Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Pediatr Rheumatol Online J ; 18(1): 80, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33066778

RESUMO

BACKGROUND: Heme oxygenase-1 (HMOX1) catalyzes the metabolism of heme into carbon monoxide, ferrous iron, and biliverdin. Through biliverdin reductase, biliverdin becomes bilirubin. HMOX1-deficiency is a rare autosomal recessive disorder with hallmark features of direct antibody negative hemolytic anemia with normal bilirubin, hyperinflammation and features similar to macrophage activation syndrome. Clinical findings have included asplenia, nephritis, hepatitis, and vasculitis. Pulmonary features and evaluation of the immune response have been limited. CASE PRESENTATION: We present a young boy who presented with chronic respiratory failure due to nonspecific interstitial pneumonia following a chronic history of infection-triggered recurrent hyperinflammatory flares. Episodes included hemolysis without hyperbilirubinemia, immunodeficiency, hepatomegaly with mild transaminitis, asplenia, leukocytosis, thrombocytosis, joint pain and features of macrophage activation with negative autoimmune serologies. Lung biopsy revealed cholesterol granulomas. He was found post-mortem by whole exome sequencing to have a compound heterozygous paternal frame shift a paternal frame shift HMOX1 c.264_269delCTGG (p.L89Sfs*24) and maternal splice donor HMOX1 (c.636 + 2 T > A) consistent with HMOX1 deficiency. Western blot analysis confirmed lack of HMOX1 protein upon oxidant stimulation of the patient cells. CONCLUSIONS: Here, we describe a phenotype expansion for HMOX1-deficiency to include not only asplenia and hepatomegaly, but also interstitial lung disease with cholesterol granulomas and inflammatory flares with hemophagocytosis present in the bone marrow.


Assuntos
Anemia Hemolítica Congênita , Anemia Hemolítica , Transtornos do Crescimento , Heme Oxigenase-1/deficiência , Hepatomegalia/diagnóstico por imagem , Distúrbios do Metabolismo do Ferro , Insuficiência Respiratória , Baço , Anemia Hemolítica/diagnóstico , Anemia Hemolítica/genética , Anemia Hemolítica Congênita/sangue , Anemia Hemolítica Congênita/diagnóstico , Anemia Hemolítica Congênita/fisiopatologia , Anemia Hemolítica Congênita/terapia , Bilirrubina/sangue , Exame de Medula Óssea/métodos , Criança , Deterioração Clínica , Cuidados Críticos/métodos , Diagnóstico , Evolução Fatal , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética , Heme Oxigenase-1/genética , Humanos , Distúrbios do Metabolismo do Ferro/diagnóstico , Distúrbios do Metabolismo do Ferro/genética , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/fisiopatologia , Ativação de Macrófagos , Masculino , Nefrite/diagnóstico , Nefrite/etiologia , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/etiologia , Baço/diagnóstico por imagem , Baço/patologia
2.
PLoS One ; 15(10): e0240691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33057437

RESUMO

Adeno-associated viral (AAV) vectors are characterised by low immunogenicity, although humoral and cellular responses may be triggered upon infection. Following systemic administration high levels of vector particles accumulate within the liver. Kupffer cells (KCs) are liver resident macrophages and an important part of the liver innate immune system. Decreased functional activity of KCs can contribute to exaggerated inflammatory response upon antigen exposure. Heme oxygenase-1 (HO-1) deficiency is associated with considerably reduced numbers of KCs. In this study we aimed to investigate the inflammatory responses in liver and to characterise two populations of hepatic macrophages in adult wild type (WT) and HO-1 knockout (KO) mice following systemic administration of one or two doses (separated by 3 months) of self-complementary (sc)AAV9 vectors. At steady state, the livers of HO-1 KO mice contained significantly higher numbers of monocyte-derived macrophages (MDMs), but significantly less KCs than their WT littermates. Three days after re-administration of scAAV9 we observed increased mRNA level of monocyte chemoattractant protein-1 (Mcp-1) in the livers of both WT and HO-1 KO mice, but the protein level and the macrophage infiltration were not affected. Three days after the 1st and 3 days after the 2nd vector dose the numbers of AAV genomes in the liver were comparable between both genotypes indicating similar transduction efficiency, but the percentage of transgene-expressing MDMs and KCs was higher in WT than in HO-1 KO mice. In the primary culture, KCs were able to internalize AAV9 particles without induction of TLR9-mediated immune responses, but no transgene expression was observed. In conclusion, in vivo and in vitro cultured KCs have different susceptibility to scAAV9 vectors. Regardless of the presence or absence of HO-1 and initial numbers of KCs in the liver, scAAV9 exhibits a low potential to stimulate inflammatory response at the analysed time points.


Assuntos
Vetores Genéticos/metabolismo , Heme Oxigenase-1/deficiência , Inflamação/patologia , Fígado/patologia , Macrófagos/patologia , Animais , Células Cultivadas , Quimiocina CCL2/metabolismo , Dependovirus/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Heme Oxigenase-1/metabolismo , Humanos , Inflamação/sangue , Inflamação/genética , Interleucina-6/sangue , Células de Kupffer/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Transdução de Sinais/genética , Receptor Toll-Like 9/metabolismo , Transgenes
3.
Int J Mol Sci ; 21(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092142

RESUMO

In most mammals, neonatal intravascular hemolysis is a benign and moderate disorder that usually does not lead to anemia. During the neonatal period, kidneys play a key role in detoxification and recirculation of iron species released from red blood cells (RBC) and filtered out by glomeruli to the primary urine. Activity of heme oxygenase 1 (HO1), a heme-degrading enzyme localized in epithelial cells of proximal tubules, seems to be of critical importance for both processes. We show that, in HO1 knockout mouse newborns, hemolysis was prolonged despite a transient state and exacerbated, which led to temporal deterioration of RBC status. In neonates lacking HO1, functioning of renal molecular machinery responsible for iron reabsorption from the primary urine (megalin/cubilin complex) and its transfer to the blood (ferroportin) was either shifted in time or impaired, respectively. Those abnormalities resulted in iron loss from the body (excreted in urine) and in iron retention in the renal epithelium. We postulate that, as a consequence of these abnormalities, a tight systemic iron balance of HO1 knockout neonates may be temporarily affected.


Assuntos
Heme Oxigenase-1/deficiência , Hemólise , Ferro/metabolismo , Rim/metabolismo , Insuficiência Renal/metabolismo , Anemia/sangue , Anemia/terapia , Animais , Animais Recém-Nascidos , Contagem de Eritrócitos , Feminino , Heme/metabolismo , Heme Oxigenase-1/genética , Ferro/urina , Rim/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Insuficiência Renal/genética , Insuficiência Renal/terapia
4.
Antioxid Redox Signal ; 32(17): 1243-1258, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31861963

RESUMO

Aims: Bone is the most frequent site of prostate cancer (PCa) metastasis. Tumor cells interact with the bone microenvironment interrupting tissue balance. Heme oxygenase-1 (HO-1; encoded by Hmox1) appears as a potential target in PCa maintaining the cellular homeostasis. Our hypothesis is that HO-1 is implicated in bone physiology and modulates the communication with PCa cells. Here we aimed at (i) assessing the physiological impact of Hmox1 gene knockout (KO) on bone metabolism in vivo and (ii) determining the alterations of the transcriptional landscape associated with tumorigenesis and bone remodeling in cells growing in coculture (PCa cells with primary mouse osteoblasts [PMOs] from BALB/c Hmox1+/+, Hmox1+/-, and Hmox1-/- mice). Results: Histomorphometric analysis of Hmox1-/- mice bones exhibited significantly decreased bone density with reduced remodeling parameters. A positive correlation between Hmox1 expression and Runx2, Col1a1, Csf1, and Opg genes was observed in PMOs. Flow cytometry studies revealed two populations of PMOs with different reactive oxygen species (ROS) levels. The high ROS population was increased in PMOs Hmox1+/- compared with Hmox1+/+, but was significantly reduced in PMOs Hmox1-/-, suggesting restrained ROS tolerance in KO cells. Gene expression was altered in PMOs upon coculture with PCa cells, showing a pro-osteoclastic profile. Moreover, HO-1 induction in PCa cells growing in coculture with PMOs resulted in a significant modulation of key bone markers such as PTHrP and OPG. Innovation and Conclusion: We here demonstrate the direct implications of HO-1 expression in bone remodeling and how it participates in the alterations in the communication between bone and prostate tumor cells.


Assuntos
Neoplasias Ósseas/metabolismo , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Neoplasias Ósseas/secundário , Regeneração Óssea , Remodelação Óssea , Heme Oxigenase-1/deficiência , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
5.
EMBO Mol Med ; 11(12): e09571, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31709729

RESUMO

Granulocyte colony-stimulating factor (G-CSF) is used in clinical practice to mobilize cells from the bone marrow to the blood; however, it is not always effective. We show that cobalt protoporphyrin IX (CoPP) increases plasma concentrations of G-CSF, IL-6, and MCP-1 in mice, triggering the mobilization of granulocytes and hematopoietic stem and progenitor cells (HSPC). Compared with recombinant G-CSF, CoPP mobilizes higher number of HSPC and mature granulocytes. In contrast to G-CSF, CoPP does not increase the number of circulating T cells. Transplantation of CoPP-mobilized peripheral blood mononuclear cells (PBMC) results in higher chimerism and faster hematopoietic reconstitution than transplantation of PBMC mobilized by G-CSF. Although CoPP is used to activate Nrf2/HO-1 axis, the observed effects are Nrf2/HO-1 independent. Concluding, CoPP increases expression of mobilization-related cytokines and has superior mobilizing efficiency compared with recombinant G-CSF. This observation could lead to the development of new strategies for the treatment of neutropenia and HSPC transplantation.


Assuntos
Fator Estimulador de Colônias de Granulócitos/metabolismo , Granulócitos/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Heme Oxigenase-1/deficiência , Protoporfirinas/farmacologia , Animais , Feminino , Mobilização de Células-Tronco Hematopoéticas , Heme Oxigenase-1/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Oxid Med Cell Longev ; 2018: 2747018, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425781

RESUMO

Heme oxygenase-1 (HO-1) can exert anti-inflammatory and antioxidant effects. Acute lung injury (ALI) is associated with increased inflammation and influx of proinflammatory cells and mediators in the airspaces and lung parenchyma. In this study, we demonstrate that pterostilbene 4'-ß-glucoside (4-PG), the glycosylated form of the antioxidant pterostilbene (PTER), can protect against lipopolysaccharide- (LPS-) or Pseudomonas aeruginosa- (P. aeruginosa-) induced ALI when applied as a pretreatment or therapeutic post-treatment, via the induction of HO-1. To determine whether HO-1 mediates the antioxidant and anti-inflammatory effects of 4-PG, we subjected mice genetically deficient in Hmox-1 to LPS-induced ALI and evaluated histological changes, HO-1 expression, and proinflammatory cytokine levels in bronchoalveolar lavage (BAL) fluid. 4-PG exhibited protective effects on LPS- or P. aeruginosa-induced ALI by ameliorating pathological changes in lung tissue and decreasing proinflammatory cytokines. In addition, HO-1 expression was significantly increased by 4-PG in cells and in mouse lung tissues. The glycosylated form of pterostilbene (4-PG) was more effective than PTER in inducing HO-1 expression. Genetic deletion of Hmox-1 abolished the protective effects of 4-PG against LPS-induced inflammatory responses. Furthermore, we found that 4-PG decreased both intracellular ROS levels and mitochondrial (mt) ROS production in a manner dependent on HO-1. Pharmacological application of the HO-1 reaction product carbon monoxide (CO), but not biliverdin or iron, conferred protection in Hmox-1-deficient macrophages. Taken together, these results demonstrate that 4-PG can increase HO-1 expression, which plays a critical role in ameliorating intracellular and mitochondrial ROS production, as well as in downregulating inflammatory responses induced by LPS. Therefore, these findings strongly suggest that HO-1 mediates the antioxidant and anti-inflammatory effects of 4-PG.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/enzimologia , Glucosídeos/uso terapêutico , Heme Oxigenase-1/biossíntese , Estilbenos/uso terapêutico , Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Modelos Animais de Doenças , Indução Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Glucosídeos/química , Glucosídeos/farmacologia , Heme Oxigenase-1/deficiência , Heme Oxigenase-1/genética , Humanos , Inflamação/patologia , Lipopolissacarídeos , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pseudomonas aeruginosa , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estilbenos/química , Estilbenos/farmacologia , Regulação para Cima/efeitos dos fármacos
7.
Cell Rep ; 25(7): 1938-1952.e5, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428359

RESUMO

Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that controls inflammatory responses and redox homeostasis; however, its role during pulmonary tuberculosis (TB) remains unclear. Using freshly resected human TB lung tissue, we examined the role of HO-1 within the cellular and pathological spectrum of TB. Flow cytometry and histopathological analysis of human TB lung tissues showed that HO-1 is expressed primarily in myeloid cells and that HO-1 levels in these cells were directly proportional to cytoprotection. HO-1 mitigates TB pathophysiology by diminishing myeloid cell-mediated oxidative damage caused by reactive oxygen and/or nitrogen intermediates, which control granulocytic karyorrhexis to generate a zonal HO-1 response. Using whole-body or myeloid-specific HO-1-deficient mice, we demonstrate that HO-1 is required to control myeloid cell infiltration and inflammation to protect against TB progression. Overall, this study reveals that zonation of HO-1 in myeloid cells modulates free-radical-mediated stress, which regulates human TB immunopathology.


Assuntos
Radicais Livres/metabolismo , Heme Oxigenase-1/metabolismo , Tuberculose/imunologia , Tuberculose/patologia , Animais , Arginase/metabolismo , Linfócitos T CD4-Positivos/imunologia , Citocinas/metabolismo , Granuloma/patologia , Heme Oxigenase-1/deficiência , Humanos , Inflamação/patologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/fisiologia , Células Mieloides/enzimologia , Fator 2 Relacionado a NF-E2/metabolismo , Neutrófilos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Tuberculose/enzimologia , Tuberculose/microbiologia
8.
Blood Adv ; 2(20): 2732-2743, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30337301

RESUMO

Heme oxygenase 1 (HMOX1), the inducible enzyme that catabolizes the degradation of heme into biliverdin, iron, and carbon monoxide, plays an essential role in the clearance of senescent and damaged red blood cells, systemic iron homeostasis, erythropoiesis, vascular hemostasis, and oxidative and inflammatory stress responses. In humans, HMOX1 deficiency causes a rare and lethal disease, characterized by severe anemia, intravascular hemolysis, as well as vascular and tissue damage. Hmox1 knockout (KO) mice recapitulated the phenotypes of HMOX1-deficiency patients and could be rescued by bone marrow (BM) transplantation that engrafted donor's hematopoietic stem cells into the recipient animals after myeloablation. To find better therapy and elucidate the contribution of macrophages to the pathogenesis of HMOX1-deficiency disease, we infused wild-type (WT) macrophages into Hmox1 KO mice. Results showed that WT macrophages engrafted and proliferated in the livers of Hmox1 KO mice, which corrected the microcytic anemia, rescued the intravascular hemolysis, restored iron homeostasis, eliminated kidney iron overload and tissue damage, and provided long-term protection. These results showed that a single macrophage infusion delivered a long-term curative effect in Hmox1 KO mice, obviating the need for BM transplantation, and suggested that the HMOX1 disease stems mainly from the loss of viable reticuloendothelial macrophages. Our work provides new insights into the etiology of HMOX1 deficiency and demonstrates the potential of infusion of WT macrophages to prevent disease in patients with HMOX1 deficiency and potentially other macrophage-related diseases.


Assuntos
Anemia Hemolítica/complicações , Anemia/genética , Transtornos do Crescimento/complicações , Heme Oxigenase-1/deficiência , Hemólise/genética , Distúrbios do Metabolismo do Ferro/complicações , Fígado/fisiopatologia , Macrófagos/metabolismo , Animais , Humanos , Camundongos
9.
Oxid Med Cell Longev ; 2018: 9108483, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29849924

RESUMO

We found better liver graft regeneration with hypothermic machine perfusion (HMP) compared with static cold storage (SCS) for the first time in our pilot study, but the underlying mechanisms are unknown. Upregulated heme oxygenase- (HO-) 1 expression has been reported to play a pivotal role in promoting hepatocyte proliferation. Here, we evaluated the novel role of HO-1 in liver graft protection by HMP. Rats with a heterozygous knockout of HO-1 (HO-1+/-) were generated and subjected to 3 h of SCS or HMP pre-half-size liver transplantation (HSLT) in vivo or 6 h of SCS or HMP in vitro; control rats were subjected to the same conditions (HO-1+/+). We found that HSLT induced significant elevation of the HO-1 protein level in the regenerated liver and that HO-1 haplodeficiency resulted in decreased proliferation post-HSLT. Compared with SCS, HMP induced significant elevation of the HO-1 protein level along with better liver recovery, both of which were reduced by HO-1 haplodeficiency. HO-1 haplodeficiency-induced decreased proliferation was responsible for the attenuated regenerative ability of HMP. Mechanistically, HO-1 haploinsufficiency resulted in suppression of hepatocyte growth factor (HGF)/Akt activity. Our results suggest that inhibition of HO-1 mitigates HMP-induced liver recovery effects related to proliferation, in part, by downregulating the HGF-Akt axis.


Assuntos
Heme Oxigenase-1/genética , Hepatopatias/terapia , Regeneração Hepática/fisiologia , Transplante de Fígado , Animais , Heme Oxigenase-1/deficiência , Heme Oxigenase-1/metabolismo , Fator de Crescimento de Hepatócito/análise , Fator de Crescimento de Hepatócito/metabolismo , Interleucina-6/análise , Fígado/metabolismo , Fígado/patologia , Hepatopatias/patologia , Hepatopatias/veterinária , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Transdução de Sinais , Transplante Homólogo
10.
Circ Res ; 122(11): 1532-1544, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29669713

RESUMO

RATIONALE: To date, our understanding of the role of HO-1 (heme oxygenase-1) in inflammatory diseases has mostly been limited to its catalytic function and the potential for its heme-related catabolic products to suppress inflammation and oxidative stress. Whether and how HO-1 in macrophages plays a role in the development of septic cardiac dysfunction has never been explored. OBJECTIVE: Here, we investigated the role of macrophage-derived HO-1 in septic cardiac dysfunction. METHODS AND RESULTS: Intraperitoneal injection of lipopolysaccharide significantly activated HO-1 expression in cardiac infiltrated macrophages. Surprisingly, we found that myeloid conditional HO-1 deletion in mice evoked resistance to lipopolysaccharide-triggered septic cardiac dysfunction and lethality in vivo, which was accompanied by reduced cardiomyocyte apoptosis in the septic hearts and decreased peroxynitrite production and iNOS (inducible NO synthase) in the cardiac infiltrated macrophages, whereas proinflammatory cytokine production and macrophage infiltration were unaltered. We further demonstrated that HO-1 suppression abolished the lipopolysaccharide-induced iNOS protein rather than mRNA expression in macrophages. Moreover, we confirmed that the inhibition of HO-1 promoted iNOS degradation through a lysosomal rather than proteasomal pathway in macrophages. Suppression of the lysosomal degradation of iNOS by bafilomycin A1 drove septic cardiac dysfunction in myeloid HO-1-deficient mice. Mechanistically, we demonstrated that HO-1 interacted with iNOS at the flavin mononucleotide domain, which further prevented iNOS conjugation with LC3 (light chain 3) and subsequent lysosomal degradation in macrophages. These effects were independent of HO-1's catabolic products: ferrous ion, carbon monoxide, and bilirubin. CONCLUSIONS: Our results indicate that HO-1 in macrophages drives septic cardiac dysfunction. The mechanistic insights provide potential therapeutic targets to treat septic cardiac dysfunction.


Assuntos
Cardiopatias/enzimologia , Heme Oxigenase-1/metabolismo , Lisossomos/metabolismo , Macrófagos/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Sepse/enzimologia , Animais , Determinação da Pressão Arterial , Citocinas/metabolismo , Cardiopatias/induzido quimicamente , Cardiopatias/mortalidade , Heme Oxigenase-1/deficiência , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Camundongos , Miocárdio/metabolismo , RNA Mensageiro/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sepse/induzido quimicamente , Sepse/mortalidade
11.
Oxid Med Cell Longev ; 2018: 5053091, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29599896

RESUMO

Heme oxygenase-1 (HO-1) is induced by many stimuli to modulate the activation and function of different cell types during innate immune responses. Although HO-1 has shown anti-inflammatory effects in different systems, there are few data on the contribution of myeloid HO-1 and its role in inflammatory processes is not well understood. To address this point, we have used HO-1M-KO mice with myeloid-restricted deletion of HO-1 to specifically investigate its influence on the acute inflammatory response to zymosan in vivo. In the mouse air pouch model, we have shown an exacerbated inflammation in HO-1M-KO mice with increased neutrophil infiltration accompanied by high levels of inflammatory mediators such as interleukin-1ß, tumor necrosis factor-α, and prostaglandin E2. The expression of the degradative enzyme matrix metalloproteinase-3 (MMP-3) was also enhanced. In addition, we observed higher levels of serum MMP-3 in HO-1M-KO mice compared with control mice, suggesting the presence of systemic inflammation. Altogether, these findings demonstrate that myeloid HO-1 plays an anti-inflammatory role in the acute response to zymosan in vivo and suggest the interest of this target to regulate inflammatory processes.


Assuntos
Heme Oxigenase-1/metabolismo , Inflamação/enzimologia , Proteínas de Membrana/metabolismo , Doença Aguda , Animais , Modelos Animais de Doenças , Heme Oxigenase-1/deficiência , Heme Oxigenase-1/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/imunologia , Masculino , Metaloproteinase 3 da Matriz/sangue , Metaloproteinase 3 da Matriz/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Neutrófilos/enzimologia , Neutrófilos/imunologia , Zimosan/toxicidade
12.
Am J Physiol Renal Physiol ; 314(5): F702-F714, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28515173

RESUMO

Ferroptosis is an iron-dependent form of regulated nonapoptotic cell death, which contributes to damage in models of acute kidney injury (AKI). Heme oxygenase-1 (HO-1) is a cytoprotective enzyme induced in response to cellular stress, and is protective against AKI because of its antiapoptotic and anti-inflammatory properties. However, the role of HO-1 in regulating ferroptosis is unclear. The purpose of this study was to elucidate the role of HO-1 in regulating ferroptotic cell death in renal proximal tubule cells (PTCs). Immortalized PTCs obtained from HO-1+/+ and HO-1-/- mice were treated with erastin or RSL3, ferroptosis inducers, in the presence or absence of antioxidants, an iron source, or an iron chelator. Cells were assessed for changes in morphology and metabolic activity as an indicator of cell viability. Treatment of HO-1+/+ PTCs with erastin resulted in a time- and dose-dependent increase in HO-1 gene expression and protein levels compared with vehicle-treated controls. HO-1-/- cells showed increased dose-dependent erastin- or RSL3-induced cell death in comparison to HO-1+/+ PTCs. Iron supplementation with ferric ammonium citrate in erastin-treated cells decreased cell viability further in HO-1-/- PTCs compared with HO-1+/+ cells. Cotreatment with ferrostatin-1 (ferroptosis inhibitor), deferoxamine (iron chelator), or N-acetyl-l-cysteine (glutathione replenisher) significantly increased cell viability and attenuated erastin-induced ferroptosis in both HO-1+/+ and HO-1-/- PTCs. These results demonstrate an important antiferroptotic role of HO-1 in renal epithelial cells.


Assuntos
Injúria Renal Aguda/enzimologia , Heme Oxigenase-1/metabolismo , Túbulos Renais Proximais/enzimologia , Proteínas de Membrana/metabolismo , Acetilcisteína/farmacologia , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Antioxidantes/farmacologia , Carbolinas/toxicidade , Morte Celular , Linhagem Celular , Cicloexilaminas/farmacologia , Desferroxamina/farmacologia , Relação Dose-Resposta a Droga , Compostos Férricos/toxicidade , Glutationa/metabolismo , Heme Oxigenase-1/deficiência , Heme Oxigenase-1/genética , Quelantes de Ferro/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/patologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Knockout , Fenilenodiaminas/farmacologia , Piperazinas/toxicidade , Compostos de Amônio Quaternário/toxicidade , Transdução de Sinais , Fatores de Tempo
13.
Am J Pathol ; 188(2): 491-506, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29169990

RESUMO

Heme oxygenase-1 (HO-1, Hmox1) regulates viability, proliferation, and differentiation of many cell types; hence, it may affect regeneration of injured skeletal muscle. Here, we injected cardiotoxin into gastrocnemius muscle of Hmox1+/+ and Hmox1-/- animals and analyzed cellular response after muscle injury, focusing on muscle satellite cells (SCs), inflammatory reaction, fibrosis, and formation of new blood vessels. HO-1 is strongly induced after muscle injury, being expressed mostly in the infiltrating leukocytes (CD45+ cells), including macrophages (F4/80+ cells). Lack of HO-1 augments skeletal muscle injury, evidenced by increased creatinine kinase and lactate dehydrogenase, as well as expression of monocyte chemoattractant protein-1, IL-6, IL-1ß, and insulin-like growth factor-1. This, together with disturbed proportion of M1/M2 macrophages, accompanied by enhanced formation of arterioles, may be responsible for shift of Hmox1-/- myofiber size distribution toward larger one. Importantly, HO-1-deficient SCs are prone to activation and have higher proliferation on injury. This effect can be partially mimicked by stimulation of Hmox1+/+ SCs with monocyte chemoattractant protein-1, IL-6, IL-1ß, and is associated with increased MyoD expression, suggesting that Hmox1-/- SCs are shifted toward more differentiated myogenic population. However, multiple rounds of degeneration/regeneration in conditions of HO-1 deficiency may lead to exhaustion of SC pool, and the number of SCs is decreased in old Hmox1-/- mice. In summary, HO-1 modulates muscle repair mechanisms preventing its uncontrolled acceleration.


Assuntos
Heme Oxigenase-1/fisiologia , Músculo Esquelético/lesões , Miosite/enzimologia , Células Satélites de Músculo Esquelético/patologia , Animais , Arteríolas/patologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Proteínas Cardiotóxicas de Elapídeos , Crotoxina , Citocinas/biossíntese , Combinação de Medicamentos , Feminino , Regulação Enzimológica da Expressão Gênica , Heme Oxigenase-1/deficiência , Heme Oxigenase-1/genética , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miosite/induzido quimicamente , Miosite/patologia , Miosite/fisiopatologia , RNA Mensageiro/genética , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/metabolismo
14.
Antiviral Res ; 146: 191-200, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28935193

RESUMO

BACKGROUND AND PURPOSE: Celastrol, a quinone methide triterpene isolated from the root extracts of Tripterygium wilfordii, can greatly induce the gene expression activity of heme oxygenase-1 (HO-1) to achieve disease prevention and control. HO-1 induction was recently shown to result in anti-HCV activity by inducing type I interferon and inhibiting hepatitis C virus (HCV) NS3/4A protease activity. The aim of the present study is to evaluate the anti-HCV activity of celastrol and characterize its mechanism of inhibition. METHODS: The anti-HCV activity of celastrol was evaluated using the HCV subgenomic replicon and HCVcc infection systems. The anti-HCV mechanism of celastrol targeting HO-1 expression was clarified using specific inhibitors against several signaling pathways. The transcriptional regulation of celastrol on target gene expression was determined using promoter-based reporter activity assay. The synergistic effect of celastrol and a numbers of clinically used anti-HCV drugs was determined via a drug combination assay. RESULTS: Celastrol inhibited HCV replication in both the HCV subgenomic and HCVcc infection systems with EC50 values of 0.37 ± 0.022 and 0.43 ± 0.019 µM, respectively. Celastrol-induced heme oxygenase 1 (HO-1) expression promoted antiviral interferon responses and inhibition of NS3/4A protease activity, thereby blocking HCV replication. These antiviral effects were abrogated by treatment with the HO-1-specific inhibitor SnMP or silencing of HO-1 expression by transfection of shRNA, which indicates that HO-1 induction contributes to the anti-HCV activity of celastrol. JNK mitogen-activated protein kinase and nuclear factor erythroid 2-related factor 2 (Nrf2) were confirmed to be involved in the inductive effect of celastrol on HO-1 expression. Celastrol exhibited synergistic effects in combination with interferon-alpha, the NS5A inhibitor daclatasvir, and the NS5B inhibitor sofosbuvir. CONCLUSION: Celastrol can serve as a potential supplement for blocking HCV replication. Targeting the JNK/Nrf2/HO-1 axis presents a promising strategy against HCV infection.


Assuntos
Antivirais/farmacologia , Heme Oxigenase-1/genética , Hepacivirus/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Triterpenos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/virologia , Replicação do DNA/efeitos dos fármacos , Heme Oxigenase-1/deficiência , Heme Oxigenase-1/metabolismo , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Triterpenos Pentacíclicos , Replicon/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
15.
Basic Res Cardiol ; 112(4): 39, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28534119

RESUMO

Heme oxygenase-1 (Hmox1) is a stress-inducible protein crucial in heme catabolism. The end products of its enzymatic activity possess anti-oxidative, anti-apoptotic and anti-inflammatory properties. Cardioprotective effects of Hmox1 were demonstrated in experimental models of myocardial infarction (MI). Nevertheless, its importance in timely resolution of post-ischemic inflammation remains incompletely understood. The aim of this study was to determine the role of Hmox1 in the monocyte/macrophage-mediated cardiac remodeling in a mouse model of MI. Hmox1 knockout (Hmox1-/-) and wild-type (WT, Hmox1+/+) mice were subjected to a permanent ligation of the left anterior descending coronary artery. Significantly lower incidence of left ventricle (LV) free wall rupture was noted between 3rd and 5th day after MI in Hmox1-/- mice resulting in their better overall survival. Then, starting from 7th until 21st day post-MI a more potent deterioration of LV function was observed in Hmox1-/- than in the surviving Hmox1+/+ mice. This was accompanied by higher numbers of Ly6Chi monocytes in peripheral blood, as well as higher expression of monocyte chemoattractant protein-1 and adhesion molecules in the hearts of MI-operated Hmox1-/- mice. Consequently, a greater post-MI monocyte-derived myocardial macrophage infiltration was noted in Hmox1-deficient individuals. Splenectomy decreased the numbers of circulating inflammatory Ly6Chi monocytes in blood, reduced the numbers of proinflammatory cardiac macrophages and significantly improved the post-MI LV function in Hmox1-/- mice. In conclusion, Hmox1 deficiency has divergent consequences in MI. On the one hand, it improves early post-MI survival by decreasing the occurrence of cardiac rupture. Afterwards, however, the hearts of Hmox1-deficient mice undergo adverse late LV remodeling due to overactive and prolonged post-ischemic inflammatory response. We identified spleen as an important source of these cardiovascular complications in Hmox1-/- mice.


Assuntos
Antígenos Ly/metabolismo , Heme Oxigenase-1/deficiência , Proteínas de Membrana/deficiência , Monócitos/enzimologia , Infarto do Miocárdio/enzimologia , Miocárdio/enzimologia , Baço/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Antígenos Ly/imunologia , Células da Medula Óssea/enzimologia , Modelos Animais de Doenças , Feminino , Genótipo , Ruptura Cardíaca Pós-Infarto/enzimologia , Ruptura Cardíaca Pós-Infarto/patologia , Ruptura Cardíaca Pós-Infarto/fisiopatologia , Hematopoese , Heme Oxigenase-1/genética , Macrófagos/enzimologia , Macrófagos/imunologia , Proteínas de Membrana/genética , Camundongos Knockout , Monócitos/imunologia , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Fenótipo , Baço/imunologia , Fatores de Tempo , Disfunção Ventricular Esquerda/enzimologia , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
16.
PLoS One ; 12(1): e0169245, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28052108

RESUMO

Methicillin Resistant Staphylococcus aureus (MRSA) cause pneumonia and empyema thoraces. TLR9 activation provides protection against bacterial infections and Heme oxygenase-1 (HO-1) is known to enhance host innate immunity against bacterial infections. However, it is still unclear whether HO-1 regulates TLR-9 expression in the pleura and modulates the host innate defenses during MRSA empyema. In order to determine if HO-1 regulates host innate immune functions via modulating TLR expression, in MRSA empyema, HO-1+/+ and HO-1-/- mouse pleural mesothelial cells (PMCs) were infected with MRSA (1:10, MOI) in the presence or absence of Cobalt Protoporphyrin (CoPP) and Zinc Protoporphyrin (ZnPP) or CORM-2 (a Carbon monoxide donor) and the expression of mTLR9 and mBD14 was assessed by RT-PCR. In vivo, HO-1+/+ and HO-1-/- mice were inoculated with MRSA (5x106 CFU) intra-pleurally and host bacterial load was measured by CFU, and TLR9 expression in the pleura was determined by histochemical-immunostaining. We noticed MRSA inducing differential expression of TLR9 in HO-1+/+ and HO-1 -/- PMCs. In MRSA infected HO-1+/+ PMCs, TLR1, TLR4, and TLR9 expression was several fold higher than MRSA infected HO-1-/- PMCs. Particularly TLR9 expression was very low in MRSA infected HO-1-/- PMCs both in vivo and in vitro. Bacterial clearance was significantly higher in HO-1+/+ PMCs than compared to HO-1-/- PMCs in vitro, and blocking TLR9 activation diminished MRSA clearance significantly. In addition, HO-1-/- mice were unable to clear the MRSA bacterial load in vivo. MRSA induced TLR9 and mBD14 expression was significantly high in HO-1+/+ PMCs and it was dependent on HO-1 activity. Our findings suggest that HO-1 by modulating TLR9 expression in PMCs promotes pleural innate immunity in MRSA empyema.


Assuntos
Anemia Hemolítica/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Transtornos do Crescimento/metabolismo , Heme Oxigenase-1/deficiência , Distúrbios do Metabolismo do Ferro/metabolismo , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Pleura/enzimologia , Pleura/microbiologia , Receptor Toll-Like 9/metabolismo , Anemia Hemolítica/genética , Animais , Feminino , Transtornos do Crescimento/genética , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Imunidade Inata/genética , Imunidade Inata/fisiologia , Distúrbios do Metabolismo do Ferro/genética , Masculino , Camundongos , Camundongos Knockout , Pleura/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Receptor Toll-Like 9/genética
17.
Am J Physiol Lung Cell Mol Physiol ; 311(5): L928-L940, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27694475

RESUMO

Pulmonary infections with nontuberculous mycobacteria (P-NTM), such as by Mycobacterium avium complex (M. avium), are increasingly found in the elderly, but the underlying mechanisms are unclear. Recent studies suggest that adaptive immunity is necessary, but not sufficient, for host defense against mycobacteria. Heme oxygenase-1 (HO-1) has been recognized as a critical modulator of granuloma formation and programmed cell death in mycobacterial infections. Old mice (18-21 mo) infected with M. avium had attenuated HO-1 response with diffuse inflammation, high burden of mycobacteria, poor granuloma formation, and decreased survival (45%), while young mice (4-6 mo) showed tight, well-defined granuloma, increased HO-1 expression, and increased survival (95%). To further test the role of HO-1 in increased susceptibility to P-NTM infections in the elderly, we used old and young HO-1+/+ and HO-1-/- mice. The transcriptional modulation of the JAK/STAT signaling pathway in HO-1-/- mice due to M. avium infection demonstrated similarities to infected wild-type old mice with upregulation of SOCS3 and inhibition of Bcl2. Higher expression of SOCS3 with downregulation of Bcl2 resulted in higher macrophage death via cellular necrosis. Finally, peripheral blood monocytes (PBMCs) from elderly patients with P-NTM also demonstrated attenuated HO-1 responses after M. avium stimulation and increased cell death due to cellular necrosis (9.69% ± 2.02) compared with apoptosis (4.75% ± 0.98). The augmented risk for P-NTM in the elderly is due, in part, to attenuated HO-1 responses, subsequent upregulation of SOCS3, and inhibition of Bcl2, leading to programmed cell death of macrophages, and sustained infection.


Assuntos
Heme Oxigenase-1/metabolismo , Infecções por Mycobacterium não Tuberculosas/enzimologia , Mycobacterium avium/fisiologia , Infecções Respiratórias/enzimologia , Idoso , Envelhecimento/patologia , Animais , Morte Celular , Suscetibilidade a Doenças , Regulação Enzimológica da Expressão Gênica , Granuloma/microbiologia , Granuloma/patologia , Heme Oxigenase-1/deficiência , Heme Oxigenase-1/genética , Humanos , Leucócitos Mononucleares/microbiologia , Leucócitos Mononucleares/ultraestrutura , Camundongos Endogâmicos C57BL , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Infecções Respiratórias/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Transcrição Gênica
18.
Mucosal Immunol ; 9(1): 98-111, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25943274

RESUMO

Heme oxygenase-1 (HO-1) has been shown to display anti-inflammatory properties in models of acute pulmonary inflammation. For the first time, we investigated the role of leukocytic HO-1 using a model of HO-1(flox/flox) mice lacking leukocytic HO-1 that were subjected to lipopolysaccharide (LPS)-induced acute pulmonary inflammation. Immunohistology and flow cytometry demonstrated that activation of HO-1 using hemin decreased migration of polymorphonuclear leukocytes (PMNs) to the lung interstitium and bronchoalveolar lavage (BAL) in the wild-type and, surprisingly, also in HO-1(flox/flox) mice, emphasizing the anti-inflammatory potential of nonmyeloid HO-1. Nevertheless, hemin reduced the CXCL1, CXCL2/3, tumor necrosis factor-α (TNFα), and interleukin 6 (IL6) levels in both animal strains. Microvascular permeability was attenuated by hemin in wild-type and HO-1(flox/flox) mice, indicating a crucial role of non-myeloid HO-1 in endothelial integrity. The determination of the activity of HO-1 in mouse lungs revealed no compensatory increase in the HO-1(flox/flox) mice. Topical administration of hemin via inhalation reduced the dose required to attenuate PMN migration and microvascular permeability by a factor of 40, emphasizing its clinical potential. In addition, HO-1 stimulation was protective against pulmonary inflammation when initiated after the inflammatory stimulus. In conclusion, nonmyeloid HO-1 is crucial for the anti-inflammatory effect of this enzyme on PMN migration to different compartments of the lung and on microvascular permeability.


Assuntos
Heme Oxigenase-1/imunologia , Pulmão/imunologia , Proteínas de Membrana/imunologia , Neutrófilos/imunologia , Pneumonia/imunologia , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/química , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/imunologia , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Quimiocina CXCL2/genética , Quimiocina CXCL2/imunologia , Quimiocinas CXC/genética , Quimiocinas CXC/imunologia , Regulação da Expressão Gênica , Heme Oxigenase-1/deficiência , Heme Oxigenase-1/genética , Hemina/farmacologia , Interleucina-6/genética , Interleucina-6/imunologia , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Pneumonia/induzido quimicamente , Pneumonia/patologia , Pneumonia/prevenção & controle , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
19.
Am J Physiol Renal Physiol ; 310(6): F466-76, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26672617

RESUMO

The arteriovenous fistula (AVF) is the preferred hemodialysis vascular access, but it is complicated by high failure rates and attendant morbidity. This study provides the first description of a murine AVF model that recapitulates two salient features of hemodialysis AVFs, namely, anastomosis of end-vein to side-artery to create the AVF and the presence of chronic kidney disease (CKD). CKD reduced AVF blood flow, observed as early as 3 days after AVF creation, and increased neointimal hyperplasia, venous wall thickness, thrombus formation, and vasculopathic gene expression in the AVF. These adverse effects of CKD could not be ascribed to preexisting alterations in blood pressure or vascular reactivity in this CKD model. In addition to vasculopathic genes, CKD induced potentially vasoprotective genes in the AVF such as heme oxygenase-1 (HO-1) and HO-2. To determine whether prior HO-1 upregulation may protect in this model, we upregulated HO-1 by adeno-associated viral gene delivery, achieving marked venous induction of the HO-1 protein and HO activity. Such HO-1 upregulation improved AVF blood flow and decreased venous wall thickness in the AVF. Finally, we demonstrate that the administration of carbon monoxide, a product of HO, acutely increased AVF blood flow. This study thus demonstrates: 1) the feasibility of a clinically relevant murine AVF model created in the presence of CKD and involving an end-vein to side-artery anastomosis; 2) the exacerbatory effect of CKD on clinically relevant features of this model; and 3) the beneficial effects in this model conferred by HO-1 upregulation by adeno-associated viral gene delivery.


Assuntos
Anemia Hemolítica/complicações , Derivação Arteriovenosa Cirúrgica , Terapia Genética , Transtornos do Crescimento/complicações , Heme Oxigenase-1/deficiência , Distúrbios do Metabolismo do Ferro/complicações , Complicações Pós-Operatórias/etiologia , Anemia Hemolítica/metabolismo , Anemia Hemolítica/terapia , Animais , Dependovirus , Estudos de Viabilidade , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/terapia , Heme Oxigenase-1/metabolismo , Distúrbios do Metabolismo do Ferro/metabolismo , Distúrbios do Metabolismo do Ferro/terapia , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , Compostos Organometálicos , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/terapia , Regulação para Cima
20.
J Virol ; 89(20): 10656-67, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26269184

RESUMO

UNLABELLED: Expression of the cytoprotective enzyme heme oxygenase-1 (HO-1) is significantly reduced in the brain prefrontal cortex of HIV-positive individuals with HIV-associated neurocognitive disorders (HAND). Furthermore, this HO-1 deficiency correlates with brain viral load, markers of macrophage activation, and type I interferon responses. In vitro, HIV replication in monocyte-derived macrophages (MDM) selectively reduces HO-1 protein and RNA expression and induces production of neurotoxic levels of glutamate; correction of this HO-1 deficiency reduces neurotoxic glutamate production without an effect on HIV replication. We now demonstrate that macrophage HO-1 deficiency, and the associated neurotoxin production, is a conserved feature of infection with macrophage-tropic HIV-1 strains that correlates closely with the extent of replication, and this feature extends to HIV-2 infection. We further demonstrate that this HO-1 deficiency does not depend specifically upon the HIV-1 accessory genes nef, vpr, or vpu but rather on HIV replication, even when markedly limited. Finally, antiretroviral therapy (ART) applied to MDM after HIV infection is established does not prevent HO-1 loss or the associated neurotoxin production. This work defines a predictable relationship between HIV replication, HO-1 loss, and neurotoxin production in MDM that likely reflects processes in place in the HIV-infected brains of individuals receiving ART. It further suggests that correcting this HO-1 deficiency in HIV-infected MDM could provide neuroprotection above that provided by current ART or proposed antiviral therapies directed at limiting Nef, Vpr, or Vpu functions. The ability of HIV-2 to reduce HO-1 expression suggests that this is a conserved phenotype among macrophage-tropic human immunodeficiency viruses that could contribute to neuropathogenesis. IMPORTANCE: The continued prevalence of HIV-associated neurocognitive disorders (HAND) underscores the need for adjunctive therapy that targets the neuropathological processes that persist in antiretroviral therapy (ART)-treated HIV-infected individuals. To this end, we previously identified one such possible process, a deficiency of the antioxidative and anti-inflammatory enzyme heme oxygenase-1 (HO-1) in the brains of individuals with HAND. In the present study, our findings suggest that the HO-1 deficiency associated with excess glutamate production and neurotoxicity in HIV-infected macrophages is a highly conserved phenotype of macrophage-tropic HIV strains and that this phenotype can persist in the macrophage compartment in the presence of ART. This suggests a plausible mechanism by which HIV infection of brain macrophages in ART-treated individuals could exacerbate oxidative stress and glutamate-induced neuronal injury, each of which is associated with neurocognitive dysfunction in infected individuals. Thus, therapies that rescue the HO-1 deficiency in HIV-infected individuals could provide additional neuroprotection to ART.


Assuntos
Anemia Hemolítica/virologia , Ácido Glutâmico/toxicidade , Transtornos do Crescimento/virologia , HIV-1/patogenicidade , HIV-2/patogenicidade , Heme Oxigenase-1/deficiência , Distúrbios do Metabolismo do Ferro/virologia , Macrófagos/virologia , Anemia Hemolítica/genética , Anemia Hemolítica/imunologia , Animais , Fármacos Anti-HIV/farmacologia , Farmacorresistência Viral/genética , Farmacorresistência Viral/imunologia , Expressão Gênica , Ácido Glutâmico/biossíntese , Transtornos do Crescimento/genética , Transtornos do Crescimento/imunologia , HIV-1/imunologia , HIV-2/imunologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/imunologia , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Humanos , Distúrbios do Metabolismo do Ferro/genética , Distúrbios do Metabolismo do Ferro/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Neuroglia/efeitos dos fármacos , Neuroglia/imunologia , Neuroglia/virologia , Fenótipo , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/imunologia , Replicação Viral/efeitos dos fármacos , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA