was reversed. Combining all the research results, we proved that UA has a protective effect on renal interstitial fibrosis after UUO in rats, which may be achieved by activating the Nrf2/HO-1 signaling pathway.


Assuntos
Nefropatias , Obstrução Ureteral , Animais , Antioxidantes/farmacologia , Fibrose , Heme Oxigenase (Desciclizante)/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Nefropatias/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/análogos & derivados , Ratos , Transdução de Sinais , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Ácido Ursólico
17.
Exp Aging Res ; 48(5): 428-443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36102206

RESUMO

BACKGROUND: Epigallocatechin-3-gallate (EGCG) has neuroprotection on chronic cerebral hypoperfusion (CCH) against oxidative stress. HO-1 may represent a target for treatment with CCH. This study aimed to observe the effect of EGCG on cognition impaired in a rat model with CCH and investigate the mechanism. METHODS: Sprague-Dawley rat models of CCH were established using the 2-VO procedures. Novel object recognition and Morris water maze tests were determined the effects of EGCG on the impaired cognitive functions; HE staining was for detecting the histopathological changes; oxidative stress was assessed by measuring MDA, SOD levels and HO-1 activity. Western blots were for the expression of HO-1, PI3K, Akt (p-Akt), and Nrf2. RESULTS: After EGCG treatment, the rats with CCH by 2-VO spent obviously longer time exploring the novel objects, had significantly shorter escape latency and better spatial exploring ability. Meanwhile, EGCG reduced the histopathological changes. Moreover, EGCG increased the concentration of SOD and the activity of HO-1, but decreased the MDA contents. Furthermore, EGCG treatment induced the expression of PI3K, p-Akt, Nrf2, and HO-1 protein, and they were partly reversed by the LY294002, siRNA-Nrf2, or ZnPP. CONCLUSIONS: EGCG has a neuroprotective effect on rat impaired cognition induced by CCH, possibly by modulating the PI3K/AKT/Nrf2/HO-1 pathway.


Assuntos
Heme Oxigenase (Desciclizante)/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Envelhecimento , Animais , Catequina/análogos & derivados , Cognição , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia
18.
Life Sci ; 308: 120954, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36103960

RESUMO

AIMS: Asthma affects a large number of people worldwide and is characterized by chronic allergic airway inflammation. Anatabine is a natural alkaloid that is structurally similar to nicotine and found in the Solanaceae family of plants, with anti-inflammatory properties. Consequently, this study aimed to evaluate the potential therapeutic effect of anatabine against asthma. MAIN METHODS: Ovalbumin was used to induce asthma in rats. Two asthmatic groups were treated with low and high doses of anatabine. KEY FINDINGS: Asthmatic animals experienced increased total leukocyte count and inflammatory cytokines in bronchoalveolar lavage fluid (BALF), bronchitis, and bronchopneumonia associated with mast cell infiltration. Additionally, inducible nitric oxide synthase immunostaining was observed, with decreased pulmonary antioxidant capacity and enzymes and decreased Nrf2 and HO-1 gene expression while increased NFκB-P65 expression. Interestingly, asthmatic animals treated with anatabine at both doses showed dose-dependently decreased inflammatory cells and cytokine levels within BALF reduced inflammation in the airways through decreased mast cell infiltration within lung tissues and increased antioxidant enzymes and Nrf2 and Ho-1 expression levels. SIGNIFICANCE: Our results highlight the potential beneficial effect of anatabine against asthma through anti-inflammatory and antioxidant mechanisms. Therefore, anatabine is a promising candidate for pulmonary asthma treatment.


Assuntos
Alcaloides , Asma , Alcaloides/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Animais , Anti-Inflamatórios , Antioxidantes/metabolismo , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Pulmão/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Nicotina/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Ovalbumina , Estresse Oxidativo , Piridinas , Ratos , Regulação para Cima
19.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955444

RESUMO

Given the abundance of heme proteins (cytochromes) in the mitochondrion, it is evident that a meticulously orchestrated iron metabolism is essential for cardiac health. Here, we examined the functional significance of myocardial ferritin heavy chain (FtH) in a model of acute myocardial infarction. We report that FtH deletion did not alter either the mitochondrial regulatory and surveillance pathways (fission and fusion) or mitochondrial bioenergetics in response to injury. Furthermore, deletion of myocardial FtH did not affect cardiac function, assessed by measurement of left ventricular ejection fraction, on days 1, 7, and 21 post injury. To identify the modulated pathways providing cardiomyocyte protection coincident with FtH deletion, we performed unbiased transcriptomic analysis. We found that following injury, FtH deletion was associated with upregulation of several genes with anti-ferroptotic properties, including heme oxygenase-1 (HO-1) and the cystine/glutamate anti-porter (Slc7a11). These results suggested that HO-1 overexpression mitigates ferroptosis via upregulation of Slc7a11. Indeed, using transgenic mice with HO-1 overexpression, we demonstrate that overexpressed HO-1 is coupled with increased Slc7a11 expression. In conclusion, we demonstrate that following injury, myocardial FtH deletion leads to a compensatory upregulation in a number of anti-ferroptotic genes, including HO-1. Such HO-1 induction leads to overexpression of Slc7a11 and protects the heart against ischemia-reperfusion-mediated ferroptosis, preserves mitochondrial function, and overall function of the myocardium.


Assuntos
Apoferritinas , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Animais , Apoferritinas/genética , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/genética , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Volume Sistólico , Função Ventricular Esquerda
20.
Tissue Cell ; 78: 101877, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35930992

RESUMO

Hemorrhagic cystitis (HC) is considered a fatal complication of cyclophosphamide (CP). Down-regulation of Nrf2 and induction of pro-inflammatory mediators are the main pathological factors. Recently, ameliorative potential of the angiotensin II (AII) type-1 (AT1) receptor blocker olmesartan (OLM) on oxidative stress and inflammatory cytokines was reported. The current study aims to investigate the possible protective effect of OLM on CP-induced HC in Wistar rats. The animals were divided into the control group (0.5% W/V carboxymethylcellulose, p.o.); OLM group (20 mg/kg, p.o., for 21 days); CP group (a single dose of 100 mg/kg, i.p.); and the remaining groups that received CP i.p. with oral OLM 5, 10 and 20 mg/kg for 21 days, respectively. The bladder tissue was collected for histopathology, immunohistochemistry, ELISA, Western blot, and oxidative stress assay. The OLM at doses of 10 and 20 mg/kg attenuated increase in TNF-α, IL-6, NF-kB, iNOS, and COX-2 induced by CP. Additionally, it up-regulated the Nrf2/HO-1 pathway, bladder GSH content, and CAT and SOD activities. The data indicated that OLM inhibited ROS-induced NF-kB, which caused inhibition of pro-inflammatory cytokines and activation of the Nrf2/HO-1 pathway. Hence, OLM holds great promise for preventing CP-induced HC.


Assuntos
Cistite , Fator 2 Relacionado a NF-E2 , Angiotensina II/metabolismo , Animais , Carboximetilcelulose Sódica , Ciclo-Oxigenase 2 , Ciclofosfamida/toxicidade , Cistite/induzido quimicamente , Cistite/tratamento farmacológico , Cistite/patologia , Citocinas/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Imidazóis , Mediadores da Inflamação/metabolismo , Interleucina-6/farmacologia , NF-kappa B/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Transdução de Sinais , Superóxido Dismutase/metabolismo , Tetrazóis , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA